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The classical Mott-Smith solution for one-dimensional normal shock wave structure
is extended to the two-dimensional regular shock reflection problem. The solution for
the non-equilibrium molecular velocity distribution function along the symmetry-plane
streamline is obtained as a weighted sum of four Maxwellians. An analysis of applicability
of the solution has been performed using the results of direct simulation Monte Carlo
calculations for a range of incident shock wave intensities. Accuracy of the solution
improves with increasing Man, the Mach number normal to the shock front, so that the
solution becomes rather accurate for strong shocks with Man > 8.

Key words: shock waves, kinetic theory, gas dynamics

1. Introduction

In the course of many years of research on normal shock wave internal structure, it
has become a benchmark problem for testing new mathematical models of rarefied and
non-equilibrium flows (Pham-Van-Diep, Erwin & Muntz 1991; Ohwada 1993; Torrilhon
& Struchtrup 2004; Kudryavtsev, Shershnev & Ivanov 2008; Johnson 2013; Timokhin
et al. 2016; Velasco & Uribe 2019; Shoev, Timokhin & Bondar 2020; Jadhav, Gavasane &
Agrawal 2021). It has been caused by the importance of shock-wave phenomena in real-life
applications, simplicity of the mathematical formulation and availability of experimental
data (Hansen & Hornig 1960; Schmidt 1969; Alsmeyer 1976; Pham-Van-Diep, Erwin &
Muntz 1989; Timokhin et al. 2020).

The bimodal Mott-Smith (M-S) solution (Mott-Smith 1951; Tamm 1965) is a classical
solution of this fundamental problem. The solution of the Boltzmann equation is based
on the approximation of the non-equilibrium molecular velocity distribution in the form
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of the sum of two Maxwellians with unknown weight coefficients. The Maxwellians
correspond to two equilibrium states of the gas on opposite sides of the shock wave.
The bimodal character of the distribution function becomes more evident with the
increase of shock wave Mach number. It leads to the fact that this analytical solution
is more applicable for prediction of the phase density for strong shock waves (e.g.
Kogan 1969; Bird 1967; Pham-Van-Diep et al. 1989; Xu & Huang 2010; Timokhin &
Rukhmakov 2021). Further investigation of the shock wave structure showed that the
M-S solution does not allow reproduction of such non-equilibrium effects as temperature
overshoot (e.g. Holway 1965b; Erofeev & Friedlander 2002; Ivanov et al. 2012; Timokhin
et al. 2015). Mott-Smith’s original approach was later modified by using different basis
functions (Muckenfuss 1962; Holway 1965a; Kogan 1969; Solovchuk & Sheu 2010), or
the introduction of the third basis function (Salwen, Grosch & Ziering 1964). These
modifications made the M-S approximation much closer to the Boltzmann equation
solution for a wide range of Mach numbers (e.g. Solovchuk & Sheu 2010, 2011).

Despite the existing disadvantages of the original M-S solution in the quantitative
description of the structure of a one-dimensional (1-D) shock wave, this solution provides
excellent qualitative description of the transition of a gas from one equilibrium state to the
other across the shock at the level of molecular velocity distributions.

2. Problem formulation and mathematical model

Real supersonic flows are rarely 1-D. Among steady two-dimensional (2-D) flows, there
are some examples that retain important features of the 1-D normal shock wave problem.
Probably the simplest example is the problem of stationary regular reflection of an oblique
shock wave from the plane of symmetry (e.g. Ben-Dor 2007; Xue et al. 2020). Such a flow
is illustrated by a numerical density flow field as shown in figure 1. The direction of the
supersonic flow (region 1) is from left to right. The flow is deflected in the oblique incident
shocks (IS) and returns to its original direction passing through the reflected shocks (RS).
The angles of incident and reflected oblique shock waves are denoted in figure 1 as α and
β, respectively. It should be noted that the inviscid solution of this problem consists of
four zones of a uniform supersonic flow divided by discontinuities (in contrast with two
uniform flow regions divided by one discontinuity in the 1-D shock case). This solution
can be determined analytically if one knows the incoming flow Mach number and the
IS angle α (Ben-Dor 2007). Similarly, in the inviscid 1-D normal shock problem the
analytical solution consists of two zones of uniform flow divided by one discontinuity
and is fully determined by the shock Mach number. In this regard, the regular reflection
problem can be considered as an extension of the normal shock structure problem to a
more complicated 2-D case. If viscosity and heat conduction are taken into account, the
shock waves acquire their internal structure, and in the vicinity of the reflection point (the
origin in figure 1) the flow becomes essentially 2-D (Ivanov et al. 2002; Khotyanovsky
et al. 2009; Bondar et al. 2019; Shoev & Ogawa 2019). It leads to the appearance of
the so-called non-Rankine–Hugoniot zone (Sternberg 1959; Khotyanovsky et al. 2009;
Ivanov et al. 2010). No analytical solution is known for the viscous flow in the vicinity
of the reflection point, however, in the far field the 1-D analytical M-S solution is valid
for oblique shocks in the direction normal to it. The presence of several equilibrium
regions and non-equilibrium transitions between them leads to the idea of a qualitative
M-S description of the flow in the vicinity of the reflection point. As it will be shown
below, it is possible to obtain a solution to this 2-D problem along the symmetry plane.
The goal of the present work is to obtain this solution for the gas of Maxwell molecules
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Figure 1. Density flow field for Man = 4.0.

(similarly to the original M-S solution) and to analyse its accuracy by comparison with the
direct simulation Monte Carlo (DSMC) numerical results.

The Boltzmann equation for a monatomic gas stationary 2-D flow in the absence of
external forces can be written as follows:

vx
∂f
∂x

+ vy
∂f
∂y

= J, (2.1)

where f (x, y, v) is a molecular velocity distribution function, v(vx, vy, vz) is the vector of
molecular velocity and J is the collision integral. We assume the solution of (2.1) can be
approximated by a four-term sum,

f (x, y, v) =
4∑

i=1

ni(x, y)fi(vx, vy, vz), (2.2)

where the fi(vx, vy, vz) functions represent the Maxwellian velocity distributions of four
equilibrium regions of the flow (see figure 1),

fi(v) =
(

1
2πθi

)3/2

exp

[
−(vx − Ui)

2 + (vy − Vi)
2 + v2

z

2θi

]
, (2.3)

where θi = kTi/m. Here k and m are the Boltzmann constant and molecular mass,
respectively; Ti, Ui and Vi are the values of gas temperature, x- and y-components of flow
velocity in ith equilibrium region of the problem (see figure 1). Multiplying both sides
of (2.1) by ϕ(v) and integrating over the velocity space, one obtains the general transport
equation of the attribute ϕ:

∂

∂x

∫
vxϕf (x, y, v) dv + ∂

∂y

∫
vyϕf (x, y, v) dv =

∫
ϕJ dv. (2.4)

Using the approximation (2.2) of f (x, y, v), (2.4) can be written as follows:

4∑
i=1

[
ni

′
x

∫
vxϕfi(v) dv + ni

′
y

∫
vyϕfi(v) dv

]
= Iϕ, (2.5)

where ni
′
x = ∂ni/∂x, ni

′
y = ∂ni/∂y and Iϕ = ∫

ϕJ dv. The substitution of various attributes
ϕk in (2.5) allows one to obtain a sufficient number of moment equations to find the spatial
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functions ni(x, y). The right-hand side of the general transport equation (2.5) is equal to
zero for the conserved quantities

ϕi =
{

1, vx, vy, vz, v
2
}

, i = 1, 5. (2.6)

In the 2-D case the equation for ϕ4 = vz vanishes due to the absence of momentum transfer
in the z direction. If one writes down the conservation laws and higher moment equations
along the symmetry plane streamline we can take into account the following conditions:

n2
′
x = n4

′
x, n2

′
y = −n4

′
y, n1

′
y = n3

′
y = 0. (2.7a–c)

These conditions result in zeroing of the transport equation for ϕ3 = vy on the plane of
symmetry, which is explained by the absence of momentum transfer in the y direction.
The remaining conservation laws can be written as follows:

U1n1
′
x + U3n3

′
x + 2U2n2

′
x + 2V2n2

′
y = 0, (2.8)

(U2
1 + c2

1)n1
′
x + (U2

3 + c2
3)n3

′
x + 2(U2

2 + c2
2)n2

′
x + 2U2V2n2

′
y = 0, (2.9)

U1(U2
1 + 5c2

1)n1
′
x + U3(U2

3 + 5c2
3)n3

′
x + 2(U2

2 + V2
2 + 5c2

2)(U2n2
′
x + V2n2

′
y) = 0,

(2.10)

where ci = √
θi. To obtain the moment equations for the remaining attributes ϕk (for k >

5), it is necessary to know the value of the corresponding Iϕk . Their values depend on the
molecular interaction potential. The integrals of power functions ϕk can be expressed by
the integrals of the Hermite polynomials (Kogan 1969). In the study, the moment equations
were constructed for ϕ6 = v2

x , ϕ7 = v2
y , ϕ8 = v2vx, and ϕ9 = v3

x . The right-hand side of
the corresponding moment equations in IH notation can be written as

Iv2
x

= θ IH(2)
xx

, Iv2
y

= θ IH(2)
yy

, (2.11a,b)

Iv2vx
= θ3/2

(
IH(3)

xxx
+ IH(3)

xyy
+ IH(3)

xzz

)
, Iv3

x
= θ3/2IH(3)

xxx
+ θUIH(2)

xx
. (2.12a,b)

For the Maxwell molecules the values of IH are known (Grad 1949; Kogan 1969). In the
case of the second degree of the Hermite polynomials H(2)

ij , the corresponding IH is

IH(2)
ij

= −6γ n2 pij

p
, γ = A

√
8K
m

, (2.13a,b)

where K is the constant in the Maxwell molecular potential K/r4, and A = 0.343 (e.g.
Kogan 1969). Here n = ∑4

i=1 ni and p are number density and pressure, and pij =
m

∫
(CiCj − 1

3 C2δij)f dv, where C is the peculiar velocity of the molecules and δij is
the Kronecker delta. In the case of the third degree of the Hermite polynomials, the
corresponding IH is written as follows:

IH(3)
ijk

= −γ n2
(

9a(3)
ijk − a(3)

ill δjk − a(3)
jll δik − a(3)

kll δij

)
, (2.14)

where the coefficients a(3)
ijk can be expressed via the components of heat flux vector q (see

Kogan 1969),

a(3)
ijk = 2

5
1

p
√

θ

(
qiδjk + qjδik + qkδij

)
, (2.15)
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where qi = (m/2)
∫

C2Cif dv. Then the remaining moment equations are given in the
following form:

U1(U2
1 + 3c2

1)n1
′
x + 2U2(U2

2 + 3c2
2)n2

′
x + U3(U2

3 + 3c2
3)n3

′
x

+ 2V2(U2
2 + c2

2)n2
′
y = −6γ

n
m

pxx, (2.16)

U1c2
1n1

′
x + 2U2(V2

2 + c2
2)n2

′
x + U3c2

3n3
′
x + 2V2(U2

2 + 3c2
2)n2

′
y = −6γ

n
m

pyy, (2.17)

(U4
1 + 8c2

1U2
1 + 5c4

1)n1
′
x + (U4

2 + V2
2 (U2

2 + c2
2) + 8c2

2U2
2 + 5c4

2)n2
′
x

+ (U4
3 + 8c2

3U2
3 + 5c4

3)n3
′
x + 2U2V2(U2

2 + V2
2 + 7c2

2)n2
′
y = −8γ

n
m

qx, (2.18)

(U4
1 + 6c2

1U2
1 + 3c4

1)n1
′
x + (U4

2 + 6c2
2U2

2 + 3c4
2)n2

′
x

+ (U4
3 + 6c2

3U2
3 + 3c4

3)n3
′
x + 2U2V2(U2

2 + 3c2
2)n2

′
y = −6

5
γ

n
m

(4qx + 15Upxx) ,

(2.19)

where gas number density n and x-component of flow velocity U in the right-hand sides
can be written as

n = n1 + n3 + 2n2, U = (n1U1 + n3U3 + 2n2U2) /n. (2.20a,b)

The tensor components pxx, pyy and the heat flux component qx can be represented as
functions of n1, n2 and n3 using (2.2):

pxx = [4n2n3(U2 − U3)
2 − 2n2(n3 + 2n2)V2

2 + 2n1(n3(U1 − U3)
2

+ 2n2(U1 − U2)
2 − n2V2

2 )]/(3n), (2.21)

pyy = −[n1n3(U1 − U3)
2 + 2n2n3(U2 − U3)

2 − 4n2(n3 + 2n2)V2
2

+ 2n1n2((U1 − U2)
2 − 2V2

2 )]/(3n), (2.22)

qx = −[n1(5c2
1 + (U − U1)

2)(U − U1) + n3(5c2
3 + (U − U3)

2)(U − U3)

+ 2n2(U − U2)(5c2
2 + (U − U2)

2 + V2
2 )]/2. (2.23)

The relations (2.16)–(2.19) are partial differential equations, where the left-hand sides
contain the derivatives of concentrations with constant coefficients, and the right-hand
sides contain functions of n1, n2 and n3. All variables in the obtained equations can be
non-dimensionalized with the free stream parameters (region 1 in figure 1)

Ni = ni

n10
, N =

4∑
i=1

Ni, Ûi = Ui

c1
, V̂i = Vi

c1
, ĉi = ci

c1
,

θ̂ = θ

c2
1
, p̂ij = pij

mn10c2
1
, q̂i = qi

mn10c3
1
, x̂ = x

λ0
, ŷ = y

λ0
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.24)

where n10 is the number density in equilibrium region 1 and λ0 = 2
15(c1/An10)

√
m/πK

is the Maxwell molecule mean free path (Kogan 1969) in the free stream (see figure 1).
Further analyses and presentation of the results will be carried out in dimensionless form.
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It should be noted that these equations were obtained for the symmetry plane (for y = 0).
The conditions for the symmetry plane lead to the fact that the only derivative with respect
to the y-coordinate in these equations is n2

′
y. It can be easily shown using (2.8). This

derivative can be considered as a function of the x-coordinate at y = 0. The substitution
of n2

′
y with its expression from (2.8) leads to the following non-dimensionalized form of

(2.9):

(Û2
1 + ĉ2

1 − Û1Û2)N1
′
x̂ + (Û2

3 + ĉ2
3 − Û2Û3)N3

′
x̂ + 2ĉ2

2N2
′
x̂ = 0. (2.25)

The solution (2.2) must satisfy the boundary conditions on the symmetry plane,

f (x → −∞, y = 0, v) = n10f1(v), f (x → +∞, y = 0, v) = n30f3(v), (2.26a,b)

where n30 is the number density in equilibrium region 3, respectively. These relations lead
to the boundary conditions for N1, N2 and N3:

N1(−∞) = N10, N3(+∞) = N30, N1(+∞) = N2(±∞) = N3(−∞) = 0.

(2.27a–c)
Integration of (2.25) taking into account conditions (2.27a–c) allows us to obtain the
relation for N1, N2 and N3 functions on the symmetry plane

N1 = 1 + (Û2Û3 − Û2
3 − ĉ2

3)N3 − 2ĉ2
2N2

Û2
1 + ĉ2

1 − Û1Û2
. (2.28)

The resulting (2.28) with the rest of the moment equations (2.10), (2.16)–(2.19) and
boundary conditions (2.27a–c) form an overdetermined system of equations for three
required functions N1, N2 and N3. An exact solution to the Boltzmann equation will satisfy
any number of moment equations. In order to estimate the quality of the approximation,
it is possible to obtain several solutions with the same approximating function, but with
a different choice of moment equations (e.g. see Mott-Smith 1951; Salwen et al. 1964).
In the present study we tested three sets of equations: (2.28) was supplemented by three
various extra pairs of moment equations. The pairs were taken for the transport equations
of following ϕ-attributes: (v2

x , v2vx); (v2
y , v2vx); (v2

y , v3
x ). The relation (2.28) allows us to

obtain the system of two differential equations for each ϕ-pair with respect to the functions
N2(x) and N3(x) with two conditions N2(−∞) = 0 and N3(−∞) = 0 (see (2.27a–c)).
Further, each pair of equations can be solved numerically similarly to the scheme described
in Salwen et al. (1964).

3. Results and discussion

To observe the regular reflection of the incident oblique shock wave, the IS angle must
be in the range αM < α < αD. The Mach angle αM = arcsin(1/Ma1) corresponds to the
shock wave of zero intensity. The detachment angle αD is the maximum angle at which, in
accordance with the inviscid shock wave theory, the flow deflected in the oblique incident
shock wave, IS, can return to its original direction passing through the reflected shock
wave, RS (Ben-Dor 2007). Thus, the regular reflection is impossible above the detachment
angle αD so that, in experiments, irregular shock wave configurations consisting of more
than two shock waves are observed instead (Hornung 1986). In the study, a sufficiently
high free stream Mach number (Ma1 = 20) was chosen to obtain a wide range of incident
shock wave intensities (IS angles). In this case the Mach and detachment angles are
αM ≈ 2.87◦ and αD ≈ 35.36◦, respectively. Figure 2(a) presents the solutions along the
plane of symmetry for the example case Man = 8.0 of three investigated pairs of equations.
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Figure 2. (a) The N1, N2 and N3 distributions for Man = 8.0 with different pairs of equations; (b) the
(N2 + N4)/(N1 + N3) maximum value dependence on the normal Mach number.

The origin here and in what follows corresponds to the point where N(0) = (N10 +
N30)/2. These distributions of Ni functions are typical of the entire range of considered IS
angles. As can be seen from the presented result, the studied pairs allow us to obtain
qualitatively identical distributions of N1, N2 = (N2 + N4)/2 and N3. The quantitative
difference is primarily in the thickness of the transition region from state 1 to state 3,
as well as in the magnitude of the maximum for N2.

The contribution of N2 and N4 functions to the solution along the symmetry plane
streamline to some extent demonstrates the effect of two-dimensionality of the flow on
the solution. At a constant free stream Mach number this effect should increase with
an increase of the IS angle and hence also the incident shock intensity. The maximum
values of (N2 + N4)/(N1 + N3) along the symmetry plane streamline can be considered as
a measure of the mentioned contribution to the solution. The dependence of this parameter
on the normal Mach number which governs the IS intensity is shown in figure 2(b).
The contribution of the flow parts behind the incident shock to the symmetry plane
solution increases with Man for all types of the solution. While for Man < 4 it can
be considered insignificant, at normal Mach numbers as high as 10 this parameter can
even exceed unity, which means at some points on the symmetry plane the contribution
of regions 2 and 4 to the solution is even greater than that of the upstream and
downstream regions 1 and 3. To analyse the applicability of the considered approach
to the description of the density profile and molecular distribution function, benchmark
numerical solutions to the considered problem were obtained by the DSMC method (Bird
1994). The 2-D computations were performed with the SMILE code (Ivanov et al. 2006)
for Ma1 = 20 and three values of Man = 4, 8 and 10. On the one hand these values
are relatively high so the multi-Maxwellian M-S solution could make sense, and on the
other hand they represent three degrees of contribution of regions of 2 and 4 to the
symmetry plane solution discussed above: negligible, moderate and high, respectively.
The model of pseudo-Maxwell molecules was used in the computations which provide
similar viscosity–temperature dependence as the Maxwell molecules but with more simple
isotropic scattering (variable hard sphere (Bird 1994) model with the viscosity-temperature
exponent equal to unity). The incident shock waves were generated by two wedges
symmetrically placed in the supersonic flow. The density flow field for Man = 4 is shown
in figure 1. The wedges are used only for generation of oblique shocks and this is why
the specular reflection condition was set on all the walls (which is a kinetic analogue of
continuum impermeability conditions). The Knudsen number based on the length of the
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Figure 3. Density profiles for (a) Man = 4.0, (b) Man = 8.0 and (c) Man = 10.0.

windward side of the wedge and the free stream mean free path was equal to 0.0005. Such
a small Knudsen number allows the zone of interest where the regular reflection occurs
to be unaffected by the expansion fans clearly visible in figure 1. The wedge angle was
equal to 8.07◦, 17.06◦ and 21.54◦ degrees and the gap between the trailing edges of the
two wedges normalized to the length of the windward side of the wedge was equal to
0.124, 0.138 and 0.171 for Man values of 4, 8 and 10, respectively. All the computational
parameters satisfied the requirements for accurate DSMC modelling (Bird 1994): time
step was small in comparison with mean collision time and cell residence time; and cells
of the adaptive collisional grid were significantly smaller than local mean free path. The
number of simulated particles in a virtual square cell with sides equal to the local mean
free path was higher than 10 in the whole flow field which ensures the high accuracy
of the solution (Shevyrin, Bondar & Ivanov 2005). Up to 80 × 106 simulated particles
were used in a typical computation. A comparison of the density profiles along the plane
of symmetry obtained using the M-S approximation with the DSMC results is shown
in figure 3. At relatively low normal Mach numbers Man (low intensity) of the incident
shock wave, the thickness of the reflection region is greatly overestimated. This fact is
demonstrated in figure 3(a) for Man = 4.0. As the intensity of the incident shock wave
decreases, the discrepancy between the M-S solution and the DSMC results only grows
(such a comparison has been made but not presented in the paper). With the increase
in the normal Mach number the M-S solution approaches the benchmark solution (see
figure 3b,c). At the same time, the M-S solutions for various ϕ-pairs of equations become
closer to each other. One can argue that the approximation function (2.2) approaches
the solution of the Boltzmann equation with increasing Man. This fact is explained by
the strengthening of the modal nature of the distribution function which leads to better
applicability of the M-S approximation for stronger shocks. Note that the solution for the
ϕ-attributes (v2

y , v3
x ) predicts the DSMC density in the considered Mach number range

better than the other two solutions. It has been demonstrated that the M-S density profiles
approach the DSMC solution with increasing intensity of the incident shock wave. It
should be noted that density is the most easily reproducible fluid flow macroparameter.
Therefore, for more detailed analyses other flow macroparameters should be considered,
which represent higher-order moments of the molecular distribution function.

Second-order moments which can be conveniently used for assessing the degree of
thermal non-equilibrium are temperatures associated with various molecular thermal
velocity components (Yen 1966)

θj = kTj

m
= 1

n

∫
C2

j f dv, j = {x, y, z}, θ = 1
3

(
θx + θy + θz

)
. (3.1)
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Figure 4. Total temperature and transverse temperature profiles for (a) Man = 8.0 and (b) Man = 10.0.

A well-known effect of strong thermal non-equilibrium in a normal shock wave is the
presence of an overshoot in the longitudinal temperature θx at the back of the shock
wavefront (Yen 1966). With an increase in the Mach number of the shock wave, an
increase in the maximum in the longitudinal temperature also leads to the appearance of a
maximum in the total temperature θ for Mach numbers Ma > 3.9 (Erofeev & Friedlander
2002). At the same time, the classical M-S solution for a normal shock wave does not
provide the overshoot in the total temperature (Timokhin et al. 2015). In the considered
2-D flow, in contrast to the 1-D problem, in the vicinity of the regular reflection of oblique
shock waves, an overshoot is observed in the transverse temperature θy. An overshoot of the
total temperature is also clearly visible for all considered Mach numbers. Figure 4 shows
the distributions of the transverse and total temperatures for Man = 8.0 and Man = 10.0.
For Man = 4.0 agreement between the M-S and DSMC results for higher-order moments
is poor as it was observed for density and, therefore, these results are not presented.
As can be seen, all considered solutions of the M-S approximation behave similarly
to the density results (see figure 3). It is worth noting that at Man = 10.0 the M-S
approximation predicts the non-monotonic behaviour of the transverse temperature. On
the other hand, as in the classical M-S solution for a 1-D shock wave, the distribution of
the total temperature in a 2-D flow is a monotonic function along the symmetry plane. The
figures 5 and 6 demonstrate a similar comparison of the distributions of the components
of the stress tensor σij = pij − pδij (only diagonal components which are not equal to
zero on the symmetry plane are presented) and the longitudinal component of the heat
flux (which is the only non-zero component on the symmetry plane). All considered
M-S solutions become closer to the benchmark DSMC solution in all considered flow
parameters with increasing Man. Better accuracy of the M-S solution for higher Man
can be explained by improvement in the quality of the M-S approximation (2.2) of the
molecular distribution function with an increase in the intensity of the incident shock
wave. As was demonstrated for density, the solution for the ϕ-attributes (v2

y , v3
x ) agree with

the benchmark DSMC results much better than two other solutions for all higher-order
moments of the distribution function.

The proposed solution accuracy is further assessed by the comparison of the molecular
velocity distribution with the DSMC results. The 1-D distribution functions depending
only on x- or y-velocity components are considered. They are obtained from the
three-dimensional distribution function by integration over two rest coordinates in the
velocity space. The molecular velocity in all presented distributions is normalized to the
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Figure 5. Stress tensor components for (a) Man = 8.0 and (b) Man = 10.0.
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Figure 6. Heat flux for (a) Man = 8.0 and (b) Man = 10.0.

value of the most probable peculiar velocity cp = √
2c1 in the free stream flow (region 1

in figure 1). Figures 7 and 8 present the results of comparison for local molecular velocity
distribution functions for two values of normal Mach number. The M-S solution for the
ϕ-attributes (v2

y , v3
x ) is chosen for comparison because it is the most accurate variant of the

solution in terms of predicting the DSMC macroparameters’ profiles. The comparison
was carried out at points on the symmetry plane with the same density values in the
DSMC and the M-S solutions (two values close to those in regions 1 and 3 and two
intermediate values). The presented results of the comparison demonstrate qualitatively
correct descriptions of the flow transition from state 1 to state 3 by the M-S approach for
all considered normal Mach numbers.

For each case, dashed lines mark the values of the most probable velocity components Ui
and Vi for the modes of the corresponding solution (2.3). Let us consider the x-components
of the velocities in more detail (see figures 7a and 8a). The value of U1 for all the
cases considered remains unchanged due to the constant value of the free stream Mach
number. Changing of Man results in varying the values of U2 = U4 and U3. For the Mach
number Man = 4.0, the relative differences of U2 and U3 from U1 are 2.8 % and 4.4 %,
respectively. The basis modes of the solution in this case are very close to each other.
At the same time, as Man grows, these differences grow, which leads to an increase in
the modality of the local solution. So, for Man = 10.0 the same differences reach 18.6 %
and 31.1 %, respectively. This explains the decrease in quantitative differences between the
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Figure 8. Velocity distribution functions f (vx) (a) and f (vy) (b) for Man = 10.0.

DSMC and the M-S solutions. On the other hand, the modes in the DSMC distribution
function turn out to be less pronounced for the intermediate values of density due to
the presence of a large number of scattered molecules with velocities not representative
of any Maxwellian mode. This strongly non-equilibrium effect is similarly observed in
distribution functions inside normal shock waves (Pham-Van-Diep et al. 1989).

Strengthening of the modality of the velocity y-component distributions can also be
observed (see figures 7b and 8b): the increase in the normal Mach number leads to
increasing the difference of V2 and V4 from the zero values of V1 and V3. However, this
effect is less pronounced. Some quantitative differences for the intermediate density values
are also clearly observed for this velocity component.

4. Conclusion

As stated above, the classical M-S analytical solution provides a qualitative approximate
kinetic description of the internal structure of a 1-D normal shock wave. The results
obtained in the present study demonstrate the possibility of applying a similar approach
to the 2-D problem of the regular reflection of shock waves. The analytical M-S
approximation provides a clear qualitative description of the evolution of macroparameters
and molecular distribution functions along the plane of symmetry in this 2-D strongly
non-equilibrium flow. The accuracy of the solution becomes better with increasing
intensity of the incident shock wave.
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