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Abstract—The notion of Lr-variational measure generated by a function F ∈ Lr[a, b] is intro-
duced and, in terms of absolute continuity of this measure, a descriptive characterization of the
HKr-integral recovering a function from its Lr-derivative is given. It is shown that the class
of functions generating absolutely continuous Lr-variational measure coincides with the class of
ACGr-functions which was introduced earlier, and that both classes coincide with the class of
the indefinite HKr-integrals under the assumption of Lr-differentiability almost everywhere of the
functions consisting these classes.

DOI: 10.1134/S0001434622030099

Keywords: Lr-derivative, Henstock–Kurzweil-type integral, Lr-variational measure, abso-
lutely continuous measure, generalized absolute continuity of a function.

1. INTRODUCTION

There are many areas in analysis which require nonabsolutely convergent integration processes more
powerful than Lebesgue integration. In most cases, such integrals are introduced to solve the problem
of recovering primitives defined in terms of respective generalized derivatives (note that the Lebesgue
integral does not solve this problem even in the case of the ordinary derivative). For example, in harmonic
analysis, the problem of recovering coefficients of series with respect to an orthogonal system from
their sums can often be reduced to the integration of an appropriate generalized derivative chosen in
accordance with the considered system. In classical harmonic analysis, integration of the approximate
symmetric derivative solves the problem of recovering coefficients of trigonometric series (see [1]), while
in the case of series with respect to the system of characters of the dyadic Cantor group or of its
generalizations, the dyadic and p-adic derivatives and derivatives with respect to various derivate bases
do the job (see [2]–[8]).

Various versions of nonabsolute integrals were introduced to integrate each of those generalized
derivatives. Constructive definitions of Denjoy– or Henstock–Kurzweil-type integrals usually turn
out to be equivalent to the Perron-type approach (see [4], [6], [9] and [10]), as well as to a Lusin-type
descriptive definition. For some useful properties of those integrals, see [11]–[13]. These definitions were
also extended to functions defined or ranging in some kind of abstract spaces (see [14], [15]).

All descriptive definitions of nonabsolute integrals are in fact generalizations of the known descriptive
characterization of the indefinite Lebesgue integral in terms of absolutely continuous functions, which
can be formulated in the following equivalent form: a function f is L-integrable on [a, b] if and only
if there exists a function F of bounded variation on [a, b] that generates an absolutely continuous

*E-mail: pmusial@csu.edu
**E-mail: vaskvor2000@yahoo.com

***E-mail: francesco.tulone@unipa.it

414



ON DESCRIPTIVE CHARACTERIZATIONS OF AN INTEGRAL 415

Lebesgue–Stieltjes measure and F ′(x) = f(x) a.e.; the function F (x)− F (a) being the indefinite
L-integral of f (this is in fact the one-dimensional case of the Radon–Nikodym theorem).

In the case of nonabsolute generalizations of the Lebesgue integrals (of Denjoyp–Perron- or
Henstock–Kurzweil-type) indefinite integrals fail to be of bounded variation and so cannot generate
a finite Stieltjes measure. In this case, a descriptive characterization can be obtained in terms of some
generalized σ-finite outer measure (so-called variational measure) generated by the indefinite integral.

Variational measures can be defined with respect to various derivate bases. In the simplest case of
the full interval basis and of the original Henstock–Kurzweil integral, it was introduced by B. Thomson
in [16] and was used to give a full descriptive characterization of this integral in [17] (also see [18]–[21]).

In this paper, we introduce and investigate a descriptive characterization of Henstock–Kurzweil-type
integrals, the HKr-integral, which serves to integrate a derivative defined in the space Lr, 1 ≤ r < ∞.
This Lr-derivative was introduced in [22] by Calderon and Zygmund to be used in obtaining some
estimates for solutions of elliptic partial differential equations. Later L. Gordon [23] described a
Perron-type integral, the Pr-integral, that recovers a function from its Lr-derivative. In 2004, Musial
and Sagher [24] extended the Pr-integral by the Lr-Henstock–Kurzweil integral, the HKr-integral,
which turned out to be strictly wider than the Pr-integral [25]. They also defined the Lusin-type class of
ACGr-functions and showed that indefinite HKr-integrals belong to this class. Some other properties
of this integral were investigated in [26]–[28].

In Sec. 3 of the present paper, we define the Lr-variational measure generated by a function belonging
to Lr[a, b] and obtain a characterization of the indefinite HKr-integral in terms of absolute continuity of
this measure. Namely, we show that the class of the indefinite HKr-integrals coincides with the class of
functions in Lr[a, b] that generate an absolutely continuousLr-variational measure, under the additional
assumption that the functions are Lr-differentiable almost everywhere. In Sec. 4, we prove that any
absolutely continuous Lr-variational measure is σ-finite. In the case of the variational measure defined
by the usual increment of a function, an analogous statement was established in [29], and we use the
same tetechniq here (also see [18, Theorem 7.37]). This result is crucial for establishing in the next Sec. 5
that the class of functions generating absolutely continuous Lr-variational measure coincides with the
class of ACGr-functions. Note that both classes coincide with the class of the indefinite HKr-integrals
under assumption of Lr-differentiability almost everywhere of functions of the classes. But the proof in
Sec. 5 does not depend on this assumption. The problem on Lr-differentiability almost everywhere of
functions of those classes is left open.

2. PRELIMINARIES
We work in a fixed closed interval [a, b]. The symbol I denotes a nondegenerate closed subinterval of

[a, b]. A tagged interval is a pair (I, x), where x ∈ I, is a tag, and a gauge is a strictly positive function δ
on [a, b] (or on a subset of [a, b]). We say that a tagged interval (I, x) is δ-fine if I ⊂ (x− δ(x), x+ δ(x)).

A δ-fine partition is a finite collection π of δ-fine tagged intervals, where distinct elements (I ′,x′)
and (I ′′,x′′) in π have nonoverlapping I ′ and I ′′, i.e., they have no interior points in common. A
partition π is tagged in a set E ⊂ [a, b] if x ∈ E for each element (I, x) of π.

Throughout this paper, we assume that r ≥ 1 and consider the respective Lebesgue spaces Lr[a, b].
By μ we denote the Lebesgue measure on [a, b]. We recall the definition of the Lr-Henstock–Kurzweil
integral given in [24] and some related notions from [23].

Definition 1. A function f : [a, b] → R is Lr-Henstock–Kurzweil integrable (HKr-integrable) on
[a, b] if there exists a function F ∈ Lr[a, b] such that, for any ε > 0, there exists a gauge δ such that, for
any δ-fine partition π = {([ci, di], xi), 1 ≤ i ≤ q}, we have

q∑

i=1

(
1

di − ci

ˆ di

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

< ε. (2.1)

By Theorem 5 in [24], the function F is unique up to an additive constant, so, putting F (a) = 0, we
can consider the indefinite HKr-integral

F (x) = (HKr)

ˆ x

a
f ∀x ∈ (a, b].
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As it was done in the case of the classical Henstock–Kurzweil integral (see [18, Corollary 2.80]), it
can be easily checked that the value of HKr-integral does not depend on the values of the function f on
a set of measure zero (under the condition that only finite values of f are considered).

Definition 2. A function F ∈ Lr[a, b] is said to be Lr-continuous at x ∈ [a, b] if

lim
h→0

1

2h

ˆ x+h

x−h
|F (y)− F (x)|r dy = 0.

If F is Lr-continuous for all x ∈ E, we say that F is Lr-continuous on E.

Definition 3. A function F ∈ Lr[a, b] is said to be Lr-differentiable at x if there exists a real number α
such that

(
1

h

ˆ h

−h
|F (x+ t)− F (x)− αt|r dt

)1/r

= o(h).

In this case we say that α is the Lr-derivative of F at x and denote F ′
r(x) = α.

It was proved in [24] that if F is the indefinite HKr-integral of f , then F is Lr-continuous on [a, b]
and F ′

r(x) exists and is equal to f(x) a.e. on [a, b].
For F ∈ Lr[a, b] and a tagged interval (I, x), we denote

ΔrF (I, x) =

(
1

μ(I)

ˆ
I
|F (y)− F (x)|r dy

)1/r

.

The following generalization of the notion of absolute continuity of a function was considered in [24]
in order to give a Lusin-type description of the class of the indefinite HKr-integrals.

Definition 4. Let E ⊂ [a, b]. We say that F ∈ ACr(E), i.e., is an ACr-function on the set E, if for all
ε > 0, there exist η > 0 and a gauge δ defined on E such that for any δ-fine partition {Ii, xi), 1 ≤ i ≤ q},
tagged in E and such that

∑q
i=1 μ(Ii) < η, we have

q∑

i=1

ΔrF (Ii, xi) < ε.

Definition 5. We say that F ∈ ACGr(E) if E can be written as E =
⋃∞

n=1En and F ∈ ACr(En) for
all n.

3. DESCRIPTIVE CHARACTERIZATION OF HKr-INTEGRAL
IN TERMS OF THE Lr-VARIATIONAL MEASURE

Here we introduce the notion of the Lr-variational measure generated by a function F ∈ Lr[a, b] and
apply it to give a descriptive characterization of the indefinite HKr-integral.

Definition 6. For F ∈ Lr[a, b], a set E ⊂ [a, b] and a fixed gauge δ on E, we define the δ-variation of F
on E as

Var(E,F, δ, r) = sup

q∑

i=1

ΔrF (Ii, xi), (3.1)

where the sup is taken over all δ-fine partitions {(Ii, xi)} in [a, b] tagged in E.

Definition 7. The Lr-variational measure generated by F ∈ Lr[a, b] of a set E ⊂ [a, b] is defined as

VF (E) = inf
δ
Var(E,F, δ, r),

where the inf is taken over all gauges tagged in E.
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Definition 8. An Lr-variational measure VF is said to be absolutely continuous on a set E ⊂ [a, b]
with respect to the Lebesgue measure μ if VF (N) = 0 for any N ⊂ E such that μ(N) = 0.

By techniques similar to those used in [20], we can show that VF is a metric outer measure, and if it is
absolutely continuous with respect to the Lebesgue measure, it is a σ-additive measure when restricted
to Lebesgue measurable subsets of [a, b].

We first give a simple proof establishing that an Lr-differentiable almost everywhere function F is (up
to an additive constant) an indefinite HKr-integral of its Lr-derivative if and only if the Lr-variational
measure generated by F is absolutely continuous.

Theorem 1. A function f is HKr-integrable on [a, b] if and only if there exists a function F
on [a, b] which generates an absolutely continuous Lr-variational measure and which is
Lr-differentiable almost everywhere with F ′

r(x) = f(x) a.e.,; the function F (x)− F (a) being the
indefinite HKr-integral of f .

Proof. Let f be anHKr-integrable function on [a, b] withF (x) being its indefinite HKr-integral. Fix an
arbitrary set A ⊂ [a, b], μ(A) = 0. We can assume that f(x) = 0 if x ∈ A. Then, having found a gauge
δ for arbitrary ε and applying the inequality (2.1) from Definition 1 for a δ-fine partition {(Ii, xi)}qi=1
tagged in A, we obtain

q∑

i=1

(
1

μ(Ii)

ˆ
Ii

|F (y)− F (xi)|r dy
)1/r

< ε; (3.2)

This implies that VF (A) = 0 and proves the absolute continuity of VF .

Conversely, let F be a function generating an absolutely continuous Lr-variational measure and
let E be the set on which its Lr-derivative exists. Then μ(Ec) = μ([a, b] \ E) = 0. We will show that
F (x)− F (a) is the indefinite HKr-integral of the function

f(x) =

{
F ′
r(x) at x ∈ E,

0 at x ∈ Ec.

Having fixed an arbitrary ε and using (3.1), we first define a gauge δ on Ec such that inequal-
ity (3.2) holds for any δ-fine partition {(Ii, xi)}qi=1 tagged in Ec. To define the gauge on E, we
note that, according to Definition 3, for each x ∈ E there exists δ(x) such that for any interval I,
x ∈ I ⊂ (x− δ(x), x + δ(x)), we have

(
1

μ(I)

ˆ
I
|F (y)− F (x)− f(x)(y − x)|r dy

)1/r

< ε|I|.

Now the gauge δ is defined for all x ∈ [a, b] and for any δ-fine partition {(Ii, xi)}ni=1 in [a, b] we finally
obtain

n∑

i=1

(
1

μ(Ii)

ˆ
Ii

|F (y)− F (xi)− f(x)(y − x)|r dy
)1/r

=
∑

i : xi∈Ec

(
1

μ(Ii)

ˆ
Ii

|F (y)− F (xi)|r dy
)1/r

+
∑

i : xi∈E

(
1

μ(Ii)

ˆ
Ii

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

< ε+ ε
∑

i : xi∈E
μ(Ii) = ε(1 + b− a).

According to Definition 1, this means that F is the indefinite HKr-integral of f ..
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4. σ-FINITENESS OF THE Lr-VARIATIONAL MEASURE

Here we prove that any absolutely continuous Lr-variational measure is σ-finite.

Theorem 2. If the Lr-variational measure generated by a function F ∈ Lr[a, b] is absolutely
continuous on a closed set E ⊂ [a, b], then VF is σ-finite on E.

Proof. Suppose that VF is not σ-finite on E, and let us show that this leads us to a contradiction with
the absolute continuity of VF .

Let T be a set of all points x ∈ E such that VF is σ-finite on no nonempty portion E ∩ I defined by
a closed interval I, with x ∈ I, and let P be a set of all two-sided limit points of T . It is clear that T is a
perfect set. Then T \ P is a countable set and so VF is σ-finite on this set. This implies that VF s finite
on no nonempty portion P ∩ I of the set P defined by a closed interval I. Assuming that T is not empty,
we construct a set N ⊂ P of measure zero with VF (N) ≥ 1, and obtain the desired contradiction.

Our assumptions imply that VF is not finite on P . Then it follows from Definition 6 and 7 that we

can find a family of nonoverlapping closed intervals {I(1)j }m1
j=1, which are subintervals of [a, b] so that, for

each j = 1, 2, . . . ,m1, we have

P ∩ I
(1)
j 
= ∅ and

m1∑

j=1

|ΔrF (I
(1)
j )| > 1.

We can suppose that m1 > 1 and
m1∑

j=1

μ(I
(1)
j ) <

1

2
.

The last inequality is possible since, in case of need, we can replace the set P by its portion defined by a
small enough interval.

Now we proceed by induction. We suppose that we have already constructed in [a, b] a family of

nonoverlapping closed intervals {I(k−1)
i }mk−1

i=1 , k > 1, such that P ∩ I
(k−1)
i 
= ∅ for each i. Repeating

the construction used in the first step, we obtain a family of nonoverlapping closed intervals {I(k)j }mk
j=1

such that

(a) P ∩ I
(k)
j 
= ∅ for each j = 1, 2, . . . ,mk;

(b) each I
(k)
j is contained in some I(k−1)

i ;

(c) each I
(k−1)
i contains at least two intervals from the family {I(k)j }mk

j=1;

(d)
∑mk

j=1 μ(I
(k)
j ) < 1/2k ;

(e)
∑

j : I
(k)
j ⊂I

(k−1)
i

|ΔrF (I
(k)
j )| > 1 for each i = 1, 2, . . . ,mk−1.

We put

N =

∞⋂

k=1

mk⋃

j=1

I
(k)
j .

Condition (d) implies that N is a set of measure zero. Using (a)–(d) it is not difficult to check that N is
a perfect subset of P . For an arbitrary gauge δ on N and for any n ∈ N, we define

Nn =

{
x ∈ N : δ(x) >

1

n

}
.
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Applying the Baire category theorem, we find an n such that the set Nn is dense in some portion J ∩N

of the set N . There exist l and i such that I(l)i ⊂ J and |I(l)i | < 1/n. The density of Nn in J ∩N implies

that for each I
(l+1)
j ⊂ I

(l)
i there exists a xj ∈ I

(l+1)
j ∩Nn. Since δ(xj) > 1/n, the family of pairs

{(I(l+1)
j , xj) : I

(l+1)
j ⊂ I

(l)
i }

forms δ-fine partition tagged in N . Using (e) with k replaced by l + 1, we obtain

Var(F,N, δ, r) ≥
∑

j : I
(l+1)
j ⊂I

(l)
i

|ΔrF (I
(l+1)
j )| > 1.

The gauge δ was arbitrary. So VF (N) ≥ 1, which yields the desired contradiction with the absolute
continuity of VF on E.

5. COMPARISON OF DESCRIPTIVE CHARACTERIZATIONS OF THE HKr-INTEGRAL

The next two theorems show that the class ACGr([a, b]) coincides with the class of functions which
generate absolutely continuous Lr-variational measures.

Theorem 3. Suppose that the Lr-variational measure VF generated by a function F of class
Lr[a, b] is finite on a set E ⊂ [a, b]. Then it is absolutely continuous onE if and only ifF ∈ ACr(E).

Proof. To prove the necessity, note that if μ(E) = 0, then VF (E) = 0 and F ∈ ACr(E) by the
definitions. So we assume that. μ(E) > 0 and fix an arbitrary ε > 0. Since VF (E) < +∞, we can
choose a gauge δ on E such that

Var(E,F, δ, r) < VF (E) +
ε

3
. (5.1)

Since VF is a metric outer measure, it can be treated as a σ-additive measure on σ-algebra BE of Borel
subsets of the set E, regarded as a metric space. Then absolute continuity of VF implies that there exists
a η ∈ (0, μ(E)/2) such that

VF (Y ) <
ε

3
if Y ∈ BE , μ(Y ) < η. (5.2)

Let π1 = {(Mi, ξi)}pi=1 be a δ-partition tagged in E with
∑p

i=1 μ(Mi) < η. Then E ∩ (
⋃p

i=1 Mi) ∈ BE

and

μ

(
E ∩

( p⋃

i=1

Mi

))
≤

p∑

i=1

μ(Mi) < η.

Then (5.2) implies

VF

(
E ∩

( p⋃

i=1

Mi

))
<

ε

3
. (5.3)

Consider the set Z = E \ (
⋃p

i=1 Mi). Since η ∈ (0, μ(E)/2), we have μ(Z) > 0. Define a gauge
δ0 : Z → (0,+∞) having the following properties:

(i) δ0(x) ≤ δ(x) for each x ∈ Z;

(ii) (x− δ0(x), x + δ0(x)) ∩ (
⋃p

i=1Mi) = ∅ for each x ∈ Z;

(iii) Var(Z,F, δ0, r) < +∞ (since VF (E) < +∞).
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By property (iii), there exists δ0-partition π2 = {(Li, yi)}qi=1, on Z such that
q∑

i=1

|ΔrF (Li)| > Var(Z,F, δ0, r)−
ε

3
. (5.4)

By (ii), none of intervals Li intersect
⋃p

i=1Mi. Then π1 ∪ π2 is a δ-partition tagged in E (see (i)).
Hence by (3.1) and (5.1), we have

p∑

i=1

|ΔrF (Mi)|+
q∑

i=1

|ΔrF (Li)| ≤ Var(E,F, δ, r) < VF (E) +
ε

3
.

Combining this inequality with (5.3) and (5.4), we obtain
p∑

i=1

|ΔrF (Mi)| < VF (E)−
q∑

i=1

|ΔrF (Li)|+
ε

3
< VF (E)−Var(Z,F, δ0, r) +

2ε

3

≤ VF (E)−VF (Z) +
2ε

3
≤ VF

(
E ∩

( p⋃

i=1

Mi

))
+

2ε

3
< ε.

This means that F ∈ ACr(E).

To prove the sufficiency, consider a set A ⊂ E of measure zero. Then for each ε > 0, we can find a
gauge δ′ on A, a number η > 0, and an open set G covering A such that

μ(G) < η, (5.5)
p∑

i=1

|ΔrF (Mi)| < ε (5.6)

for any δ′-partition {(Mi, ξi)}pi=1, tagged in A provided
pn∑

i=1

μ(Mi) < η. (5.7)

Put δ(x) = min(δ′(x), ρ(x,R \G)) on A. Then, by (5.5), any δ-partition π = {(Mi, ζi)}pi=1 tagged
in A satisfies inequality (5.7). Therefore, (5.6) holds for π, and Var(A,F, δ, r) ≤ ε. This proves that
VF (A) = 0.

Remark 1. Note that the proof of sufficiency in the above theorem does not require the finiteness
of VF on E. Hence the condition F ∈ ACr(E) always implies absolute continuity of Lr-variational
measure VF on E.

Theorem 4. A function F ∈ Lr[a, b] generates an absolutely continuous Lr-variational measure
on [a, b] if and only if F ∈ ACGr([a, b]).

Proof. If F generates an absolutely continuous Lr-variational measure on [a, b], then by Theo-
rem 2, [a, b] =

⋃∞
n=1 En and VF (En) < +∞. By Theorem 3, F ∈ ACr(En) for each n. Therefore

F ∈ ACGr([a, b]).
Conversely, let F ∈ ACGr([a, b]). Then, by definition, there exists a sequence {En}∞n=1 such that

[a, b] =
⋃∞

n=1En and F ∈ ACr(En) for each n. Taking into consideration Remark 1, we see that the
variational measure VF is absolutely continuous on each En and so, by its subadditivity, on [a, b].

The class ACGr([a, b]) was used in [24] to give the following descriptive characterization of the
HKr-integral.

Theorem 5. A function f is HKr-integrable on [a, b] if and only if there exists F ∈ ACGr[a, b] such
that F ′

r = f a.e.; the function F (x)− F (a) being the indefinite HKr-integral of f .
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Combining Theorem 4 with Theorem 5, we obtain the following new characteristic property of the
HKr-integral.

Theorem 6. If a function F ∈ Lr[a, b] is Lr-differentiable almost everywhere on [a, b], then it
generates an absolutely continuous variational measure on [a, b] if and only if it is the indefinite
HKr-integral of its Lr-derivative F ′

r.

This theorem is clearly equivalent to Theorem 1 which was proved in Sec. 3 in a simpler way,
independently of the more technical and deeper Theorems 2–4.

Remark 2. It is an open problem whether the a priori assumption on Lr-differentiability of F can
be dropped in Theorems 1, 5 and 6. More precisely: is the class of functions generating absolutely
continuous Lr-variational measure (or, equivalently, the class ACGr[a, b]) coincide with the class of
indefinite HKr-integrals? In other words: is each function in those classes Lr-differentiable almost
everywhere? Note that in the case of the classical Kurzweil–Henstock integral, the answer to these
questions is positive (see [17], [18]).

FUNDING

This work was supported by the Russian Foundation for Basic Research under grant 20-01-00584.

REFERENCES
1. B. S. Thomson, Monogr. Textbooks Pure Appl. Math., Vol. 183: Symmetric Properties of Real Functions,

(Marcel Dekker, New York, 1994).
2. V. A. Skvortsov and F. Tulone, “Kurzweil–Henstock type integral on zero-dimensional group and some of its

applications,” Czech. Math. J. 58 (4), 1167–1183 (2008).
3. V. A. Skvortsov and F. Tulone, “Henstock–Kurzweil type integral in Fourier analysis on zero-dimensional

group,” Tatra Mt. Math. Publ. 44, 41–51 (2009).
4. V. A. Skvortsov and F. Tulone, “Multidimensional dyadic Kurzweil–Henstock- and Perron-type integrals in

the theory of Haar and Walsh series,” J. Math. Anal. Appl. 421 (2), 1502–1518 (2015).
5. V. A. Skvortsov and F. Tulone, “On the coefficients of multiple series with respect to Vilenkin system,” Tatra

Mt. Math. Publ. 68, 81–92 (2017).
6. V. A. Skvortsov and F. Tulone, “Multidimensional P-adic integrals in some problems of harmonic analysis,”

Minimax Theory Appl. 2 (1), 153–174 (2017).
7. G. Oniani and F. Tulone, “On the possible values of upper and lower derivatives with respect to differentiation

bases of product structure,” Bull. Georgian Natl. Acad. Sci. (N. S.) 12 (1), 12–15 (2018).
8. G. Oniani and F. Tulone, “On the almost everywhere convergence of multiple Fourier–Haar series,”

J. Contemp. Math. Anal. 54 (5), 288–295 (2019).
9. F. Tulone, “Generality of Henstock–Kurzweil type integral on a compact zero-dimensional metric space,”

Tatra Mt. Math. Publ. 49, 81–88 (2011).
10. R. A. Gordon, Grad. Stud. Math., Vol. 4: The Integrals of Lebesgue, Denjoy, Perron, and Henstock

(Amer. Math. Soc., Providence, RI, 1994).
11. A. Boccuto, V. A. Skvortsov, and F. Tulone, “A Hake-type theorem for integrals with respect to abstract

derivation bases in the Riesz space setting,” Math. Slovaca 65 (6), 1319–1336 (2015).
12. V. A. Skvortsov and F. Tulone, “Generalized Hake property for integrals of Henstock type,” Moscow Univ.

Math. Bull. 68 (6), 270–274 (2013).
13. V. Skvortsov and F. Tulone, “A version of Hake’s theorem for Kurzweil–Henstock integral in terms of

variational measure,” Georgian Math. J. 28 (3), 471–476 (2021).
14. A. Bokkuto, V. A. Skvortsov, and F. Tulone, “Integration of functions ranging in complex Riesz space and

some applications in harmonic analysis,” Math. Notes 98 (1), 25–37 (2015).
15. V. A. Skvortsov and F. Tulone, “Henstock type integral in compact zero-dimensional metric space and

quasi-measures representations,” Moscow Univ. Math. Bull. 67 (2), 55–60 (2012).
16. B. S. Thomson, Mem. Amer. Math. Soc., Vol. 452: Derivates of Interval Functions (Amer. Math. Soc.,

Providence, RI, 1991).
17. B. Bongiorno, L. di Piazza, and V. Skvortsov, “A new full descriptive characterization of Denjoy–Perron

integral,” Real Anal. Exchange 20 (2), 656–663 (1996).
18. T. P. Lukashenko, V. A. Skvortsov, and A. P. Solodov, Generalized Integrals (URSS, Moscow, 2011) [in

Russian].

MATHEMATICAL NOTES Vol. 111 No. 3 2022



422 MUSIAL et al.

19. V. Ene, Lecture Notes in Math., Vol. 1603: Real Functions – Current Topics (Springer-Verlag, Berlin,
1995).

20. S. Schwabik, “Variational Measures and the Kurzweil–Henstock integral,” Math. Slovaca 59 (6), 731–752
(2009).

21. V. A. Skvortsov, “Variations and variational measures in integration theory and some applications,” J. Math.
Sci. 91 (5), 3293–3322 (1998).

22. A. P. Calderon and A. Zygmund, “Local properties of solutions of elliptic partial differential equations,” Studia
Math. 20, 171–225 (1961).

23. L. Gordon, “Perron’s integral for derivatives in Lr,” Studia Math. 28, 295–316 (1967).
24. P. Musial and Y. Sagher, “The Lr Henstock–Kurzweil integral,” Studia Math. 160 (1), 53–81 (2004).
25. P. Musial, V. Skvortsov and F. Tulone, “The HKr-integral is not contained in the Pr-integral,” Proc. Amer.

Math. Soc. (2022) (in press).
26. P. Musial and F. Tulone, “Integration by parts for the Lr Henstock–Kurzweil integral,” Electron. J.

Differential Equations 2015 (44), 1–7 (2015).
27. P. Musial and F. Tulone, “Dual of the class of HKr-integrable functions,” Minimax Theory Appl. 4 (1),

151–160 (2019).
28. P. Musial and F. Tulone, “The Lr-variational integral,” Mediterr. J. Math. (2022) (in press).
29. V. Skvortsov and Yu. Zherebyov, “On Classes of functions generating absolutely continuous variational

measures,” Real Anal. Exchange 30 (1), 361–372 (2005).

MATHEMATICAL NOTES Vol. 111 No. 3 2022


