

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

Comparison of the P_r -integral with Burkill's integrals and some applications to trigonometric series

Paul Musial^a, Valentin Skvortsov^{b,*}, Francesco Tulone^c

^a Chicago State University, 9501 South King Drive, Chicago, 60628, IL, USA

^b Moscow Center for Fundamental and Applied Mathematics, Moscow State University, Kolmogorova st.,

 $1,\ Moscow,\ 119991,\ Russia$

^c University of Palermo, via Archirafi 34, 90123, Palermo, Italy

A R T I C L E I N F O

Article history: Received 20 July 2022 Available online 13 January 2023 Submitted by S. Tikhonov

 $\label{eq:keywords:} Keywords: \\ \mbox{Non-absolute integral} \\ \mbox{Derivative in } L^r \\ \mbox{Perron-type integral} \\ \mbox{Cesaro-Perron integral} \\ \mbox{Trigonometric series} \\ \mbox{Fourier coefficients} \\ \mbox{Fourier series} \\ \mbox{Fourier serier series} \\ \mbox{Fourier series} \\ \mbox{Fourier serier series} \\ \mbox{Fourier se$

1. Introduction

ABSTRACT

It is proved that the P_r -integral [9] which recovers a function from its derivative defined in the space L^r , $1 \le r < \infty$, is properly included in Burkill's trigonometric CP- and SCP-integrals. As an application to harmonic analysis, a de La Vallée-Poussin-type theorem for the P_r -integral is obtained: convergence nearly everywhere of a trigonometric series to a P_r -integrable function f implies that this series is the P_r -Fourier series of f.

@ 2023 Elsevier Inc. All rights reserved.

In this paper we consider a Perron-type integral, the P_r -integral, which was introduced by L. Gordon [9] to solve a problem of recovering a function from its derivative defined in the space L^r , $1 \le r < \infty$. Originally a version of this L^r -derivative appeared in an earlier paper [7] by Calderon and Zygmund and was used to obtain some estimates for solutions of elliptic partial differential equations. Note that the problem of recovering a function from its L^r -derivative can be solved also by a Kurzweil-Henstock-type integral, the HK_r -integral, which was introduced by Musial and Sagher in [11] (see its equivalent definitions in [13] and in [15]) and which turned out to strictly include the P_r -integral (see [12]). In [14] Musial and Tulone developed a dual to the space of HK_r -integrable functions. Here we are interested in comparing the P_r -integral with other integrals of Perron type.

^{*} Corresponding author.

E-mail addresses: pmusial@csu.edu (P. Musial), vaskvor2000@yahoo.com (V. Skvortsov), francesco.tulone@unipa.it (F. Tulone).

The P_r -integral belongs to the family of non-absolute generalizations of the Lebesgue integral. Another class of non-absolute integrals of great importance in harmonic analysis are the so-called trigonometric integrals which serve to recover coefficients of trigonometric series from their sums by generalized Fourier formulas. This theory started with a rather cumbersome Denjoy construction [8] called totalization T_{2s} and was based on transfinite induction, but the same coefficients problem was solved later in a much simpler way by defining Perron-type integrals. Among them, Burkill's Symmetric Cesaro-Perron integral [5], (SCPintegral for short) seems to be most useful and easy to deal with. The more narrow CP-integral, defined by Burkill earlier in [3], solves the coefficients problem under some additional assumptions.

L. Gordon in [9] (Theorems 19 and 20) gave an application of the L^r -derivative and his P_r -integral to trigonometric series, proving that the P_r -Fourier series of a function f is (C, 1)-summable to f. Having in mind some further application to trigonometric series, we start by comparing this integral with the two Burkill trigonometric integrals. In Section 3 of the present paper we compare the P_r -integral with the CPintegral. It is not difficult to show that the P_r -integral is included in the CP-integral and therefore also in the SCP-integral. Our main result in Section 3 is Theorem 3.4, which states that this inclusion is strict.

The inclusion of the P_r -integral in the *SCP*-integral and consistency of those integrals allow us to prove in Section 4 Theorem 4.4, a de La Vallée-Poussin-type theorem for the P_r -integral: convergence nearly everywhere of a trigonometric series to a P_r -integrable function f implies that this series is the P_r -Fourier series of f.

2. Preliminaries

2.1. A Perron-type integral in the metric L^r

Throughout this paper we assume that $r \ge 1$ and we work on the closed interval [a, b]. We recall the definitions of the L^r -derivatives, the L^r -derivative and the P_r -integral introduced in [9].

Definition 2.1. Let $f \in L^r[a, b]$. We define the *upper right* L^r -*derivative* of f at x, denoted by $D_r^+ f(x)$, to be the greatest lower bound of all α such that

$$\left(\frac{1}{h}\int_{0}^{h} \left[f\left(x+t\right) - f\left(x\right) - \alpha t\right]_{+}^{r} dt\right)^{\frac{1}{r}} = o\left(h\right) \text{ as } h \to 0^{+}.$$
(1)

If no real number α satisfies (1), we set $D_r^+ f(x) = +\infty$. If (1) holds for every real number α , we set $D_r^+ f(x) = -\infty$.

We define the lower right L^r -derivative, $D_{+,r}f(x)$, the upper left L^r -derivative, $D_r^-f(x)$, and the lower left L^r -derivative, $D_{-,r}f(x)$, in a similar manner.

Definition 2.2. We define the upper (two-sided) L^r -derivative as follows:

$$\overline{D}_r f(x) = \max\left\{ D_r^+ f(x), D_r^- f(x) \right\}.$$

Similarly we define the *lower (two-sided)* L^r -derivative as follows:

$$\underline{D}_{r}f(x) = \min\left\{D_{+,r}f(x), D_{-,r}f(x)\right\}.$$

Definition 2.3. Let $f \in L^r[a, b]$. If $\overline{D}_r f(x)$ and $\underline{D}_r f(x)$ are the same real number, i.e., if all four L^r -derivatives are equal and finite, then we say that f is L^r -differentiable at x. The common value, denoted by $f'_r(x)$, is the L^r -derivative of f at x.

If f is L^r -differentiable at x, then $f'_r(x)$ is the unique real number α such that

$$\left(\frac{1}{h}\int_{-h}^{h}\left|f\left(x+t\right)-f\left(x\right)-\alpha t\right|^{r}dt\right)^{\frac{1}{r}}=o\left(h\right)$$

It is clear that if a function f is differentiable at a point x then it is also L^r -differentiable at the same point and $f'_r(x) = f'(x)$. The converse is not true. It is easy to construct an example of an L^r -differentiable at some point x function which is not even continuous at x containing in any neighborhood of x sufficiently tall thin spikes.

Definition 2.4. A function $F \in L^r[a, b]$ is said to be L^r -continuous at $x \in [a, b]$ if

$$\lim_{h \to 0} \frac{1}{2h} \int_{x-h}^{x+h} |F(y) - F(x)|^r \, dy = 0.$$

If F is L^r -continuous for all $x \in E$, we say that F is L^r -continuous on E. It can easily be shown by Chebyshev's inequality that if a function is L^1 -continuous, then it is approximately continuous.

Definition 2.5. Suppose f is a function defined a.e. on [a, b]. A finite-valued function $\psi \in L^r[a, b]$ is said to be an L^r -major function of f if

1. $\psi(a) = 0$,

2. ψ is L^r -continuous on [a, b],

3. $\underline{D}_r \psi(x) \ge f(x)$ a.e., and

4. except for at most a countable subset of [a, b], we have

$$-\infty \neq \underline{D}_r \psi(x). \tag{2}$$

A function ϕ is an L^r -minor function of f if $-\phi$ is an L^r -major function of -f.

It was proved in [9] that for any L^r -major function ψ and any L^r -minor function ϕ of f, the function $\psi - \phi$ is non-decreasing on [a, b]. This property allows us to define the Perron-type P_r -integral in a standard way:

Definition 2.6. [9] Suppose f is a function defined a.e. on [a, b]. If it has at least one pair of L^r -major function and L^r -minor function and if $\psi(b)$ taken over all L^r -major functions of f equals $\sup \phi(b)$ taken over all L^r -minor functions of f, then the common value, denoted by

$$(P_r)\int\limits_a^b f$$

is called the P_r -integral of f on [a, b], and f is said to be P_r -integrable on [a, b].

Remark 2.7. We cannot avoid the exceptional set for the inequality (2) in the definition of L^r -major and L^r -minor functions without losing the so-called Hake property of the P_r -integral (see Example 1, §7 in [9]). This fact shows also that, in contrast to the classical case (see [10]), the requirement that the inequality (2) must hold everywhere leads to an integral that is more narrow than the original L. Gordon integral.

Note that if a function F is L^r -continuous everywhere and L^r -differentiable nearly everywhere then it is both a major and a minor function for its derivative and so the derivative is P_r -integrable with F(x) - F(a)being its indefinite P_r -integral.

The following result is known (see [9, Theorem 14]):

Proposition 2.8. If $1 \le r \le q < \infty$, then any P_q -integrable function is P_r -integrable and the values of the integrals are equal.

Note that if r < q then the inclusion of the P_q -integral into the P_r -integral is strict. A related example can be constructed using the strict inclusion of the space $L^q[a, b]$ into the space $L^r[a, b]$.

2.2. The Cesàro-Perron integral

All definitions in this subsection were introduced in [3] (see also [4, page 46]). In the two next definitions a function F is supposed to exist a.e. on [a, b] and to be P-integrable (i.e., Perron integrable in the classical sense, see [16]) in some neighborhood of $x \in [a, b]$.

Definition 2.9. We say F is Cesàro continuous (or C-continuous) at $x \in [a, b]$ if

$$\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} F(t) dt = F(x)$$

Definition 2.10. We define the (ordinary) Cesàro derivative of F at x, CDF(x), as

$$\lim_{h \to 0} \frac{2}{h^2} \int_{x}^{x+h} (F(t) - F(x)) dt$$

In a similar manner we define the upper Cesàro derivative of F at x, $\overline{CD}F(x)$, and the lower Cesàro derivative of F at x, $\underline{CD}F(x)$ as the corresponding upper and lower limits.

Definition 2.11. A function $M : [a, b] \to \mathbb{R}$ is said to be a *CP-major function* of f if

- 1. *M* is C-continuous at every $x \in [a, b]$,
- 2. <u>CD</u> $M(x) > -\infty$ for every $x \in [a, b]$, except possibly for an at most countable subset of [a, b], and
- 3. $\underline{CD}M(x) \ge f(x)$ for almost every $x \in [a, b]$.

The function m is said to be a CP-minor function of f if -m is a CP-major function of -f.

For any CP-major function M and any CP-minor function m of f, the function M - m is non-decreasing on [a, b]. This justifies the following

Definition 2.12. We say a function f, defined a.e. on [a, b], is *CP-integrable* on [a, b] if it has at least one pair of CP-major function and CP-minor function and $\inf M(b) = \sup m(b)$ where the infimum and supremum are taken respectively over all CP-major functions M and over all CP-minor functions m of f. Then the common value, denoted by

$$(CP)\int\limits_{a}^{b}f$$

is called the *CP-integral* of f on [a, b], and f is said to be *CP-integrable* on [a, b].

2.3. The symmetric Cesàro-Perron integral

The notion of *SCP*-integral (Symmetric Cesàro-Perron Integral) was introduced in [5]. In what follows, [a, b] is a fixed closed interval. A *basis* B *in* [a, b] is a subset of [a, b] of full measure, i.e., |B| = b - a, under an additional assumption $a, b \in B$.

Definition 2.13. Suppose a function F exists a.e. on [a, b] and is P-integrable in some neighborhood of $x \in [a, b]$. We say F is symmetric Cesàro continuous (or SC-continuous) at x if

$$\lim_{h \to 0^+} \frac{1}{h} \left(\int_{x}^{x+h} F(t) \, dt - \int_{x-h}^{x} F(t) \, dt \right) = 0.$$

Definition 2.14. We define the symmetric Cesàro derivative of F at x, SCDF(x), as

$$\lim_{h \to 0^+} \frac{1}{h^2} \left(\int_{x}^{x+h} F(t) \, dt - \int_{x-h}^{x} F(t) \, dt \right).$$

In a similar manner we define the upper symmetric Cesàro derivative of F at x, SCDF(x), and the lower symmetric Cesàro derivative of F at x, SCDF(x), as the corresponding upper and lower limits.

Definition 2.15. Let B be a basis in [a, b]. A function $M : B \to \mathbb{R}$ is said to be an SCP-major function of f with respect to the basis B if

- 1. *M* is SC-continuous at every $x \in [a, b]$,
- 2. *M* is C-continuous at every $x \in B$,
- 3. M(a) = 0,
- 4. <u>SCD</u> $M(x) > -\infty$ everywhere on [a, b], except possibly for an at most countable subset of [a, b], and
- 5. <u>SCD</u> $M(x) \ge f(x)$ for almost every $x \in [a, b]$.

The function m is said to be a SCP-minor function of f with respect to a basis B if -m is a SCP-major function of -f with respect to B.

It is shown in [5] that for any SCP-major function M and any SCP-minor function m of f, with respect to a basis B, the function M - m is non-decreasing on B.

Definition 2.16. We say a function f, defined a.e. on [a, b], is *SCP-integrable* on [a, b] with respect to a basis B if it has at least one pair of SCP-major function and SCP-minor function and $\inf M(b) = \sup m(b)$ where the infimum and supremum are taken respectively over all SCP-major functions M and over all SCP-minor functions m of f with respect to the basis B. Then the common value, denoted by

$$F(x) = (SCP, B) \int_{a}^{b} f$$

defines the SCP-integral of f on [a, b].

Note that if B_1 and B_2 are two bases in [a, b] for each of which f is integrable, then the integrals are equal at least on $B_1 \cap B_2$. So talking about *SCP*-integrability of f we can often without ambiguity leave the basis unspecified. Moreover, for each *SCP*-integrable function, we can take as its basis of integration the set of all points where the indefinite integral is C-continuous (after correspondent extension).

An obvious relation of C-derivatives and C-continuity to SC-derivatives and SC-continuity imply

Proposition 2.17. If a function is CP-integrable on an interval [a, b] then it is also SCP-integrable on this interval with respect to the basis B = [a, b] and the values of integrals coincide.

3. Comparison of the P_r -integral with Burkill's integrals

We compare here the CP-integral (and by this also the SCP-integral) with the P_r -integral. By a direct computation we obtain

Lemma 3.1. If a function is L_r -continuous at a point x then it is C-continuous at x.

Lemma 3.2.

$$\underline{D}_{1}F(x) \leq \underline{CD}F(x) \leq \overline{CD}F(x) \leq \overline{D}_{1}F(x).$$

The definitions of the CP- and P_r -integrals, Proposition 2.8, Lemmas 3.1 and 3.2 imply the following result, which in fact was noticed in [9, Remark 2, §5]:

Theorem 3.3. If $f : [a, b] \to R$ is P_r -integrable then it is CP-integrable and the values of integrals coincide.

We show now that this inclusion of the P_r -integral in the CP-integral is proper.

Theorem 3.4. There exists a function which is CP-integrable on [a, b] but which is not P_r -integrable on [a, b].

Proof. Due to Proposition 2.8, it is enough to prove the theorem for the case r = 1.

Let $P \subset [0,1]$ be a symmetric Cantor-type set, defined by iteratively removing the central intervals (the so-called *contiguous intervals*) u_n of rank n = 1, 2, ..., having length $|u_n| = 3^{-n}2^{-n+2}$. The set which is left after removing all contiguous intervals up to rank n from [0,1] is constituted by 2^n segments (closed intervals) r_n , of length $3^{-n}2^{-n}$ each, which are called *segments of rank* n (note that r_n , as well as u_n , is the generic notation for all these segments and intervals of rank n). We can easily compute that $\mu(P) = 0$. Note that each u_n is the interval concentric with some segment r_{n-1} (we set $r_0 = [0, 1]$).

Let v_n be the interval concentric with u_n , all of them of the same length

$$|v_n| = 6^{-n} |u_n| = 3^{-2n} 2^{-2n+2}.$$
(3)

Now we define a function F which is the indefinite CP-integral of its CP-derivative. We put F(x) = 0 outside of the union of intervals v_n of all rank, i.e., on the set P and on each set $u_n \setminus v_n$.

To define F on v_n we subdivide each v_n into 4^n sub-intervals of the same length. Let e_n be the left endpoint of a fixed v_n . For $1 \le k \le 4^n/2$ let

$$v_{n,k}^{+} = [e_n + (2k-2)|v_n|/4^n, e_n + (2k-1)|v_n|/4^n]$$

and let

$$v_{n,k}^{-} = [e_n + (2k-1)|v_n|/4^n, e_n + 2k|v_n|/4^n].$$

Define $F(x) = 2^n$ if $x \in v_{n,k}^+$ and $F(x) = -2^n$ if $x \in v_{n,k}^-$. Let v_n^+ be the union of the $v_{n,k}^+$ and let v_n^- be the union of the $v_{n,k}^-$. We then have

$$|v_{n,k}^+| = |v_{n,k}^-| = |v_n|/(4^n) = 6^{-n}4^{-n}|u_n| = 3^{-2n}2^{-2n+2}4^{-n}$$
(4)

and

$$|v_n^+| = |v_n^-| = |v_n|/2 = 3^{-2n} 2^{-2n+1}.$$
(5)

The function F must be made to be differentiable on u_n . It is clear how to make it smooth changing it in small neighborhoods of each point of discontinuity of F without influencing further estimations, ensuring, for instance, that the average of F on $v_{n,k}$ should stay about the same. We keep the same notation F for the modified function, but to simplify computation we shall allow ourselves to treat it as if it has its original constant values on all sub-intervals of v_n and on $u_n \setminus v_n$. Now we have

$$\int_{v_n^+} F = -\int_{v_n^-} F = \frac{2}{3^{2n} 2^n}$$
(6)

and

$$\int\limits_{u_n} |F| = \frac{4}{3^{2n}2^n} \tag{7}$$

Summing (7) over all intervals u_n of all rank and recalling that the complement to the union of all these intervals is P, i.e., a set of measure zero, we get

$$\int_{0}^{1} |F| = \sum_{n=1}^{\infty} 2^{n-1} \frac{4}{3^{2n} 2^n} = \frac{1}{4}.$$

Hence, $F \in L[0, 1]$. Note that F is differentiable a.e. Let

$$f(x) = \begin{cases} F'(x) & \text{at } x \in [0,1] \setminus P, \\ 0 & \text{at } x \in P. \end{cases}$$

We will first show that CDF(x) = 0 at each point of the set P, and therefore, F is the indefinite CP-integral of its CP-derivative f. Then we will show that f is not P_1 -integrable.

Having fixed $x \in P$ take any $\varepsilon > 0$ and choose n to be such that $2^{-n} < \varepsilon/9$. It is clear that for any h > 0

$$\int_{x}^{x+h} F(t) \, dt \ge 0.$$

We shall show that

$$\int_{x}^{x+h} F(t) \, dt < \varepsilon h^2/2.$$

If x + h is not in v_n for any n, then $\int_x^{x+h} F(t) dt = 0$. Therefore we assume that $x + h \in v_n$ for some n. It follows that $h > |u_n|/3$, and that $x + h \in v_{n,k}^+$ or $x + h \in v_{n,k}^-$ for some k. In either case we have that

$$\int_{x}^{x+h} F(t) dt \le \int_{v_{n,k}^{+}} 2^{n} dt = 2^{n} |v_{n,k}^{+}| = 12^{-n} |u_{n}|$$
$$= |u_{n}|^{2} 2^{-n-2} < \varepsilon h^{2}/2.$$

A similar argument holds for h < 0. This proves that CDF(x) = 0.

Now we are to show that f is not P_1 -integrable. If this were the case then, according to Theorem 3.3, F would be its indefinite P_1 -integral with $F(x) = \sup m(x)$ where \sup is taken over all P_1 -minor functions of f. We obtain a contradiction with this assumption by showing that for any non-decreasing function R with R(0) = 0, the function F - R is not a minor function because $D_1^+(F(x) - R(x)) = +\infty$ on an uncountable set. In fact this equality holds at any point of the set P, which is not a left endpoint of any contiguous interval to P. Let x be such a point. Recall that F(x) = 0 if $x \in P$. We are going to show that for any positive α

$$\limsup_{h \to 0} \frac{1}{h^2} \int_0^h [F(x+t) - R(x+t) + R(x) - \alpha t]_+ dt = +\infty.$$
(8)

We obtain this by choosing a decreasing sequence $h_k \to 0$ such that

$$\lim_{k \to \infty} \frac{1}{h_k^2} \int_0^{h_k} [F(x+t) - R(x+t) + R(x) - \alpha t]_+ dt = +\infty.$$
(9)

Having in mind the way the point x is chosen, we can find an increasing sequence of natural numbers $n_k \to \infty$ such that $x \in r_{n_k} \subset r_{n_k-1}$, and r_{n_k} is the left of two segments of rank n_k which are subsets of r_{n_k-1} , i.e., r_{n_k} and r_{n_k-1} have common left endpoint. Indeed if x is the right endpoint of some contiguous interval to P then it is the common left endpoint of all r_n , starting with some n. If x is an endpoint of no contiguous interval and so of no segment r_n , then the above situation repeats infinitely many times.

So for a fixed x we have chosen the sequence $\{r_{n_k}\}$ with the above property. Let u_{n_k} be a contiguous interval of rank n_k which is concentric with r_{n_k-1} . Note that u_{n_k} is to the right of x and of the segment r_{n_k} to which x belongs. Take h_k so that $u_{n_k} \subset (x, x + h_k)$ and so that

$$h_k < |r_{n_k}| + |u_{n_k}| < 2|u_{n_k}| = 3^{-n_k} 2^{-n_k+3}.$$
(10)

We can assume that n_k are chosen so that $2^{n_k-1} > R(1) + |\alpha|$. Then $[F(x+t) - R(x+t) + R(x) - \alpha t]_+ > 2^{n_k-1}$ if $x + t \in v_{n_k}^+ \subset u_{n_k}$, and using (5) and (10) we obtain

$$\begin{aligned} &\frac{1}{h_k^2} \int_0^{h_k} [F(x+t) - R(x+t) + R(x) - \alpha t]_+ dt \ge \\ &\frac{1}{h_k^2} \int_{v_{n_k}^+} [F(x+t) - R(x+t) + R(x) - \alpha t]_+ dt > \\ &> \frac{2^{n_k - 1} |v_{n_k}^+|}{h_k^2} > \frac{2^{n_k - 1} (3^{-2n_k} 2^{-2n_k + 1})}{3^{-2n_k} 2^{-2n_k + 6}} = 2^{n_k - 6}. \end{aligned}$$

This shows that (8) and (9) hold and that no real α satisfies (1) for the function F - R at the considered x. Therefore $\overline{D}_r(F-R)(x) = +\infty$ on an uncountable set and F - R is a L^1 -minor function for no R. This proves that f has no L^1 -minor function and so f is not P_1 -integrable. \Box

4. Application to Fourier series

We are using below the integration by parts formula for the P_r -integral

Theorem 4.1. [9] Suppose that, on the interval [a,b], f is P_r -integrable, G is absolutely continuous and g(x) := G'(x) is in $L^{r'}, r' = r/(r-1)$ (if r = 1, the condition on G becomes G is Lipschitz). Then fG is P_r -integrable on [a,b] and if $F(x) = C + \int_a^x f dt$, then

$$(P_r)\int_a^b fG \ dx = FG]_a^b - \int_a^b Fg \ dx,$$

where the integral on the right exists as a Lebesgue integral.

The SCP-integral was introduced in [5] with the principal object of proving the following

Theorem 4.2. If the series

$$T(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
(11)

converges to a function f(x) for all x, then there exists a 2π -periodic set A (i.e., $a \in A$ implies $a + 2\pi \in A$) of full measure on each compact interval on \mathbb{R} such that function f(x) and functions $f(x) \cos nx$ and $f(x) \sin nx$ for all n = 0, 1, 2, ..., are SCP-integrable on $[\beta, \beta + 2\pi]$, for any $\beta \in A$, with respect to basis $B = A \cap [\beta, \beta + 2\pi]$, and

$$a_n = \frac{1}{\pi} (SCP, B) \int_{\beta}^{\beta+2\pi} f(x) \cos nx \, dx \qquad n = 0, 1, 2, \dots;$$
(12)

$$b_n = \frac{1}{\pi} (SCP, B) \int_{\beta}^{\beta+2\pi} f(x) \sin nx \, dx \qquad n = 1, 2, \dots$$
(13)

The above formulas were obtained in [5] by an integration by parts result, the proof of which contained a flaw that was corrected later in [17] (see also [6] and [1]). Another correct proof, based on formal multiplication of trigonometric series, was given in [2].

We use below the following generalization of Theorem 4.2 which is a particular case of [5, Theorem 5.3 (i)], provided its proof is corrected according to [17] or [6]:

Theorem 4.3. If the series (11) converges to a function f(x) almost everywhere and the partial sums of (11) are bounded for each x except an countable set then the conclusion of Theorem 4.2 holds true, in particular formulas (12) and (13) hold with the same meaning for β and B.

Now we apply this theorem together with Theorem 3.3 to obtain

Theorem 4.4. If the series (11) converges to a function f(x) almost everywhere, the partial sums of (11) are bounded for each x except on a countable set and f is P_r -integrable on $[0, 2\pi]$, then

$$a_n = \frac{1}{\pi} (P_r) \int_{0}^{2\pi} f(x) \cos nx \, dx \qquad n = 0, 1, 2, \dots;$$
(14)

$$b_n = \frac{1}{\pi} (P_r) \int_0^{2\pi} f(x) \sin nx \, dx \qquad n = 1, 2, \dots$$
 (15)

Proof. By Theorem 4.3, the functions $f(x) \cos nx$ and $f(x) \sin nx$ for all n = 0, 1, 2, ... are *SCP*-integrable on interval $[\beta, \beta + 2\pi]$ for any $\beta \in A$ with respect to the basis $B = A \cap [\beta, \beta + 2\pi]$ where A is defined by the series as in Theorems 4.2 and 4.3, and formulas (12) and (13) hold. At the same time by assumption and by Theorem 4.1 the functions $f(x) \cos nx$ and $f(x) \sin nx$ are P_r -integrable on $[0, 2\pi]$ for all n. So by Theorem 3.3 they are also *CP*-integrable on $[0, 2\pi]$. But the function f is periodic. This implies P_r - and *CP*-integrability of all those functions on any compact interval, in particular on interval $[\beta, \beta + 2\pi]$. Then Proposition 2.17 implies that f and all considered functions are *SCP*-integrable on any compact interval, in particular on $[0, 2\pi]$, with respect to the basis coinciding with the whole interval. This means that in our case we can put $\beta = 0$ in formulas (12) and (13). Hence, by the consistency of the P_r -, *CP*- and *SCP*-integrals, formulas (12) and (13) imply formulas (14) and (15) giving the desired result. \Box

References

- P.S. Bullen, Nonabsolute integration in the twentieth century, in: AMS Special Session on Nonabsolute Integration, Toronto, 23 - 24 September 2000, pp. 1–23, https://www.emis.de/proceedings/Toronto2000/papers/Bullen.pdf.
- [2] H. Burkill, A note on trigonometric series, J. Math. Anal. Appl. 40 (1972) 39-44.
- [3] J.C. Burkill, The Cesaro-Perron integral, Proc. Lond. Math. Soc. 2 (34) (1932) 314–322.
- [4] J.C. Burkill, The expression of trigonometrical series in Fourier form, J. Lond. Math. Soc. 11 (3) (1936) 43–48.
- [5] J.C. Burkill, Integrals and trigonometric series, Proc. Lond. Math. Soc. 3 (1) (1951) 46–57.
- [6] J.C. Burkill, Corrigendum: integrals and trigonometric series, Proc. Lond. Math. Soc. 3 (47) (1983) 192.
- [7] A.P. Calderon, A. Zygmund, Local properties of solutions of elliptic partial differential equations, Stud. Math. 20 (1961) 171–225.
- [8] A. Denjoy, Leçons sur le Calcul des Coefficients d'une Série Trigonometrique, Gauthier-Villars, Paris, 1941-1949.
- [9] L. Gordon, Perron's integral for derivatives in L^r , Stud. Math. 28 (1966/1967) 295–316.
- [10] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Stud. Math., vol. 4, Amer. Math. Soc., 1994.
- [11] P. Musial, Y. Sagher, The L^r Henstock-Kurzweil integral, Stud. Math. 160 (1) (2004) 53-81.
- [12] P. Musial, V. Skvortsov, F. Tulone, The HK_r-integral is not contained in the P_r-integral, Proc. Am. Math. Soc. 150 (5) (2022) 2107–2114.
- [13] P. Musial, V. Skvortsov, F. Tulone, On descriptive characterization of an integral recovering a function from its L^rderivative, Math. Notes 111 (3) (2022) 414–422.
- [14] P. Musial, F. Tulone, Dual of the class of HK_r -integrable functions, Minimax Theory Appl. 4 (1) (2019) 151–160.
- [15] P. Musial, F. Tulone, The L^r-variational integral, Mediterr. J. Math. 19 (3) (2022) 96.
- [16] S. Saks, Theory of the Integral, Dover Publications, 2005.
- [17] V.A. Skljarenko, On integration by parts in Burkill's SCP integral, Mat. Sb. 112 (1980) 630-646 (in Russian), English translation in Math. USSR Sb. 40 (1981) 567-582.