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1. Introduction

In this paper we consider a Perron-type integral, the Pr-integral, which was introduced by L. Gordon [9]
to solve a problem of recovering a function from its derivative defined in the space Lr, 1 ≤ r < ∞. Originally 
a version of this Lr-derivative appeared in an earlier paper [7] by Calderon and Zygmund and was used 
to obtain some estimates for solutions of elliptic partial differential equations. Note that the problem of 
recovering a function from its Lr-derivative can be solved also by a Kurzweil-Henstock-type integral, the 
HKr-integral, which was introduced by Musial and Sagher in [11] (see its equivalent definitions in [13] and in 
[15]) and which turned out to strictly include the Pr-integral (see [12]). In [14] Musial and Tulone developed 
a dual to the space of HKr-integrable functions. Here we are interested in comparing the Pr-integral with 
other integrals of Perron type.
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The Pr-integral belongs to the family of non-absolute generalizations of the Lebesgue integral. Another 
class of non-absolute integrals of great importance in harmonic analysis are the so-called trigonometric 
integrals which serve to recover coefficients of trigonometric series from their sums by generalized Fourier 
formulas. This theory started with a rather cumbersome Denjoy construction [8] called totalization T2s and 
was based on transfinite induction, but the same coefficients problem was solved later in a much simpler 
way by defining Perron-type integrals. Among them, Burkill’s Symmetric Cesaro-Perron integral [5], (SCP -
integral for short) seems to be most useful and easy to deal with. The more narrow CP -integral, defined by 
Burkill earlier in [3], solves the coefficients problem under some additional assumptions.

L. Gordon in [9] (Theorems 19 and 20) gave an application of the Lr-derivative and his Pr-integral to 
trigonometric series, proving that the Pr-Fourier series of a function f is (C, 1)-summable to f . Having 
in mind some further application to trigonometric series, we start by comparing this integral with the two 
Burkill trigonometric integrals. In Section 3 of the present paper we compare the Pr-integral with the CP -
integral. It is not difficult to show that the Pr-integral is included in the CP -integral and therefore also in 
the SCP -integral. Our main result in Section 3 is Theorem 3.4, which states that this inclusion is strict.

The inclusion of the Pr-integral in the SCP -integral and consistency of those integrals allow us to prove 
in Section 4 Theorem 4.4, a de La Vallée-Poussin-type theorem for the Pr-integral: convergence nearly 
everywhere of a trigonometric series to a Pr-integrable function f implies that this series is the Pr-Fourier 
series of f .

2. Preliminaries

2.1. A Perron-type integral in the metric Lr

Throughout this paper we assume that r ≥ 1 and we work on the closed interval [a, b]. We recall the 
definitions of the Lr-derivatives, the Lr-derivative and the Pr-integral introduced in [9].

Definition 2.1. Let f ∈ Lr [a, b]. We define the upper right Lr-derivative of f at x, denoted by D+
r f (x), to 

be the greatest lower bound of all α such that

⎛
⎝ 1
h

h∫
0

[f (x + t) − f (x) − αt]r+ dt

⎞
⎠

1
r

= o (h) as h → 0+. (1)

If no real number α satisfies (1), we set D+
r f (x) = +∞. If (1) holds for every real number α, we set 

D+
r f (x) = −∞.

We define the lower right Lr-derivative, D+,rf (x), the upper left Lr-derivative, D−
r f (x), and the lower 

left Lr-derivative, D−,rf (x), in a similar manner.

Definition 2.2. We define the upper (two-sided) Lr-derivative as follows:

Drf (x) = max
{
D+

r f (x) , D−
r f (x)

}
.

Similarly we define the lower (two-sided) Lr-derivative as follows:

Drf (x) = min {D+,rf (x) , D−,rf (x)} .

Definition 2.3. Let f ∈ Lr [a, b]. If Drf (x) and Drf (x) are the same real number, i.e., if all four 
Lr-derivatives are equal and finite, then we say that f is Lr-differentiable at x. The common value, denoted 
by f ′

r(x), is the Lr-derivative of f at x.
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If f is Lr-differentiable at x, then f ′
r(x) is the unique real number α such that

⎛
⎝ 1
h

h∫
−h

|f (x + t) − f (x) − αt|r dt

⎞
⎠

1
r

= o (h) .

It is clear that if a function f is differentiable at a point x then it is also Lr-differentiable at the same 
point and f ′

r(x) = f ′(x). The converse is not true. It is easy to construct an example of an Lr-differentiable 
at some point x function which is not even continuous at x containing in any neighborhood of x sufficiently 
tall thin spikes.

Definition 2.4. A function F ∈ Lr [a, b] is said to be Lr-continuous at x ∈ [a, b] if

lim
h→0

1
2h

x+h∫
x−h

|F (y) − F (x)|r dy = 0.

If F is Lr-continuous for all x ∈ E, we say that F is Lr-continuous on E. It can easily be shown by 
Chebyshev’s inequality that if a function is L1-continuous, then it is approximately continuous.

Definition 2.5. Suppose f is a function defined a.e. on [a, b]. A finite-valued function ψ ∈ Lr [a, b] is said to 
be an Lr-major function of f if

1. ψ (a) = 0,
2. ψ is Lr-continuous on [a, b],
3. Drψ(x) ≥ f(x) a.e., and
4. except for at most a countable subset of [a, b], we have

−∞ �= Drψ(x). (2)

A function φ is an Lr-minor function of f if −φ is an Lr-major function of −f .

It was proved in [9] that for any Lr-major function ψ and any Lr-minor function φ of f , the function 
ψ−φ is non-decreasing on [a, b]. This property allows us to define the Perron-type Pr-integral in a standard 
way:

Definition 2.6. [9] Suppose f is a function defined a.e. on [a, b]. If it has at least one pair of Lr-major function 
and Lr-minor function and if inf ψ (b) taken over all Lr-major functions of f equals supφ (b) taken over all 
Lr-minor functions of f , then the common value, denoted by

(Pr)
b∫

a

f

is called the Pr-integral of f on [a, b], and f is said to be Pr-integrable on [a, b].

Remark 2.7. We cannot avoid the exceptional set for the inequality (2) in the definition of Lr-major and 
Lr-minor functions without losing the so-called Hake property of the Pr-integral (see Example 1, §7 in [9]). 
This fact shows also that, in contrast to the classical case (see [10]), the requirement that the inequality (2)
must hold everywhere leads to an integral that is more narrow than the original L. Gordon integral.
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Note that if a function F is Lr-continuous everywhere and Lr-differentiable nearly everywhere then it is 
both a major and a minor function for its derivative and so the derivative is Pr-integrable with F (x) −F (a)
being its indefinite Pr-integral.

The following result is known (see [9, Theorem 14]):

Proposition 2.8. If 1 ≤ r ≤ q < ∞, then any Pq-integrable function is Pr-integrable and the values of the 
integrals are equal.

Note that if r < q then the inclusion of the Pq-integral into the Pr-integral is strict. A related example 
can be constructed using the strict inclusion of the space Lq[a, b] into the space Lr[a, b].

2.2. The Cesàro-Perron integral

All definitions in this subsection were introduced in [3] (see also [4, page 46]). In the two next definitions 
a function F is supposed to exist a.e. on [a, b] and to be P -integrable (i.e., Perron integrable in the classical 
sense, see [16]) in some neighborhood of x ∈ [a, b].

Definition 2.9. We say F is Cesàro continuous (or C-continuous) at x ∈ [a, b] if

lim
h→0

1
h

x+h∫
x

F (t) dt = F (x)

Definition 2.10. We define the (ordinary) Cesàro derivative of F at x, CDF (x), as

lim
h→0

2
h2

x+h∫
x

(F (t) − F (x)) dt

In a similar manner we define the upper Cesàro derivative of F at x, CDF (x), and the lower Cesàro 
derivative of F at x, CDF (x) as the corresponding upper and lower limits.

Definition 2.11. A function M : [a, b] → R is said to be a CP-major function of f if

1. M is C-continuous at every x ∈ [a, b],
2. CDM(x) > −∞ for every x ∈ [a, b], except possibly for an at most countable subset of [a, b], and
3. CDM(x) ≥ f(x) for almost every x ∈ [a, b].

The function m is said to be a CP-minor function of f if −m is a CP-major function of −f .

For any CP-major function M and any CP-minor function m of f , the function M −m is non-decreasing 
on [a, b]. This justifies the following

Definition 2.12. We say a function f , defined a.e. on [a, b], is CP-integrable on [a, b] if it has at least one pair 
of CP-major function and CP-minor function and inf M (b) = supm (b) where the infimum and supremum 
are taken respectively over all CP-major functions M and over all CP-minor functions m of f . Then the 
common value, denoted by

(CP )
b∫
f

a
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is called the CP-integral of f on [a, b], and f is said to be CP-integrable on [a, b].

2.3. The symmetric Cesàro-Perron integral

The notion of SCP -integral (Symmetric Cesàro-Perron Integral) was introduced in [5]. In what follows, 
[a, b] is a fixed closed interval. A basis B in [a, b] is a subset of [a, b] of full measure, i.e., |B| = b − a, under 
an additional assumption a, b ∈ B.

Definition 2.13. Suppose a function F exists a.e. on [a, b] and is P -integrable in some neighborhood of 
x ∈ [a, b]. We say F is symmetric Cesàro continuous (or SC-continuous) at x if

lim
h→0+

1
h

⎛
⎝ x+h∫

x

F (t) dt−
x∫

x−h

F (t) dt

⎞
⎠ = 0.

Definition 2.14. We define the symmetric Cesàro derivative of F at x, SCDF (x), as

lim
h→0+

1
h2

⎛
⎝ x+h∫

x

F (t) dt−
x∫

x−h

F (t) dt

⎞
⎠ .

In a similar manner we define the upper symmetric Cesàro derivative of F at x, SCDF (x), and the lower 
symmetric Cesàro derivative of F at x, SCDF (x), as the corresponding upper and lower limits.

Definition 2.15. Let B be a basis in [a, b]. A function M : B → R is said to be an SCP-major function of f
with respect to the basis B if

1. M is SC-continuous at every x ∈ [a, b],
2. M is C-continuous at every x ∈ B,
3. M(a) = 0,
4. SCD M(x) > −∞ everywhere on [a, b], except possibly for an at most countable subset of [a, b], and
5. SCD M(x) ≥ f(x) for almost every x ∈ [a, b].

The function m is said to be a SCP-minor function of f with respect to a basis B if −m is a SCP-major 
function of −f with respect to B.

It is shown in [5] that for any SCP-major function M and any SCP-minor function m of f , with respect 
to a basis B, the function M −m is non-decreasing on B.

Definition 2.16. We say a function f , defined a.e. on [a, b], is SCP-integrable on [a, b] with respect to a basis 
B if it has at least one pair of SCP-major function and SCP-minor function and inf M (b) = supm (b) where 
the infimum and supremum are taken respectively over all SCP-major functions M and over all SCP-minor 
functions m of f with respect to the basis B. Then the common value, denoted by

F (x) = (SCP,B)
b∫

a

f

defines the SCP-integral of f on [a, b].
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Note that if B1 and B2 are two bases in [a, b] for each of which f is integrable, then the integrals are 
equal at least on B1 ∩ B2. So talking about SCP -integrability of f we can often without ambiguity leave 
the basis unspecified. Moreover, for each SCP -integrable function, we can take as its basis of integration 
the set of all points where the indefinite integral is C-continuous (after correspondent extension).

An obvious relation of C-derivatives and C-continuity to SC-derivatives and SC-continuity imply

Proposition 2.17. If a function is CP-integrable on an interval [a, b] then it is also SCP-integrable on this 
interval with respect to the basis B = [a, b] and the values of integrals coincide.

3. Comparison of the Pr-integral with Burkill’s integrals

We compare here the CP -integral (and by this also the SCP -integral) with the Pr-integral.
By a direct computation we obtain

Lemma 3.1. If a function is Lr-continuous at a point x then it is C-continuous at x.

Lemma 3.2.

D1F (x) ≤ CDF (x) ≤ CDF (x) ≤ D1F (x) .

The definitions of the CP - and Pr-integrals, Proposition 2.8, Lemmas 3.1 and 3.2 imply the following 
result, which in fact was noticed in [9, Remark 2, §5]:

Theorem 3.3. If f : [a, b] → R is Pr-integrable then it is CP -integrable and the values of integrals coincide.

We show now that this inclusion of the Pr-integral in the CP -integral is proper.

Theorem 3.4. There exists a function which is CP -integrable on [a, b] but which is not Pr-integrable on [a, b].

Proof. Due to Proposition 2.8, it is enough to prove the theorem for the case r = 1.
Let P ⊂ [0, 1] be a symmetric Cantor-type set, defined by iteratively removing the central intervals (the 

so-called contiguous intervals) un of rank n = 1, 2, . . ., having length |un| = 3−n2−n+2. The set which is 
left after removing all contiguous intervals up to rank n from [0, 1] is constituted by 2n segments (closed 
intervals) rn, of length 3−n2−n each, which are called segments of rank n (note that rn, as well as un, is 
the generic notation for all these segments and intervals of rank n). We can easily compute that μ(P ) = 0. 
Note that each un is the interval concentric with some segment rn−1 (we set r0 = [0, 1]).

Let vn be the interval concentric with un, all of them of the same length

|vn| = 6−n|un| = 3−2n2−2n+2. (3)

Now we define a function F which is the indefinite CP -integral of its CP-derivative. We put F (x) = 0
outside of the union of intervals vn of all rank, i.e., on the set P and on each set un \ vn.

To define F on vn we subdivide each vn into 4n sub-intervals of the same length. Let en be the left 
endpoint of a fixed vn. For 1 ≤ k ≤ 4n/2 let

v+
n,k = [en + (2k − 2)|vn|/4n, en + (2k − 1)|vn|/4n]

and let

v− = [en + (2k − 1)|vn|/4n, en + 2k|vn|/4n].
n,k
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Define F (x) = 2n if x ∈ v+
n,k and F (x) = −2n if x ∈ v−n,k. Let v+

n be the union of the v+
n,k and let v−n be the 

union of the v−n,k. We then have

|v+
n,k| = |v−n,k| = |vn|/(4n) = 6−n4−n|un| = 3−2n2−2n+24−n (4)

and

|v+
n | = |v−n | = |vn|/2 = 3−2n2−2n+1. (5)

The function F must be made to be differentiable on un. It is clear how to make it smooth changing it in 
small neighborhoods of each point of discontinuity of F without influencing further estimations, ensuring, 
for instance, that the average of F on vn,k should stay about the same. We keep the same notation F for 
the modified function, but to simplify computation we shall allow ourselves to treat it as if it has its original 
constant values on all sub-intervals of vn and on un \ vn. Now we have

∫
v+
n

F = −
∫
v−
n

F = 2
32n2n (6)

and ∫
un

|F | = 4
32n2n (7)

Summing (7) over all intervals un of all rank and recalling that the complement to the union of all these 
intervals is P , i.e., a set of measure zero, we get

1∫
0

|F | =
∞∑

n=1
2n−1 4

32n2n = 1
4 .

Hence, F ∈ L[0, 1]. Note that F is differentiable a.e.
Let

f(x) =
{
F ′(x) at x ∈ [0, 1] \ P ,

0 at x ∈ P .

We will first show that CDF (x) = 0 at each point of the set P , and therefore, F is the indefinite 
CP -integral of its CP-derivative f . Then we will show that f is not P1-integrable.

Having fixed x ∈ P take any ε > 0 and choose n to be such that 2−n < ε/9. It is clear that for any h > 0

x+h∫
x

F (t) dt ≥ 0.

We shall show that

x+h∫
F (t) dt < εh2/2.
x
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If x + h is not in vn for any n, then 
∫ x+h

x
F (t) dt = 0. Therefore we assume that x + h ∈ vn for some n. 

It follows that h > |un|/3, and that x + h ∈ v+
n,k or x + h ∈ v−n,k for some k. In either case we have that

x+h∫
x

F (t) dt ≤
∫

v+
n,k

2n dt = 2n|v+
n,k| = 12−n|un|

= |un|22−n−2 < εh2/2.

A similar argument holds for h < 0. This proves that CDF (x) = 0.
Now we are to show that f is not P1-integrable. If this were the case then, according to Theorem 3.3, F

would be its indefinite P1-integral with F (x) = supm(x) where sup is taken over all P1-minor functions of 
f . We obtain a contradiction with this assumption by showing that for any non-decreasing function R with 
R(0) = 0, the function F −R is not a minor function because D+

1 (F (x) −R(x)) = +∞ on an uncountable 
set. In fact this equality holds at any point of the set P , which is not a left endpoint of any contiguous 
interval to P . Let x be such a point. Recall that F (x) = 0 if x ∈ P . We are going to show that for any 
positive α

lim sup
h→0

1
h2

h∫
0

[F (x + t) −R(x + t) + R(x) − αt]+dt = +∞. (8)

We obtain this by choosing a decreasing sequence hk → 0 such that

lim
k→∞

1
h2
k

hk∫
0

[F (x + t) −R(x + t) + R(x) − αt]+dt = +∞. (9)

Having in mind the way the point x is chosen, we can find an increasing sequence of natural numbers 
nk → ∞ such that x ∈ rnk

⊂ rnk−1, and rnk
is the left of two segments of rank nk which are subsets of 

rnk−1, i.e., rnk
and rnk−1 have common left endpoint. Indeed if x is the right endpoint of some contiguous 

interval to P then it is the common left endpoint of all rn, starting with some n. If x is an endpoint of no 
contiguous interval and so of no segment rn, then the above situation repeats infinitely many times.

So for a fixed x we have chosen the sequence {rnk
} with the above property. Let unk

be a contiguous 
interval of rank nk which is concentric with rnk−1. Note that unk

is to the right of x and of the segment 
rnk

to which x belongs. Take hk so that unk
⊂ (x, x + hk) and so that

hk < |rnk
| + |unk

| < 2|unk
| = 3−nk2−nk+3. (10)

We can assume that nk are chosen so that 2nk−1 > R(1) + |α|. Then [F (x + t) −R(x + t) +R(x) −αt]+ >

2nk−1 if x + t ∈ v+
nk

⊂ unk
, and using (5) and (10) we obtain

1
h2
k

hk∫
0

[F (x + t) −R(x + t) + R(x) − αt]+dt ≥

1
h2
k

∫
v+
nk

[F (x + t) −R(x + t) + R(x) − αt]+dt >

>
2nk−1|v+

nk
|

h2
k

>
2nk−1(3−2nk2−2nk+1)

3−2nk2−2nk+6 = 2nk−6.
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This shows that (8) and (9) hold and that no real α satisfies (1) for the function F − R at the considered 
x. Therefore Dr(F −R) (x) = +∞ on an uncountable set and F −R is a L1-minor function for no R. This 
proves that f has no L1-minor function and so f is not P1-integrable. �
4. Application to Fourier series

We are using below the integration by parts formula for the Pr-integral

Theorem 4.1. [9] Suppose that, on the interval [a, b], f is Pr-integrable, G is absolutely continuous and 
g(x) := G′(x) is in Lr′ , r′ = r/(r − 1) (if r = 1, the condition on G becomes G is Lipschitz). Then fG is 
Pr-integrable on [a, b] and if F (x) = C +

∫ x

a
f dt, then

(Pr)
b∫

a

fG dx = FG]ba −
b∫

a

Fg dx,

where the integral on the right exists as a Lebesgue integral.

The SCP -integral was introduced in [5] with the principal object of proving the following

Theorem 4.2. If the series

T (x) = 1
2a0 +

∞∑
n=1

(an cosnx + bn sinnx) (11)

converges to a function f(x) for all x, then there exists a 2π-periodic set A (i.e., a ∈ A implies a +2π ∈ A) 
of full measure on each compact interval on R such that function f(x) and functions f(x) cosnx and 
f(x) sinnx for all n = 0, 1, 2, . . . , are SCP-integrable on [β, β + 2π], for any β ∈ A, with respect to basis 
B = A ∩ [β, β + 2π], and

an = 1
π

(SCP,B)
β+2π∫
β

f(x) cosnx dx n = 0, 1, 2, . . . ; (12)

bn = 1
π

(SCP,B)
β+2π∫
β

f(x) sinnx dx n = 1, 2, . . . . (13)

The above formulas were obtained in [5] by an integration by parts result, the proof of which contained 
a flaw that was corrected later in [17] (see also [6] and [1]). Another correct proof, based on formal multi-
plication of trigonometric series, was given in [2].

We use below the following generalization of Theorem 4.2 which is a particular case of [5, Theorem 5.3 
(i)], provided its proof is corrected according to [17] or [6]:

Theorem 4.3. If the series (11) converges to a function f(x) almost everywhere and the partial sums of (11)
are bounded for each x except an countable set then the conclusion of Theorem 4.2 holds true, in particular 
formulas (12) and (13) hold with the same meaning for β and B.

Now we apply this theorem together with Theorem 3.3 to obtain
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Theorem 4.4. If the series (11) converges to a function f(x) almost everywhere, the partial sums of (11)
are bounded for each x except on a countable set and f is Pr-integrable on [0, 2π], then

an = 1
π

(Pr)
2π∫
0

f(x) cosnx dx n = 0, 1, 2, . . . ; (14)

bn = 1
π

(Pr)
2π∫
0

f(x) sinnx dx n = 1, 2, . . . . (15)

Proof. By Theorem 4.3, the functions f(x) cosnx and f(x) sinnx for all n = 0, 1, 2, . . . are SCP -integrable 
on interval [β, β + 2π] for any β ∈ A with respect to the basis B = A ∩ [β, β + 2π] where A is defined by 
the series as in Theorems 4.2 and 4.3, and formulas (12) and (13) hold. At the same time by assumption 
and by Theorem 4.1 the functions f(x) cosnx and f(x) sinnx are Pr-integrable on [0, 2π] for all n. So by 
Theorem 3.3 they are also CP -integrable on [0, 2π]. But the function f is periodic. This implies Pr- and 
CP -integrability of all those functions on any compact interval, in particular on interval [β, β + 2π]. Then 
Proposition 2.17 implies that f and all considered functions are SCP -integrable on any compact interval, in 
particular on [0, 2π], with respect to the basis coinciding with the whole interval. This means that in our case 
we can put β = 0 in formulas (12) and (13). Hence, by the consistency of the Pr-, CP - and SCP -integrals, 
formulas (12) and (13) imply formulas (14) and (15) giving the desired result. �
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