
ISSN 0020-1685, Inorganic Materials, 2022, Vol. 58, No. 12, pp. 1328–1334. © Pleiades Publishing, Ltd., 2022.
Russian Text © The Author(s), 2022, published in Neorganicheskie Materialy, 2022, Vol. 58, No. 12, pp. 1377–1382.
Preparation, Microstructure, and Dielectric and Ferroelectric 
Properties of Modified (1 – x)(K0.5Na0.5)NbO3⋅xLiNbO3 Ceramics

E. D. Politovaa, *, G. M. Kalevaa, A. V. Mosunovb, S. Yu. Stefanovichb, E. V. Klyukinac,
E. A. Bespalovac, A. V. Lopatinc, N. M. Metal’nikovc, M. E. Saprykinc,

A. B. Loginovb, I. V. Orazovd, and B. A. Loginovd

a Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991 Russia
b Moscow State University, Moscow, 119991 Russia

c Sirius Education Center, Sochi, 354349 Russia
d Moscow Institute of Electronic Technology (National Research University), Zelenograd, Moscow, 124498 Russia

*e-mail: politova@nifhi.ru
Received April 15, 2022; revised June 14, 2022; accepted June 15, 2022

Abstract—Single-phase (1 – x)(K0.5Na0.5)NbO3⋅xLiNbO3 (KNN–LN) perovskite-structure ceramic mate-
rials with x = 0–0.10 modified with CuO and KCl additions have been prepared by solid-state synthesis, and
their phase composition, structure, microstructure, and dielectric and ferroelectric properties have been
studied. Increasing the percentage of lithium niobate has been shown to increase their Curie temperature and
lower the temperature of their polymorphic phase transition, which is accompanied by a decrease in per-
ovskite cell parameters, in accord with the ionic radii of the A-site cations. The x = 0.2 material has been found to
have an increased room-temperature dielectric permittivity, which correlates with the observed increase in spon-
taneous polarization, as evidenced by laser radiation second harmonic generation intensity measurements.
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INTRODUCTION
Because of the high toxicity of lead, in the past

decade there has been considerable research interest in
lead-free piezoelectric and other materials [1–10].
The most promising lead-free materials include oxide
materials based on orthorhombic potassium sodium
niobate, (K,Na)NbO3 (KNN) [11–15]. One strategy
for reaching good functional parameters is to vary the
composition of KNN so as to bring its orthorhombic
(O) to tetragonal (T) phase transition to near room
temperature.

A serious drawback to such materials, responsible
for the poor reproducibility of their functional proper-
ties, is that high-density, single-phase materials are
difficult to prepare because of the volatility of the
alkali metals at high sintering temperatures [12, 15]. In
connection with this, a search for new KNN-based
solid solutions and the use of low-melting-point addi-
tives capable of activating the sintering process are
topical issues [8].

The purpose of this work was to study the structure,
microstructure, and dielectric and ferroelectric prop-
erties of [(K0.5Na0.5)1 – xLix]NbO3 (KNN–LN) ceram-

ics with x = 0, 0.02, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,
and 0.10, further modified with KCl and CuO low-
melting-point additives.

EXPERIMENTAL

(1 – x)(K0.5Na0.5)NbO3⋅xLiNbO3 (x = 0–0.10)
ceramic samples without additives and containing KCl
(2.5 wt %) and CuO (1 wt %) were prepared by solid-
state synthesis, which included two firing steps at T1 =
900–1070 K (6 h) and T2 = 1320–1370 K (2–10 h).
The starting materials used were the K2CO3, Na2CO3,
and Li2CO3 carbonates (analytical grade), the Nb2O5
and CuO oxides (extrapure grade), and the KCl chlo-
ride (pure grade). Appropriate mixtures were homog-
enized in ethanol, pressed into disks 10 mm in diame-
ter and 1 mm in thickness, and fired at temperatures T1
and T2 with intermediate grinding.

The phase composition and structural parameters
of the samples were determined by X-ray diffraction
(DRON-3M diffractometer, CuKα radiation) at room
temperature.
1328
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Fig. 1. X-ray diffraction patterns of (a) the x = 0.06 KNN–LN samples modified with 2.5 wt % KCl and fired at T1 = 900 K (6 h)
and T2 = (1) 1360 K (2 h), (2) 1370 K (4 h), and (3) 1370 K (8 h) and (b) the KNN–LN samples with x = (1) 0, (2) 0.06, and
(3) 0.10 prepared at T2 = 1320 K (10 h). 
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Their microstructure was examined by atomic
force microscopy on an SMM-2000 scanning probe
microscope (Proton Works, Zelenograd, Russia)
using MSNL silicon nitride cantilever probes (Bruker,
the United States) with a tip radius (determining the
resolving power of the instrument) of 2 nm (horizontal
and vertical resolving powers of 1 and 0.2 nm, respec-
tively) [16–18]. To evaluate the average grain size S of
the samples (up to 2–3 μm) and their mean surface
roughness Ra according to the ISO 4287 international
standard, we obtained micrographs of regions (8.632–
9.151) × (1.153–1.786) μm in dimensions. In addition,
INORGANIC MATERIALS  Vol. 58  No. 12  2022

Fig. 2. Composition dependence of the unit-cell volume
for the KNN–LN samples with x = 0, 0.05, 0.09, and 0.10.
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some of the samples were exposed to an argon plasma
in an MAG-5 vacuum plasma system (manufactured
at the Proton Works, Zelenograd, Russia) (argon pres-
sure, 0.012 mbar; field strength in the plasma,
120 V/mm; ion current density, 110 mA/cm2; expo-
sure of the samples to the plasma for 20 s).

Spontaneous polarization of the samples was esti-
mated using second harmonic generation (SHG) of
laser radiation (Nd:YAG laser, λ = 1.064 μm), whose
measured signal, q = I2ω/I2ω(SiO2), was proportional

to the square of spontaneous polarization Ps: q ~ .
The dielectric properties of the ceramics were stud-

ied by dielectric spectroscopy (Agilent 4284 A meter,
1 V) at temperatures from 300 to 1000 K and frequen-
cies from 100 Hz to 1 MHz.

RESULTS AND DISCUSSION
According to X-ray diffraction data, single-phase

KNN–LN samples with the perovskite structure were
obtained by two-step firing at T2 = 1320 K (10 h), and
single-phase KCl-modified samples were obtained at
T2 = 1370 K (8 h) (Fig. 1).

The samples had an orthorhombic structure. Fig-
ure 1b shows partial X-ray diffraction patterns of the
samples, which demonstrate a sequential shift of dif-
fraction peaks with h2 + k2 + l2 = 4 to larger angles.
This attests to a decrease in unit-cell parameters as a
result of Li+ (smaller cation) substitution for Na+ and K+

cations (Na+, 1.39 Å; K+, 1.64 Å; Li+, 0.92 Å) (Fig. 2).
The microstructure of the modified ceramics was

examined by atomic force microscopy. The surface of

2
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Fig. 3. Microstructure of the surface of the (a) plasma-treated CuO-modified and (b–d) KCl-modified KNN–LN samples: x =
(a, b) 0, (c) 0.02, and (d) 0.05. 
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the samples had a uniform microstructure with a

dense packing of isometric grains, which had an oval

shape and an average size of ~2–3 μm and consisted of

subgrains ranging in size from 400 to 1000 nm (Figs. 3, 4).

In the case of modification with Cu2+ cations, there is

a tendency for the average grain and subgrain sizes in

the ceramics to decrease, which is consistent with the

observed diffraction peak broadening.

For each surface topography scan, we calculated

the following roughness parameters: mean roughness

value (Ra), average grain size (Sm), and average size of

subgrains (nanograins) forming the grains (S). To this

end, we used software supplied with the SMM-2000

microscope and followed the ISO 1302 international

standard (Ra is the average of the vertical displace-

ments Zi of all points from the mean line of the rough-

ness profile, Sm is the average of the horizontal spac-

ings Sm1 and Sm2 between intersections of ascending

profile portions with the mean line, and S is the aver-

age of the horizontal spacings S1 and S2 between peaks

of the profile) (Fig. 5).
Some of the samples were exposed to a plasma (ion

flow) after removing their surface layer. The stability

of the ceramics turned out to be several orders of mag-

nitude higher than that of various metals and

graphene, and the average etch rate of their surface was

several orders of magnitude slower. Note that etching

produced steps on the ceramic surface; that is, etching

occurred only after the surface layer had f laked off

(threshold effect), and some time was needed for the

next layer of grains to be removed by etching. The rea-

son for this is that, during plasma-induced heating,

the first to be etched are bridges between ceramic

grains. This reduces the contact area between the

grains, following which the grains are heated to high

temperatures and flake off.

Dielectric measurements revealed ferroelectric

phase transitions characteristic of KNN-based ceram-

ics. The transitions showed up as dielectric permittiv-

ity peaks near the polymorphic phase transition at

T(O → T) ~ 420–450 K and near the Curie tempera-
INORGANIC MATERIALS  Vol. 58  No. 12  2022
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Fig. 4. Microstructure of the surface of the (b, c) CuO- and (a, d) KCl-modified KNN–LN samples: x = (a) 0.06, (c) 0.08, and
(d) 0.09; (b) plasma-treated sample. 
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Fig. 5. Surface roughness parameters of the samples: Zi is the vertical displacement of point i from the mean line of the roughness
profile, Sm1 and Sm2 are the horizontal spacings between intersections of ascending profile portions with the mean line, and S1
and S2 are the horizontal spacings between peaks of the profile.
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ture TC ~ 650–700 K (Fig. 6). With increasing x,

T(O → T) decreases, whereas TC rises (Fig. 7).

The ferroelectric properties of the samples were

confirmed by laser radiation SHG measurements. At
INORGANIC MATERIALS  Vol. 58  No. 12  2022
x = 0.02, we observed an increased 1-kHz εRT, in

accord with the SHG measurement results.

The present results are consistent with previously

reported data for KNN samples modified on the A site



1332 POLITOVA et al.

Fig. 6. Temperature dependences of dielectric permittivity

ε (a) and dielectric loss tan δ (b) and Arrhenius plots of
electrical conductivity σ (c) for the x = 0.5 KNN–LN
ceramic samples at frequencies f = 100 Hz, 1 kHz, 10 kHz,

100 kHz, and 1 MHz. 
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Fig. 7. (a) Temperature dependences of 1-MHz dielectric

permittivity ε for the KNN–LN samples with x = (1) 0,
(2) 0.02, (3) 0.04, (4) 0.08, and (5) 0.10 modified with 2.5 wt %
KCl and fired at T1 = 1070 K (6 h) and T2 = 1370 K (4 h);

(b) composition dependences of the SHG signal intensity
q = I2ω/I2ω(SiO2) and dielectric permittivity ε at 300 K

and 1 kHz for the KNN–LN samples. 
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[19–22] and on both the A and B sites [23, 24] with

cations having a smaller ionic radius.

CONCLUSIONS

We have synthesized single-phase sodium potassium

niobate-based ceramic samples, (1 – x)(K0.5Na0.5)NbO3⋅

xLiNbO3 (x = 0–0.10), modified with 2.5 wt % KCl

and 1 wt % CuO and studied their structure, micro-

structure, and dielectric and ferroelectric properties.

The modified samples have been shown to have a

reduced unit-cell volume. Their first-order ferroelec-

tric phase transitions near 420–450 and 650–700 K

have been confirmed by dielectric spectroscopy tech-

niques. SHG measurement results suggest that the

incorporation of potassium cations into the A site of

the perovskite structure enhances the ferroelectric

properties of KNN ceramics.
INORGANIC MATERIALS  Vol. 58  No. 12  2022
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