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We consider families of skew-symmetric matrices depending analytically on parameters.

We obtain necessary existence conditions and find normal forms for such families. The

results obtained are generalized to the case of families possessing the evenness or oddness

property in the totality of variables. Bibliography: 13 titles.

1 Introduction

Families of matrices depending analytically on parameters naturally arise in the study of prob-

lems of differential geometry. In [1], Arnold solved the problem of finding a simple normal

form to which some given matrix (and any family of close matrices) can be reduced by using

a transformation depending smoothly on matrix entries. The reduction of matrices to such a

normal form was applied to the study of singularities of bifurcation diagram of matrix families

of general position.

The results obtained in the theory of matrix singularities are closely connected with the

results of the classical singularity theory. For example, the listed below publications use the

results of [2] where the classification of simple germs of analytic functions of many variables

with a critical point at the origin was obtained.

It is natural to consider matrix families up to a ˜G - or G -equivalence, i.e., up to a linear

parameter-dependent changes of the basis and analytic (in both directions) changes of parame-

ters (see Definitions 2.5 and 2.6).

This paper is devoted to the study of G -simple germs, i.e., germs with finitely many adja-

cent orbits (see Definitions 2.7 and 2.8) of skew-symmetric matrix families. In particular, we

obtain necessary conditions for the existence of G -simple germs, necessary conditions for the
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G -simplicity of a germ with a given rank of the 1-jet, and normal forms of G -simple germs with

1-jet of corank 0. We also generalize these problems to the case of germs of skew-symmetric

matrix-valued functions that are equivariant or invariant under the action of the group Z2.

Interest in this problem was caused by the following two results. The result due to Bruce

and Tari [3] who obtained a complete classification of ˜G -simple germs of square matrices. The

classification of G -simple germs of symmetric matrices was obtained by Bruce in [4]. It turned

out that the discriminants of some G -simple germs of both families correspond to simple germs

Ak, Dk and E6, E7, E8 obtained by Arnold in [2].

Furthermore, G. J. Haslinger established (Ph.D. Thesis, 2001) a connection between the

classification of G -simple germs of skew-symmetric matrices of order 2, 3 and the classification

of simple germs of maps, as well as a complete classification of G -simple germs of one-parameter

skew-symmetric matrix families of any order, two-parameter skew-symmetric matrix families

of order 4, and a partial classification of G -simple germs of three-parameter skew-symmetric

matrix families of order 4.

We emphasize that the results of this paper does not repeat the results of G. J. Haslinger.

The paper is organized as follows. Section 2 contains the main definition and notation. In

Section 3, we formulate the problem and known results for the problem under consideration and

some other related problems. The main results of this paper are formulated in Section 4 and

are proved in Section 5.

2 Definitions and Notation

We introduce the notation: K is a field of real R or complex C numbers, n � 2 is the matrix

order, and r � 1 is the number of parameters on which the entries of matrices depend.

2.1. Germs of analytic functions.We denote by Or the ring of germs of analytic functions

f : (Kr, 0) → (K, 0) and by jkOr the space of k-jets of germs of functions f ∈ Or. Let G be a

group with action on (Kr, 0) and (K, 0).

Definition 2.1. A germ of a function f ∈ Or is equivariant under the actions of the group

G if for all x ∈ K
r and g ∈ G

f(g · x) = g · f(x).
On the set of germs of analytic functions that are equivariant under the actions of the group

G on the preimage and image, a natural equivalence relation arises.

Definition 2.2. Two equivariant germs f, g ∈ Or are called equivariantly right-equivalent

(or RG-equivalent) under the actions of G if there exists an equivariant (under the same action)

germ of a diffeomorphism Φ: (Kr, 0) → (Kr, 0) such that g = f ◦ Φ.
Germs of analytic functions with a critical point at the origin can degenerate in a complicated

way, which means that the classification of such germs contains moduli (continuous parameters).

However, there are specific degenerations in a neighborhood of which there are no moduli.

Definition 2.3. A germ f ∈ Or is simple under given actions of G (G-simple) if for suffi-

ciently large k ∈ N

(1) a sufficiently small neighborhood of some point in its orbit (under the action of the group

G) in jkOr intersects only a finite number of other orbits, called adjacent to the orbit of

the germ f ,
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(2) the number of orbits remains bounded as k → ∞.

2.2. Germs of matrix-valued functions. We introduce similar notions for germs of

matrix-valued functions.

We consider germs of matrix-valued analytic functions A : Kr → Mat m×l(K) ∼= K
N , where

N = m · l. They are matrices such that each its entry is a germ of some analytic function of r

variables (parameters).

Let V ∼= W ∼= K
n be n-dimensional vector spaces over the field K. Introduce the following

notation:

— GL (V ) ∼= GL (W ) ∼= GL n(K) is the group of invertible n× n-matrices over the field K,

— Hom (V,W ) is the space of linear mappings V → W , equipped with the direct product

of groups GL (V ) × GL (W ) (namely, the action of (X,Y ) ∈ GL (V ) × GL (W ) on a mapping

A ∈ Hom(V,W ) is given by (X,Y ) · A = X−1AY ). Each element of Hom (V,W ) is given by a

square n× n-matrix.

The following spaces can be identified with spaces of matrices of the corresponding form:

— Hom (V,W ) is the space of square n× n-matrices over K,

— (S2V )∗ is the space of symmetric n× n-matrices over K,

— (
∧2 V )∗ is the space of skew-symmetric n× n-matrices over K.

Remark 2.1. Each of the above spaces can be identified with the space K
N , where N is

the dimension of the space of matrices of the corresponding form.

Definition 2.4. Let A be a germ of an analytic matrix-valued function of r parameters.

Its 1-jet j1A can be regarded as a linear mapping from K
r to K

N , where N is the dimension of

the space of matrices of the corresponding form. By the rank of 1-jet we mean the rank of this

mapping.

We introduce the notation for groups whose actions define equivalence relations on the set

of matrix-valued germs:

— R is the group of germs of zero-preserving analytic (in both sides) automorphisms of the

pregame (Kr, 0) → (Kr, 0);

— L is the group of germs of zero-preserving analytic (in both sides) autormorphisms of the

image (KN , 0) → (KN , 0);

— H is the group of germs of analytic mappings (Kr, 0) → GL (V ), and ˜H is the group of

germs of analytic mappings (Kr, 0) → GL (V )×GL (W ),

— G = R �H , ˜G = R � ˜H is the semidirect product of groups,

— C is the group of germs of automorphisms {ϕx ∈ L | x ∈ K
r} = {ϕ : (Kr × K

N , 0) →
(Kr ×K

N , 0)}, where ϕ preserves the subspace K
r × {0} and the projection on K

r,

— K = R � C is the contact group.

Remark 2.2. The group G can be regarded as a subgroup of the corresponding contact

group K : G = R �H ⊂ R � C = K (see [5]).

We introduce the notions of ˜G - and G -equivalence for square and symmetric (skew-symmetric)

matrices.
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Definition 2.5. Germs of analytic functions A,B : (Kr, 0) → Hom(V,W ) are said to be
˜G -equivalent if there exists an element

(

ϕ, (X,Y )
) ∈ ˜G such that B = X−1(A ◦ ϕ−1)Y .

Definition 2.6. Germs of analytic functions A, B : (Kr, 0) → (S2V )∗ (or (Kr, 0) → (
∧2 V )∗

are said to be G -equivalent if there exists an element (ϕ,X) ∈ G such that B = XT (A ◦ϕ−1)X.

We denote by Es the block-diagonal matrix with standard skew-symmetric 2 × 2-blocks on

the main diagonal

Es =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1

−1 0 0
. . .

0 0 1

−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

2×2−blocks

. (2.1)

By the direct sum of square matrices A and B of order m and n respectively we mean the block

matrix C = A⊕B of order m+ n defined by

C = A⊕B =

(

A 0

0 B

)

. (2.2)

Remark 2.3. For square, symmetric, and skew-symmetric matrices with parameters the

splitting lemma holds (see [3, Proposition 4.1], [4, Proposition 4.1], and Proposition 4.3.5 in

Ph.D. Thesis, 2001 by G. J. Haslinger respectively), which allows us to reduce the general case

to consideration only those germs of matrix-valued analytic functions of the corresponding form

which vanish for the zero parameters. We formulate this lemma only in the skew-symmetric

case discussed in this paper.

Lemma 2.1. Any germ of an analytic function A : (Kr, 0) → (
∧2

K
n)∗ is G -equivalent to a

germ of the form Es ⊕B, where the matrix Es has the form (2.1), the direct sum of matrices is

defined by formula (2.2), and B : (Kr, 0) → (
∧2

K
n−2s)∗ is a germ of an analytic function such

that B(0) = 0.

In the case of germs of matrix-valued functions, the notions of an adjacent orbit and a simple

germ take the following form.

Definition 2.7. An orbit jk(
˜G ·B) (respectively, jk(G ·B)) of a germB : (Kr, 0) → Hom(V,W )

(respectively, B : (Kr, 0) → (S2V )∗ or B : (Kr, 0) → (
∧2 V )∗) in the space of k-jets of germs of

square (respectively, symmetric or skew-symmetric) matrix-valued analytic functions is said to

be adjacent to an orbit jk(
˜G · A) (respectively, jk(G · A)) of a germ A : (Kr, 0) → Hom (V,W )

(respectively, A : (Kr, 0) → (S2V )∗ or (Kr, 0) → (
∧2 V )∗) if any neighborhood (in the jet space)

some (and, consequently, any) point of the orbit jk(
˜G ·A) (respectively, jk(G ·A)) intersects the

orbit jk(
˜G ·B) (respectively, jk(G ·B)).

Definition 2.8. A germ of an analytic functions A : (Kr, 0) → Hom (V,W ) (respectively,

A : (Kr, 0) → (S2V )∗ or (Kr, 0) → (
∧2 V )∗) is said to be ˜G -simple (respectively, G -simple) if the

number of orbits adjacent to the orbit jk(
˜G ·A) (respectively, jk(G ·A)) in the space of k-jets of

germs of square (respectively, symmetric or skew-symmetric ) matrix-valued analytic functions

is finite for all sufficiently large k ∈ N and is bounded as k → ∞.
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The notion of finite definiteness can be also extended to germs of matrix-valued functions.

Since we mainly deal with skew-symmetric matrices, we adapt the definition to this case.

Definition 2.9. A germ A of an analytic function A : (Kr, 0) → (
∧2 V )∗ is k-G -definite if

any germ B : (Kr, 0) → (
∧2 V )∗ with the same k-jet is G -equivalent to the germ A. If there

exists k ∈ N such that the germ A is k-G -definite, then A is said to be G -finitely definite.

2.3. Germs of matrix-valued functions, even or odd in the totality of parameters.

Let A : (Kr, 0) → (
∧2 V )∗ be a germ of a skew-symmetric matrix-valued analytic function.

Assume that a finite Abelian group G linearly acts on the space of parameters Kr and the image

K
N , N = n(n−1)

2 .

Definition 2.10. A germ of a function A : Kr → K
N is equivariant under the actions of

the group G if for all x ∈ K
r and g ∈ G

A(g · x) = g ·A(x).
If the action of G on K

N is trivial, we say that A is invariant under the action of G on K
r.

If A is a germ of a skew-symmetric matrix-valued analytic function that is even in the

totality of variables i.e., for any x = (x1, . . . , xr) ∈ K
r the equality A(x) = A(−x) holds, then

it is invariant under the action of the group Z2 on the space of parameters Kr
(x1,...,xr)

, given by

σ · (x1, . . . , xr) = (−x1, . . . ,−xr)

(here and below, σ denotes the generator of the group Z2). We denote by O even
r,N the ring of

such germs with respect to the standard operation of addition and multiplication of matrices

and by O even
r the ring of germs of analytic functions f : (Kr, 0) → (K, 0), even in the totality of

variables.

If A is a germ of a skew-symmetric matrix-values analytic function, odd in the totality

of variables, i.e., for any x = (x1, . . . , xr) ∈ K
r the equality A(x) = −A(−x) holds, then it

is equivariant under the nontrivial scalar actions of the group Z2 on the space of parameters

K
r
(x1,...,xr)

and the image K
N
(y1,...,yN ) given by the formula

σ · (x1, . . . , xr; y1, . . . , yN ) = (−x1, . . . ,−xr;−y1, . . . ,−yN ).

The space of such germs is denoted by O odd
r,N . This space is not a ring, but it has structure

of an O even
r,N -module.

We denote by O odd
r the space of germs of analytic functions f : (Kr, 0) → (K, 0), odd in the

totality of variables. We denote byH even,R odd, G odd,K odd the subgroup of the corresponding

group R, H , G , K generated by germs of the corresponding mappings, even or odd in the

totality of variables.

The symbol jk indicates that we deal with quotient spaces (group) of k-jets of elements of

this space (group).

Definition 2.11. A germ A ∈ O odd
r,N (respectively, A ∈ O even

r,N ) is said to be G odd-simple

if the number of orbits adjacent to the orbit jk(G
odd · A) in the space jkO

odd
r,N (respectively,

jkO
even
r,N ) is finite for all sufficiently large k ∈ N and is bounded as k → ∞.

As in the case of G -equivalence, we can introduce the equivalence relation in the space of

germs of skew-symmetric matrix-valued analytic functions with preserving evenness or oddness

of a germ of a matrix-valued function in O even
r,N and O odd

r,N respectively.
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Definition 2.12. Germs of analytic functions A,B : (Kr, 0) → (
∧2 V )∗ are G odd- equivalent

if there exists (ϕ,X) ∈ G odd = R odd
�H even such that B = XT (A ◦ ϕ−1)X.

We also introduce the V odd-equivalence relation on the set of germs of functions Or.

Definition 2.13. Germs f, g ∈ Or are V odd-equivalent if there exists a germ ϕ ∈ R odd and

a germ of the invertible function h+ c, where h ∈ O even
r , c ∈ K \ {0}, such that f ◦ ϕ = g · h.

Remark 2.4. Germs f and g are V odd-equivalent if and only if germs of the hypersurfaces

{f = 0} and {g = 0} are R odd-equivalent.

The V odd-equivalence relation is associated with the notion of the V odd-simplicity of a germ.

Definition 2.14. A germ f ∈ O odd
r (respectively, f ∈ O even

r ) is V odd-simple if the number

of the V odd-equivalence classes intersecting a sufficiently small neighborhood of some element

of the V odd-equivalence class of the jet jkf in the space jkO
odd
r (respectively, jkO

even
r ), is finite

for all sufficiently large k ∈ N and bounded as k → ∞.

3 Statement of the Problem and Survey of Results

It is a general problem to classify up to a ˜G - or G -equivalence relation germs of matrix-

valued functions A : (Kr, 0) → (KN , 0) with a critical point at the origin, where r is the number

of parameters and N is the dimension of the space of matrices of the corresponding form.

The complete classification was obtained in [3, Theorem 1.1] for square G -simple matrix

families and in [4, Theorem 1.1] for symmetric G -simple matrix families. The study of simple

singularities of symmetric matrices was continued in [6]. It turned out that these singularities

are classified by subgroups generated by mappings in the Weyl groups Aν , Dν , Eν (see [6, Table

1]). Furthermore, the corresponding groups of even monodromy of a determinant curve (see [6,

§ 5]) were described for each singularity.

G. J. Haslinger considered (Ph.D. Thesis, 2001) skew-symmetric G -simple matrix families in

the following cases:

1) r = 1,

2) n = 2 and r > 1,

3) n = 3 and r > 1,

4) n = 4 and r = 2 (the complete classification of simple families,

5) n = 4 and r = 3 (the partial classification of simple families).

The classification of R-simple germs (Cr, 0) → (C, 0) was obtained by Arnold [2, Theorem

2.10]. Now, we list some classifications with references to the corresponding works.

The classification of simple projections of surfaces on manifolds of not greater dimension

and, respectively, the classification of K -simple germs (Cr, 0) → (C3, 0) [7].

The classification of simple singularities of functions on a manifold with boundary (simple

boundary singularities), i.e., invariant under the action of the group Z2 on C
n with respect to

the first variable [8].

The classification of simple odd singularities i.e., those that are equivariantly simple with

respect to nontrivial scalar actions of the group Z2 on K
r and K:

σ · (z1, . . . , zr;w) = (−z1, . . . ,−zr;−w).
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In particular, it was proved that there are no such singularities if r � 3 [9].

As shown in [10], any germ of an analytic function (Cr1+r2 , 0) → (C, 0) with critical point

0 ∈ C
r1+r2 is invariantly simple under the action of the group G = Z

r1
2 with generators σ1, . . . , σr1

on C
r1+r2 :

σj · (x1, . . . , xr1 , y1, . . . , yr2) = (x1, . . . , xj−1,−xj , xj+1, . . . , xr1 , y1, . . . , yr2),

equivalent to one of the simple boundary singularities after a suitable permutation of variables.

The classification of germs of analytic functions (Kr, 0) → (K, 0) that are equivariantly simple

under the actions of the group G = (Z2)
r with generators σ1, . . . , σr on the preimage and image:

σj · (x1, . . . , xr; y) = (x1, . . . , xj−1,−xj , xj+1, . . . , xr, εjy), j ∈ {1, . . . , r},
where εj = −1 if 1 � j � p and εj = 1 if p+ 1 � j � r [11].

Within the framework of the general problem, the main goal of this paper is to obtain new

results on classification of simple germs of skew-symmetric matrices, up to a given equivalence

relation. In particular, it is required to find

1) necessary conditions for the existence of G -simple germs of skew-symmetric matrix-valued

functions in terms of the matrix sizes and the number of parameters,

2) normal forms of G -simple germs of skew-symmetric matrix-valued functions with 1-jet of

corank 0,

3) necessary conditions for the G -simplicity of a germ of a skew-symmetric matrix-valued

function in terms of the matrix sizes and the rank of 1-jet,

4) classification of G odd-simple germs of skew-symmetric matrix-valued functions with one

parameter, even or odd with respect to the parameter,

5) connection between the classification of G odd-simple germs of families of skew-symmetric

matrices of sizes 2×2 and 3×3, even or odd in the totality of variables and the classification

of simple germs of the mappings of corresponding vector space.

4 The Main Results

Denote by n � 2 the matrix order and by r � 1 the number of parameters. We recall that we

consider only germs A such that A(0) = 0 (see Remark 2.3). In this section, N = n(n− 1)/2.

4.1. Necessary condition for the existence of simple germs.

Theorem 4.1. 1. If one of the following conditions is satisfied:

1) n = r = 5,

2) n � 6 and 3 � r � n(n−1)
2 − 3,

then there are no G -simple germs of skew-symmetric matrix-valued analytic functions of order

n that depend on r parameters and vanish for the zero value of the parameter.

2. If one of the following conditions is satisfied:

1) n � 3 and r � 3,
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2) n � 5 and r = 2.

then there are no G odd-simple germs of skew-symmetric matrix-valued analytic functions of

order n that depend on r parameters, are even in the totality of variables, and vanish for the

zero parameters.

3. If one of the following conditions is satisfied:

1) n = r = 5,

2) n � 6 and 3 � r � n(n−1)
2 − 3,

then there are no G odd-simple germs of skew-symmetric matrix-valued analytic functions that

have order n, depend on r parameters, and are odd in the totality of parameters.

4.2. Normal form of germs with 1-jet of corank 0.

Theorem 4.2. Let A be a germ of a skew-symmetric matrix-valued analytic function of n

order that depends on r parameters and vanishes for the zero parameters. Let a germ A have

the rank of 1-jet (see Definition 2.4) equal to s = n(n− 1)/2, i.e., maximal among all possible

ones.

1. A germ A is G -simple and G -equivalent to the germ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 x1,2 . . . . . . x1,n

−x1,2 0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0 xn−1,n

−x1,n . . . . . . −xn−1,n 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4.1)

where xi,j(1 � i < j � n) are pairwise distinct parameters.

2. If, under the above assumptions, the germ A is also a germ of a function that is odd in the

totality of parameters, then A is G odd-simple and G odd-equivalent to a germ of the form (4.1).

Remark 4.1. Since for germs of functions that are even in the totality of variables the rank

of 1-jet is always equal to zero, for such germs there are no counterparts of Theorem 4.2.

4.3. Necessary condition for the simplicity of a germ in terms of matrix sizes and

rank of 1-jet.

Theorem 4.3. Let A be a germ of a skew-symmetric matrix-valued analytic function of

order n that depends on r parameters and vanishes for the zero parameters. Let the germ A

have the rank of 1-jet s (see Definition 2.4).

1. If one of the following conditions is satisfied:

1) n = s = 5,

2) n � 6 and 3 � s � N − 3,

3) n � 3, r � 3 and s = 0,
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4) n � 5, r = 2 and s = 0,

then the germ A is not G -simple.

2. If the germ A is also a germ of a function that is odd in the totality of variables and one

of the following conditions is satisfied:

1) n = s = 5,

2) n � 6 and 3 � s � N − 3,

3) n � 2, r � 4, and s = 0,

4) n � 4, r = 2, and s = 0,

5) n � 3, r = 3, and s = 0,

then the germ A is not G odd-simple.

Remark 4.2. Since for germs of functions that are even in the totality of variables the rank

of 1-jet is always zero, for such germs there are no counterparts of Theorem 4.3.

4.4. Classification of simple germs with one parameter.

Theorem 4.4. 1. A germ of a skew-symmetric matrix-valued analytic function of order n

that depends on one parameter, is even with respect to this parameter, and vanishes for the zero

parameter is G odd-equivalent to the germ

x2k1Es1 ⊕ x2k2Es2 ⊕ . . .⊕ x2ktEst ⊕ 0,

where the matrices Esi have the form (2.1), the direct sum of matrices is defined by formula

(2.2), si ∈ N, ki ∈ N are such that k1 < k2 < . . . < kt, and the last zero block has sizes

(n−2
∑

i = 1tsi) and can be absent. Moreover, if the last zero block has sizes 1×1 or is absent,

then the germ is G odd-simple; otherwise, it is not G odd-simple.

2. A germ of a skew-symmetric matrix-valued analytic function of order n that depends on

one parameter and is odd with respect to this parameter is G odd-equivalent to the germ

x2k1+1Es1 ⊕ x2k2+1Es2 ⊕ . . .⊕ x2kt+1Est ⊕ 0,

where Esi have the form (2.1), the direct sum of matrices is defined by (2.2), si ∈ N, the numbers

ki ∈ Z�0 are such that k1 < k2 < . . . < kt, and the last zero block has sizes (n − 2
∑

i = 1tsi)

or can be absent. Moreover, if the last zero block has sizes 1 × 1 or is absent, then the germ is

G odd-simple; otherwise, it is not G odd-simple.

4.5. Connection between the classification of simple germs of families of skew-

symmetric 2 × 2-matrices that are even or odd in the totality of variables and the

classification of simple germs of mappings.

Theorem 4.5. Germs A and B of skew-symmetric matrix-valued analytic functions of order

n = 2 that depend on r parameters, are even (odd) in the totality of variables, vanish for the

zero parameters, and have the form

A =

(

0 a

−a 0

)

, B =

(

0 b

−b 0

)

,

where the germs a and b of analytic functions (Kr, 0) → (K, 0) that are even (odd) in the totality

of variables are G odd-equivalent if and only if a and b are V odd-equivalent.
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Corollary 4.1. The classification of G odd-simple even (odd) germs is determined by the

classification of V odd-simple even (odd) germs (Kr, 0) → (K, 0).

4.6. Connection between the classification of simple germs of families of skew-

symmetric 3 × 3-matrices that are even or odd in the totality of variables and the

classification of simple germs of mappings.

Theorem 4.6. 1. A germ A of a skew-symmetric matrix-valued analytic function of order

n = 3 that depends on r parameters, is even (odd) in the totality of variables, vanishes for the

zero parameters, and has the form

A =

⎛

⎝

0 a b

−a 0 c

−b −c 0

⎞

⎠

is G odd-finitely definite if and only if the corresponding even (odd) germ (a, b, c) : (Cr, 0) →
(C3, 0) is K odd-finitely definite.

2. Two G odd-finitely definite germs A and B of skew-symmetric matrix-valued analytic func-

tions of order n = 3 that depend on r parameters, are even (odd) in the totality of variables, and

vanish for the zero parameters are G odd-equivalent if and only if the corresponding even (odd)

germs (Cr, 0) → (C3, 0) are K odd-equivalent. In particular, the classification of G odd-simple

germs is determined by the classification of K odd-simple germs (Cr, 0) → (C3, 0).

5 Proof of the Main Results

Before proving Theorems 4.1–4.6, we prove two auxiliary results.

Let Sk be the space of germs of analytic mappings A : (Kr, 0) → (
∧2 V )∗ ∼= K

N , where

N = n(n− 1)/2.

The following lemma is a criterion for the existence of moduli (see [3, Proposition 4.4]).

Lemma 5.1. Let G be an algebraic group acting on the affine space L over the field K, and

let S be a smooth irreducible algebraic submanifold in L such that the set {s ∈ S : TsS ⊂ Ts(G·s)}
is a proper algebraic submanifold of S. Then any neighborhood U of any point s ∈ S contains

infinitely many orbits of the action of the group G.

The following lemma asserts the finite definiteness for matrix-valued functions (the general

case can be found in [12, Section 10]).

Lemma 5.2 (on finite definiteness). A germ of the a function A : (Kr, 0) → (KN , 0) is

G -finitely definite if and only if M k+1
r ON

r ⊂ TA(G ·A) for some k.

Proof of Theorem 4.1. 1. The action of the group j1G on the space of 1-jets in Sk can

be regarded as the action of the direct product of complete linear groups GL (Kr) × GL (V )

of dimension r2 + n2 on the space of linear mappings Hom (Kr, (
∧2 V )∗) of dimension rN =

rn(n− 1)/2.

If the dimension of each orbit of a given group is less than the dimension of the space where

the group acts, then there exist no simple germs (see Lemma 5.1).
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The dimension of each orbit of the group GL (Kr)×GL (V ) does not exceed r2+n2−1 since

the scalar matrices in the spaces GL (Kr) and GL (V ) act in the same way.

Consequently, if

r
n(n− 1)

2
> r2 + n2 − 1,

then there are no simple matrices in Sk. We consider this inequality as a square inequality for

r with coefficients depending on n. Solving this equation, we find that

1) for n = 1, 2, 3, 4 the inequality fails for any r,

2) for n = 5 the inequality is satisfied only for r = 5,

3) for n � 6 the inequality is satisfied if and only if

3 � r � n(n− 1)

2
− 3 = N − 3.

2. We consider the action of the group j1G
odd = j1(R

odd
� H even) on the space of 1-jets

in O even
r,N . In this case, the 1-jet j1O

even
r,N is zero since it consists of constant matrices such that

A(0) = 0 (see Remark 2.2).

Since the 1-jet is zero, we consider the space j2O
even
r,N of 2-jets consisting of matrices whose

entries are homogeneous polynomials of degree 2. The action of the group j1G
odd on the space

j2O
even
r,N of 2-jets can be regarded as the action of the direct product of full linear groups GL (Kr)×

GL (V ) of dimension r2 + n2 on the space of linear mappings Hom (Kr, (
∧2 V )∗) of dimension

r(r + 1)

2
N =

r(r + 1)n(n− 1)

4
.

If the dimension of each orbit of a given group is less than the dimension of the space where

it acts, then there are no simple germs (see Lemma 5.1).

The dimension of each orbit of the group GL (Kr)×GL (V ) does not exceed r2+n2−1 since

the scalar matrices in GL (Kr) and GL (V ) act in the same way.

Consequently, if
n(n− 1)r(r + 1)

4
> r2 + n2 − 1,

then there are no simple matrices in Sk.

The obtained inequality is satisfied in the following cases:

1) n � 3 and r � 3,

2) n � 5 and r = 2.

3. We consider the action of the group j1G
odd = j1(R

odd
� H even) on the space O odd

r,N of

1-jets. We note that the group j1R
odd is the group of odd (i.e., all) linear transformations of

parameters, j1H
even are constant nonsingular matrices of order n and j1O

odd
r,N are odd linear

mappings (Kr, 0) → (
∧2 V )∗. Consequently, this action can be regarded as the action of the

direct product of full linear groups GL (Kr)×GL (V ) of dimension r2+n2 on the space of linear

mappings Hom odd(Kr, (
∧2 V )∗) of dimension rN = rn(n−1)

2 . The further arguments completely

coincide with the first part of the proof.
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Proof of Theorem 4.2. 1. We first consider the 1-jet of the germ A. In the case s = N ,

it has the maximal rank as a mapping j1A : Kr → K
N . In particular, r � s = N . Making

elementary transformations of rows and columns, we can reduce j1A to the required form (4.1).

If A = j1A+B, where B = (bi,j) ∈ Sk is a matrix with zero 1-jet j1B = 0, then, making the

change of parameters x̃i,j = xi,j + bi,j , we can reduce it to the form (4.1).

Let an orbit jk(G ·C) in the space jkSk be adjacent to the orbit jk(G ·A) for some k � 1. We

also assume that the 1-jet of the germ C is close to the 1-jet of the germ A and, consequently,

also has the maximal rank s = N . As above, we can reduce j1C and jkC to the form (4.1). Thus,

any germ C ∈ Sk whose orbit is adjacent to the orbit of the germ A in jkSk is G -equivalent to

A. Consequently, A is a G -simple germ.

2. The proof is similar to that of assertion 1.

Proof of Theorem 4.3. 1. Let rk (j1A) = s � N . We can regard the 1-jet j1A as an

element of the space Hom
(

K
r, (

∧2 V )∗
)

. In this case, the dual mapping
∧2 V → (Kr)∗ has

kernel of corank s which will be denoted by LA. The set {L ⊂ ∧2 V : dim L = N − s} of all

such subspaces is called the Grassmanian and is denoted by Gr (N − s,N) and dim Gr (s,N) =

s(N − s).

On the Grassmanian Gr (N − s,N), only the group GL (V ) acts since it consists of kernels

of dual mappings (the image is the zero matrix). Under the action of a scalar operator, every

linear subspace is transformed to itself. Therefore, if LA ∈ Gr (N − s, s), then dim GL (V ) · j1A
is at most n2 − 1.

Consequently, there are no simple matrices in Sk if

s
(n(n− 1)

2
− s

)

> n2 − 1.

We note that the obtained inequality is similar up to a replacement of r by s to the inequality

obtained in Theorem 4.1. Consequently, we have

1) for n = 1, 2, 3, 4 the inequality fails for all s,

2) for n = 5 the inequality is satisfied only for s = 5,

3) for n � 6 the inequality is satisfied if and only if

3 � s � n(n− 1)

2
− 3 = N − 3.

Consider the case s = 0 where the 1-jet of A is zero. In this case, we pass to the jet space j2Sk

consisting of skew-symmetric matrices whose entries are homogeneous polynomials of degree 2.

They form a space of dimension n(n−1)r(r+1)
4 with the action j2G . Similarly, we can reduce the

consideration to the action of the group GL (Kr) × GL (V ) on the space Hom (Kr, (
∧2 V )∗),

where the orbit dimension does not exceed r2 + n2 − 1. Consequently, if

n(n− 1)r(r + 1)

4
> r2 + n2 − 1,

then there are no simple matrices in Sk. This inequality is satisfied in the following cases:

1) n � 3 and r � 3,
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2) n � 5 and r = 2.

2. The case s 	= 0 is handled in the same way as in the first part.

We consider the case s = 0, i.e., the zero 1-jet of the germ A. Since, in the case of germs of

odd functions, the 2-jet is also zero, we immediately pass to consideration of the space of 3-jets

j3O
odd
r,N whose independent elements are homogeneous polynomials of degree 3. The form a space

of dimension r(r+1)(r+2)
6 N. As above, the action of the group j1G

odd on the space of 3-jets j3O
odd
r,N

can be regarded as the action of the group GL (Kr)×GL (V ) on the space Hom odd(Kr, (
∧2 V )∗)

where the orbit dimension does not exceed r2 + n2 − 1.

Consequently, if
n(n− 1)r(r + 1)(r + 2)

12
> r2 + n2 − 1,

then there are no simple matrices in Sk. This inequality holds in the following cases:

1) n � 2 and r � 4,

2) n � 4 and r = 2,

3) n � 3 and r = 3.

The theorem is proved.

Proof of Theorem 4.4. 1. By Lemma 2.1, it suffices to consider only matrices such that

A(0) = 0. If A is the zero matrix, then we have the required form (the zero block) and there is

nothing to prove.

We prove the theorem by induction on n, where n is the order of the matrix A.

Let the minimal degree of x in the entries of A be equal to 2k1, k1 � 1. This degree is always

even since the original matrix A is even in the totality of variables. Then A = x2k1A0, where

A0(0) 	= 0.

Let rk A0(0) = 2s1, s1 � 1. Using Lemma 2.2 and replacing the basis by making elementary

transformations of rows and columns, we can reduce the matrix A to the form
(

Es1 0

0 A1

)

,

where A1(0) = 0 and Es1 is defined by (2.1). If n = 2s1, then we obtain the required form, and

the theorem is proved. Otherwise, we assume that the required assertion of the theorem holds

for all matrices of order less than n and show that the matrix A1 of order n−2s1 can be reduced

to the form

x2l2Es2 ⊕ . . .⊕ x2ltEst ⊕ 0,

where l2 < . . . < lt. Then we obtain the required assertion for the matrix A of order n by setting

ki = li + k1, i � 2.

If the order of the last zero block is at least 2, then the germ is not G odd-simple since

adjacencies of the form xk appear in the components of the matrix block and the second condition

in Definition 2.8 fails.

2. We argue as above, but, in this case, the minimal degree of the parameter x in the matrix

entries is equal to 2k1+1, k1 � 0. Consequently, A = x2k1+1A0, A0(0) 	= 0 and x2l2+1Es2 ⊕ . . .⊕
x2lt+1Est⊕, where l2 < . . . < lt.
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Proof of Theorem 4.5. Let

A =

(

0 a

−a 0

)

, B =

(

0 b

−b 0

)

,

where a, b ∈ O even
r (respectively, O odd

r ). If the germs of the matrix-valued functions A and B

are G odd-equivalent, then B = XT (A ◦ ϕ)X, where ϕ ∈ R odd, X ∈ H even; namely,

(

0 b

−b 0

)

=

(

α γ

β δ

)(

0 a ◦ ϕ
−a ◦ ϕ 0

)(

α β

γ δ

)

= (αδ − βγ)

(

0 a ◦ ϕ
−a ◦ ϕ 0

)

.

Consequently, b = (αδ − βγ)(a ◦ ϕ). Moreover, h = αδ − βγ = det X ∈ O even
r , i.e., the function

is even in the totality of variables (each entry of the matrix X is an even function) and h(0) 	= 0

since det X(0) 	= 0. Therefore, a and b are V odd-equivalent.

Conversely, if a and b are V odd-equivalent, i.e., there exists a germ ϕ ∈ R odd and an

invertible function h+ c, where h ∈ O even
r , c ∈ K \ {0}, such that a ◦ ϕ = b · h, then we set

X =

(

h−1 0

0 1

)

.

Then B = XT (A ◦ ϕ)X, i.e., A and B are G odd-equivalent.

Proof of Theorem 4.6. With a germ A of the form (4.6) we can associate the germ of

the map (a, b, c) : (Kr, 0) → (K3, 0) which is also even or odd in the totality of variables. Then

we argue as above, but with parity correction. Moreover, for germs of functions that are even

in the totality of variables, to apply Lemma 5.2, we need consider the jet spaces of only even

dimension, which leads to the condition

M 2k
r ON

r ⊂ TA(G ·A) +M 2k+2
r ON

r

and, for germs of functions that are odd in the totality of variables,

M 2k+1
r ON

r ⊂ TA(G ·A) +M 2k+3
r ON

r .

The theorem is proved

Acknowledgments

The work is supported by the Russian Science Foundation (project No. 21-11-00080.

References

1. V. I. Arnold, “On matrices depending on parameters,” Russ. Math. Surv. 26, No. 2, 29–43
(1971).

2. V. I. Arnold, Normal forms for functions near degenerate critical points, the Weyl groups
of Ak, Dk, Ek and Lagrangian singularities,” Funct, Anal. Appl. 6, No. 4, 254–272 (1972).

638



3. J. W. Bruce, F. Tari, “On Families of Square Matrices,” Proc. Lond. Math. Soc. III Ser 89,
No. 3, 738–782 (2004)

4. J. W. Bruce, “On Families of Symmetric Matrices,” Mosc. Math. J. 3, No. 2, 335–360 (2003).

5. C. T. C. Wall, “Finite determinacy of smooth map-germs,” Bull. Lond. Math. Soc. 13, No.
6, 481–539 (1981).

6. V. V. Goryunov and V. M. Zakalyukin, “Simple symmetric matrix singularities and the
subgroups of Weyl groups Aν , Dν , Eν ,” Mosc. Math. J. 3, No. 2, 507–530 (2003).

7. V. V. Goryunov, “Singularities of projections of full intersections,” J. Math. Sci. 27, 2785–
2811 (1984).

8. V. I. Arnold, “Critical points of functions on a manifold with boundary, the simple Lie
groups Bk, Ck, and F4 and singularities of envolut,” Russ. Math. Surv. 33, No. 5, 99–116
(1978).

9. W. Domitrz, M. Manoel, and P. de M. Rios, “The Wigner caustic on shell and singularities
of odd functions,” J. Geom. Phys. 71, 58–72 (2013).

10. S. M. Gusein-Zade and A.-M. Ya Raukh, “On simple Z2-invariant and corner function
germs,” Math. Notes 107, No. 6, 939–945 (2020).

11. N. T. Abdrakhmanova and E. A. Astashov, “Simple singularities of functions that are even
or odd in each variable,” J. Math. Sci. 249, No. 6, 827–833 (2020).

12. J. N. Damon, “The unfolding and determinacy theorems for subgroups of A and K ,” Mem.
Am. Math. Soc. No. 306 (1984).

13. D. M. Q. Mond, “Some remarks on the geometry and classification of germs of maps from
surfaces to 3-spaces,” Topology 26, 361–383 (1987).

Submitted on October 1, 2022

639


	Abstract
	1 Introduction
	2 Definitions and Notation
	3 Statement of the Problem and Survey of Results
	4 The Main Results
	5 Proof of the Main Results
	Acknowledgments
	References

