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Abstract

By applying a nonlinear regression root analysis, this paper evaluates the sig-
nificance of an emerging third stable steady state for the Caspian Sea level. A
theoretical probability density function (PDF) is built and fitted to empirical
data by mixing three different normal distributions. From this mixed probabil-
ity distribution, a drift coefficient is obtained for the corresponding diffusive
process. A stochastic model is then proposed, which uses the derived drift
coefficient. This model demonstrates better performance than that exhibited by
polynomial approximations and open possibilities for hydrological risk assess-
ment of systems with several stable steady states.

Introduction

This work studies the building of a suitable mathematical
model to describe the oscillation dynamics of the Caspian
Sea level. This task has been of importance since the level of
the Caspian Sea decreased 1.8 m in 9 years when usually the
increments of sea water levels had not exceeded 0.4–0.5 m
for a period of 100 years. A review of the Caspian Sea level
(fluctuation problem has been presented by Asarin 1997).
Currently, this problem remains relevant because of ongoing
global warming and increasing ocean levels around the
world (Naidenov and Kozhevnikova, 2001; Elguindi and
Giorgi, 2007). From the historical records of the Caspian Sea
levels, several shifts in the annual mean water level (AMWL)
from low to high values (and vice versa) have been observed.
In the middle of the 16th century, the annual mean Caspian
Sea water level was -26.6 m above the Baltic Sea Datum
(m.a.b.s.d.). For the following century, an increase in the
AMWL took place, reaching an average value of
-23.9 m.a.b.s.d. Subsequently, at the beginning of the 17th
century, the mean water stage decreased to the mark of
-26.0 m. After this intense level depletion, a period of high
AMWL began, continuing until the beginning of the 19th
century (1805) with a mean annual level record of -22.0 m.
From the beginning of standard water level measurements

(1830) to the beginning of the 20th century, the Caspian Sea
level oscillated around -25.8 m. Following that, from 1900 to
1929, no significant changes were observed, and a mean
water level of -26.2 m was established. This almost stable
water stage then experienced a rapid decrease of 1.8 m
during the period of 1930–1939. With a slower rate, the
water level decrease continued until 1960 when the mean
water level stabilised at -28.4 m.a.b.s.d. Then, for the first
half of the 1970s, the AMWL reached an extreme value of
-29.30 m, the lowest mark for the last 150 years (see
Figure 1). The water level reduction for the 1900–1977
period reached 3 m. Measuring from its initial position, the
shoreline recession reached 10 km. In the expanded shore
territory, construction took place. Mathematical models
implemented at this time predicted a further decrease in the
water level, encouraging the redistribution of water afflu-
ences from the northern rivers to feed the Caspian Sea in
order to stop a catastrophic water level decrease, but starting
in 1978, a extremely intense increase in the water levels
began (>1 m in 7 years) stopping at -27.97 m in 1985, flood-
ing all shore facilities that occupied the additional shore
produced by the Caspian Sea water level recession. Increas-
ing AMWL values resulted in a catastrophe for Caspian Sea
shore inhabitants. The increasing trend of the AMWL con-
tinued for another ten years, reaching -26.66 m. Nowadays,
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the Caspian Sea AMWL oscillates around -27.00 m. The
observed Caspian Sea level dynamics with long-term oscil-
lations about stable AMWL values and sudden AMWL shifts
suggest nonlinear patterns that should be represented by
nonlinear models able to reflect several stable steady states in
their solutions. In fact, the histogram of yearly averaged
water level values shows three stable steady states (see
Figure 2). This multimodal pattern of the Caspian Sea level
and its divergence with a normal probability distribution
pattern were first presented in the works of V.I. Naidenov
(Naidenov and Podsechin, 1992) for Russian lakes. Other
reports have shown nonstationary and non-Gaussian water
level behaviour for the Great Lakes (Walton et al., 1990).
This phenomenon of non-Gaussian distributions for water
levels in closed lakes and reservoirs is a common feature of
several lakes and reservoirs (Chad, Chany, Bolshoie
Solionoye, Balhash and Khanka lakes), and it is also inherent
in diverse natural phenomena with oscillations in their
various steady states. This work shows that the level oscilla-
tions of the Caspian Sea are caused by the interactions of
several random processes, each of which describes a ‘deter-
mined component of process variability’ and is conditioned
by the influence of a certain driving factor. According to the
Intergovernmental Panel on Climate Change (IPCC) frame-
work, there can be found several forecasts for the next 100
years for the Caspian Sea level oscillation behaviour. Some of
these forecasts predict a level increase whereas others predict

decreasing or stabilisation near the -27.00-m mark. Such
forecast diversity with one stable steady state as the outcome
reflects neither the observed Caspian Sea patterns nor their
future behaviour. This paper developed a model of inland
lake water level oscillations for which randomness, nonlinear
dynamics and minimal discrepancy between the observed
and modelled AMWL probability density distributions are
required. In detail, the model fitness for this probabilistic
forecast is demonstrated thorough an assessment of the
independence of the sequence of residuals, its probability
density distribution determination and the absence of
hidden periodicities. With this validation, the model can be
used to determine the hydrological risk associated with dif-
ferent exceedance probabilities for any particular mean
annual water level value. The developed method was applied
to the Caspian Sea level case but can be useful for any inland
reservoir, river dam, river-related water treatment pool, etc.

Approximation of observed data using a
polynomial regression
There are different methods for building a model that
describes water level oscillations. The first method employed
here, developed by the authors, is based on a polynomial
approximation to describe the residuals of the stages. This
polynomial approximation is then used as a drift coefficient
in a stochastic differential equation for which the corre-

Figure 1 Caspian Sea annual mean water level fluctuations at the Baku City station.
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sponding Fokker–Planck–Kolmogorov (FPK) equation is
derived (Siegert et al., 1998). Then, from the solution of this
FPK equation, we obtain a stationary probability density
distribution. This method, which uses a fifth-order nonlin-
ear regression model, was applied by Kozhevnikova and
Shveikina to describe the Caspian Sea water level oscillations
(Kozhevnikova and Shveikina, 2008). In their study, an
observed series from 1900 until 2000 was used, and only two
stable steady states were fixed by the regression analysis and
were within the histogram for the observed levels. Later, a
model of the same type was used with an expanded, up-to-
date data set (1900–2006). This data set, with monthly reso-
lution, is presented in Figure 3. In the phase space, with the
coordinate system water level X(t) versus water level incre-
ments (the most recent difference DX = X(t) - X(t - 1)), the
water level oscillations represent a trajectory that is known as
a phase portrait. This trajectory, with a functional depend-
ency, links the water level X(t) with the rate of change at each
time point. This trajectory demonstrates a complex pattern,
shown in Figure 4. The behaviour of this system is described
using a fifth-order regression with coordinates OX repre-
senting the water level and OY representing its increment. In
order to avoid large regression errors, transformation of the
time series X(t) yields the following (Seber, 1977):

Z t
X t X X

X X
( ) = ( ) − −

−
2 max min

max min

(1)

where X X t
t N

max max= ( )
≤ ≤1

, X X t
t N

min min= ( )
≤ ≤1

and |Z(t)| �

1. The function Z(t) is described as a normalised time series.
For the time series presented in Figure 3, Xmax = -29.15 and
Xmin = -25.31 m above the Baltic Sea datum.

The regression equation that describes the time series
X(t) was obtained by applying the minimised squared
error method using the observed data from the
Makhachkala station, and for the normalised time series,
Z(t) is:

Z t Z t Z t t+( ) = ( ) + ( )( ) + ( )1 Φ σε (2)

where F(Z(t)) = -0.0021 - 0.0315Z(t) + 0.01666Z2(t) +
0.1741Z3(t) - 0.1204Z4(t) - 0.2092Z5(t) and e(t) is the
model residual, which should be a Gaussian-distributed
value with an expected value of zero and a standard devia-
tion of � = 1. This regression equation is presented in
Figure 5. In order to obtain the required accuracy, the regres-
sion coefficients were calculated with a precision of nine
decimal places. Establishing the equilibrium position of this
curve, the equation F(Z) = 0 was solved. The roots for the

Figure 2 Histogram for observed annual mean water levels of the Caspian Sea.
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polynomial F(Z) are: Z1 = -0.6601; Z2 = -0.3645;
Z3 = -0.0226; Z4 = -0.7014; and Z5 = -0.9565.

A characteristic property of the function F(Z) is the pres-
ence of five real roots that give the values for the equilibr-
ium water levels (X1 = -28.44, X2 = -27.91, X3 = -27.32,
X4 = -26.07 and X5 = -25.63). However, here, X1, X3 and X5

are stable, and X2, X4 are unstable steady states. It is known
that the minima of the potential U(Z) = -∫F(Z)dZ corre-
spond to stable steady state conditions, and the maxima
correspond to unstable steady states. Additionally, the
extreme values for U(Z) agree with the roots of F(Z). The
expression U(Z) has three minima at the points Z1, Z3 and Z5,
which are stable steady state levels. Using the regression
between the increment of the water level and the Caspian Sea
level [F(Z) = -∂U/∂Z], it is possible to use a continuous
model for the oscillation of the Caspian Sea level in the form
of a diffusion process:

dZ
dU

dZ
dt dWt t= − + σ (3)

where Ut is the Caspian Sea level potential, -∂U/∂Z is the
drift coefficient, σ is the diffusion coefficient and Wt is a
standard Wiener process. The quality of this model depends
on the accuracy of the drift coefficient determination. Use of
the above-mentioned polynomial regression to establish the

drift coefficient does not provide the required accuracy and
a better definition of the drift coefficient would provide
better performance of the model given by Eqn (3) if the drift
coefficient were defined through the observed density distri-
bution function.

Component separation of mixed
probability distributions
Component separation of mixed probability distributions is
a common issue for modelling several natural processes. In
hydrological research, a distribution of one kind is usually
used to describe an entire recorded time series. Selection of
the distribution depends on the type of problem that is being
solved. For instance, for the description of infrequent events,
the use of an exponential distribution is more suitable
(Naidenov and Shveikina, 2005; Dolgonosov and Korchagin,
2007). For river runoff, a very good description can be
reached using the gamma distribution, and in some situa-
tions, the three-parameter Weibull distribution (known as
the Kritsky–Menkel distribution in Eastern hydrology) can
be used. In order to build a mixed distribution, the above-
mentioned distributions can be used in addition to the
Poisson and binomial distributions, among others (Isaenko

Figure 3 Caspian Sea monthly mean level fluctuations at the Makhachkala City station.
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and Urbakh, 1976). The estimation of theoretical parameters
for a mixed distribution can be done with different methods
including the method of moments, the maximum likelihood
method, the least squared error method, some types of min–
max procedures and graphical methods. In this work, Gaus-
sian distributions were used to build the mixed density
distributions, and sample mean and variance values from the
stable steady state subseries were applied as initial values to
estimate the distribution parameters and to define the first
iterative approximation.

The time series analysis allowed for a separation of three
stable steady state condition sets. Therefore, the studied
process can be approximated using the merger of three
normal distributions. The behaviour of the time series
allowed for a separation of three periods. The first period
includes 37 years of observations and begins at the time
when the sea levels were around -26 m above Baltic Sea
datum. The second period includes the sudden decrease in
water level and its stabilisation near -28 m. The third period
contains observations from 1986 until today, during which
time the water level oscillates around -27 m. For each men-
tioned period, using the D’Agostino criterion, we tested and
verified the hypothesis regarding the normal fit of the water
level oscillations. A chi-squared test is usually applied for

such verification, but it is well known that it is better to use
specialised distribution-oriented tests, tailored to the normal
distribution in this case. In addition, the D’Agostino test is
well suited for short length samples (n = 10 . . . 12). The
nonsuitability of the chi-squared test for samples with
lengths of n = 10 . . . 52 is discussed in (D’Agostino, 1972),
where 5000 to 23 500 normally distributed realisations with
lengths from 10 to 52 independent elements were tested
using the chi-squared test, resulting in a 68% rejection of the
null hypothesis of the normality of the analysed, previously
generated as normally distributed, data sets. Such a situation
has encouraged the application of the D’Agostino test.

The D’Agostino test (Hald, 1952; D’Agostino, 1972) is not
commonly used in hydrological assessment tests. For the
D’Agostino test, given the observed data X1 . . . Xn, the vari-
ational series is set as X(1) � X(2) � . . . � X(n). One may now
introduce the function:

D
T

n S
=

2
, (4)

where

T i n X i

i

n

= − +( )⎡
⎣⎢

⎤
⎦⎥ ( )

=
∑ 1

2
1

1

(5)

Figure 4 A water level oscillation phase portrait.
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S
n

X Xi

i

n
2 2

1

1= −( )
=
∑ (6)

X
n

Xi

i

n

= ( )
=
∑1

1

(7)

Previous work (Aivazyan, 1968) has shown that if a subset
X1 . . . Xn is taken from a normally distributed set, then the
asymptotic values for the mathematical expectation and
standard deviation for the function D read:

E D( ) ≈ =2

2
0 28209479

π
. (8)

Var D
n

( ) ≈ 0 02998398.
(9)

and then the function:

Y
D E D

Var D
= − ( )

( )
(10)

has a zero mathematical expectation and a standard devia-
tion of one when n→•. If the subset does not belong to a
normal distribution, then the value for Y will differ from
zero by being positive or negative. It has been shown that if
the alternative distribution has excess, then the Y-value will
be greater than zero as well. Tables with critical values for

different significance levels and for short and long data sets
are available (Hald, 1952). For instance, for the first period
data set (with a mean stage of -26 m), the D’Agostino cri-
terion with a level of significance of 0.2 has a value of -0.137
and a confidence interval of -1.661 to 0.759. With a
D’Agostino empirical value of 0.281, this falls within the
confidence interval, indicating that, with a significance level
of 0.2, the analysed data set follows a normal distribution.
Analysis of the second and third period data sets (with mean
stages of -27 and -28 m, respectively) with D’Agostino’s
criterion indicates that these data sets also follow normal
distributions. Thus, the problem of a theoretical distribution
fit to the empirical data leads to a statistical determination of
the unknown mixed distribution parameters.

Theoretical moments of a mixed distribution can be
expressed through the first and second moments of each
individual distribution according to the expression:

f x p f x p f x

p p f x

( ) = ( ) + ( )
+ − −( ) ( ) −

1 1 1 1
2

2 2 2 2
2

1 2 3 3 3
21

, , , ,

, , ,

μ σ μ σ
μ σ ∞∞ < < ∞x (11)

where f xi i i, ,μ σ 2( ) is the probability density distribution of
the i-th component of the mixed distribution and pi is the
weight of the i-th component. To define these parameters,
the method of moments was applied. To do this, it is neces-
sary to calculate the moments up to the eighth-order
moment because this equation has eight unknown

Figure 5 Polynomial regression with five real roots.
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parameters. The equations for the statistical moments of a
Gaussian distribution N(m,�2) are (Shiriaev, 2007):

m1 = μ (12)

m C k jj
j

j
k k j k

k

j

= + −( ) ≥−

=

⎡
⎣⎢

⎤
⎦⎥

∑μ σ μ2 2 2

1

2

2 1 2!!, (13)

where j is the order of the normal distribution moment and
(2k - 1)!! is the product of odd numbers through (2k - 1)
inclusively. The equations for the moments of a mixed dis-
tribution with q components have the form:

m p qq i i

i

q

, , ,1

1

3= =
=
∑ μ (14)

m p C kq j i
j

j
k

i
k

i
j k

k

j

i

, !!= + −( )
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

−

=

⎡
⎣⎢

⎤
⎦⎥

=
∑μ σ μ1

2 2 2

1

2

1

2 1
qq

j∑ ≥, ,2 (15)

p p p pi

i

q

=
∑ = = − −

1

3 1 21 1and (16)

Taking in account the above equations, one can set the
following expressions:

m p p p p1 1 1 2 2 1 2 31= + + − −( )μ μ μ (17)

m p C p C p p C2 1 1
2

2
2

1
2

2 2
2

2
2

2
2

1 2 3
2

2
2

3
21= +( ) + +( ) + − − +( )( )μ σ μ σ μ σ

(18)
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3

3
2

2
2

1 2 3
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3
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3
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μ σ μ μ σ
μ σ
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1 3
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1
1
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1
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AA5 3 3μ σ,( )[ ] (21)
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where Bk(1 - p1 - p2)Ak, k = 7.8 and

A C k ij i
j

j
k

i
k

i
j k

k

j

= + −( ) =−

=

⎡
⎣⎢

⎤
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Noncentred statistical moments in the left side of the
above equations can be evaluated directly from the observed
data as:

m̂
n

xi k
i

k

n

=
=

∑1

1

(25)

where i is the order of the given moment.
To find the mixed distribution parameters, the minimisa-

tion of the following goal function is applied:

Q
m m

m
j j

jj

=
−⎛

⎝⎜
⎞
⎠⎟=

∑
ˆ

ˆ

2

1

8

(26)

Using an iterative method to solve the above algebraic
systems, the parameters for the merged probability distribu-
tion were found (Table 1).

The values in Table 1 allow us to build a merged distribu-
tion that is well fitted to the empirical distribution
(Figure 6).

Solution of the inverse problem for a
model of the Caspian Sea oscillations
Traditionally, if the selected model is a diffusion process
model, then the corresponding FPK equation can be
obtained and the stationary probability density distribution
can be found (Sveshnikov, 1968; Gardiner, 1985; Siegert
et al., 1998). The obtained distribution differs from the
empirical distribution. Therefore, a special approach is used,
which is based on the use of a theoretical probability density
function (PDF) fitted to the empirical PDF. Thus, it is sup-
posed that the fitted PDF satisfies the FPK equation. Using
the found theoretical PDF, a stochastic model is then built.
Following this approach, the theoretical PDF is made by
mixing three Gaussian distributions, and this mixed PDF is
defined by eight parameters. Recalling the model Eqn (3) for
the Caspian Sea oscillations, the corresponding FPK equa-
tion reads:

∂ ( )
∂

= − ∂ ( ) ( )[ ]
∂

+ ∂ ( )[ ]
∂

p y t x

t

y p y t x

y

p y t x

y

, , ,Φ σ 2 2

22
(27)

The stationary solution for this FPK equation, assuming
∂p/∂t = 0, is expressed as:

p x
C

u du X x Xs

x

( ) = ( )⎡

⎣
⎢

⎤

⎦
⎥ ≤ ≤

−∞
∫σ σ2 2

2
exp , min maxΦ (28)

Table 1 Parameters of the merged distribution with q
components

q = 1 q = 2 q = 3
mq m1 = -25.86 m2 = -28.27 m3 = -26.97
�q �1 = 0.548 �2 = 0.439 �3 = 0.192
pq p1 = 0.50 p2 = 0.61 p3 = 0.16
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where C is a normalisation coefficient and σ 2 0 011= . .
Substituting in Eqn (28), the drift coefficient, as:

Φ x
dU x

dx
( ) = − ( )

(29)

we obtain the following expression for the stationary prob-
ability density:

p x
C

U xs ( ) = − ( )⎡
⎣⎢

⎤
⎦⎥σ σ2 2

2
exp (30)

Supposing that the stationary probability density that sat-
isfies the FPK equation is expressed through a mixed distri-
bution, f(x), with eight parameters, then we have:

f x
C

U x( ) = − ( )⎡
⎣⎢

⎤
⎦⎥σ σ2 2

2
exp (31)

Taking the logarithm of Eqn (30), one can derive the
expression for U(x) as:

2
2 2σ σ

U x
C

f x( ) = − ( )ln ln (32)

Then, the drift coefficient reads:

Φ x
dU

dx

f x

f x
( ) = − = ′( )

( )
σ 2

2
(33)

and the Caspian Sea oscillation model becomes:

dX
f X

f X
dt dWt t= ′( )

( )
+σ σ

2

2
(34)

where

f X
p Xk

k

k
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⎣
⎢

⎤

⎦
⎥

=
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2 2

2

2
1

3

π σ
μ

σ
exp (35)

and

′ ( ) = − −( ) − −( )⎡

⎣
⎢

⎤

⎦
⎥

=
∑f X

p X Xk k

k

k

kk

1

2 23

2

2
1

3

π
μ

σ
μ

σ
exp (36)

In a previous model, some of the authors of this paper
expressed the drift coefficient with a fifth-order polynomial.
Here, it is expressed in a more complex manner (Figure 7),
but the scatter plot dispersion is better represented. It is
expected that modelling with this drift coefficient will show
improved performance.

Figure 6 Empirical and theoretical mixed probability density functions. PDC: Probability Density Curve.
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The performance of the proposed model is characterised
by the sum of the squared errors for the increments of
observed data. In this case, the sum is 2.057, and therefore,
the residual dispersion will be 2.057/1272 @ 1.62 ¥ 10-3. For
reference, the well-known human population models of S.P.
Kapitza (Kapitza, 1992) have a residual dispersion on the
order of 7.6 ¥ 10-2, 2.9 ¥ 10-2 and 1.7 ¥ 10-2. The model pre-
sented here has a lower residual dispersion than the Kapitsa
model, so the model used to describe the observed water
level data is acceptable.

The residual dispersion for the model that uses a drift
coefficient defined by the fifth-order nonlinear regression is
equal to 11.81, indicating that the approach using the com-
posite PDF allows for a more precise stochastic model of the
Caspian Sea fluctuations. Data generated by the stochastic
model proposed here is presented in Figure 5.

Conclusions
In the work presented here, a number of problems are
solved. First, an improved mathematical model of the
Caspian Sea water level oscillation, in comparison with the
model based on the polynomial approach for the drift coef-

ficient, was built (Figure 8). The developed model is nonlin-
ear and leads to a stationary probability density distribution
that is quite similar to the observed density distribution. The
result obtained with the polynomial approach, a stationary
density distribution, usually differs from the observed dis-
tribution. The stationary distribution arises in the system as
t → •, which means that the probability distribution
becomes independent of time. Perhaps the system fluctua-
tions do not tend to any particular realisation. The system
itself continues fluctuating, but with increasing time, the
distribution will tend to a particular probability distribution
that finally will not change with time, thus being stationary.
The proposed model is required to tend to the same station-
ary distribution when t → •. Further development of the
proposed model will allow for not only a description of the
actual dynamics, but a probabilistic forecast for risk assess-
ment as well. Secondly, the statistical analysis of the Caspian
Sea level behaviour established the emergence of a third
stable steady state in addition to two previously known
states. This highlights the climatic transformations that
influence the Caspian Sea stages. The search for these cli-
matic driving factors is not a goal of the present statistical
analysis, which, in this case, only indicates the existence of
such phenomena.

Figure 7 Diffusion process drift coefficient.
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The emergence of a third stable steady state for the stage
oscillations of the Caspian Sea leads to a novel, not yet solved
problem: what is the transition time from one stable steady
state to another? In the potential function that describes
Caspian Sea level dynamics, three steady states emerge. An
assessment of the probability that one of these stages will
settle into one of these observables requires more research.

Acknowledgements

The authors wish to acknowledge the reviewers for their
helpful comments, which led to the improvement of the final
version of this paper.

References
Aivazyan S.A. Statistical study of the relationships. Moscow:

Mir, Metallurgia, 1968.

Asarin A.E. Problem of Caspian Sea level fluctuations. Hydrotec-

nical Construction 1997, 31, 645–654.

D’agostino R.B. Small sample probability points for the D test

of normality. Biometrika 1972, 59, 219–221.

Dolgonosov B.M. & Korchagin K.A. A non-linear stochastic

model describing the formation of daily and mean monthly

water flow in river basins. Water Resour 2007, 34, 624–634.

Elguindi N. & Giorgi F. Simulating future Caspian Sea level

changes using regional climate model outputs. Clim Dyn

2007, 28, 365–379.

Gardiner C. Handbook of stochastic methods. Berlin: Springer-

Verlag, 1985.

Hald A. Statistical theory with engineering applications. New

York: John Wiley & Sons Inc, 1952.

Isaenko O.K. & Urbakh V.Y. Separation of mixed probability dis-

tribution into components. Achievements of science and tech-

nique. Theory of probabilities, mathematical statistics and

theorethical cybernetics. Moscow: VINITI, 1976.

Kapitza S.P. A mathematical model for global population

growth. Math Model 1992, 4, 65–79.

Kozhevnikova I.A. & Shveikina V.I. Nonlinear dynamics of level

variations in the Caspian Sea. Water Resour 2008, 35, 297–

304.

Naidenov V.I. & Kozhevnikova I.A. Nonlinear variations of the

level of the Caspian sea and the global climate. Dokl Phys

2001, 46, 340–345.

Naidenov V.I. & Podsechin V.P. A nonlinear mechanism of

water level fluctuations of inland reservoirs. Water Resour

1992, 6, 5–11.

Naidenov V.I. & Shveikina V.I. Hydrological theory of the

hearth global warming. Russ Meteorol Hydrol 2005, 12, 31–38.

Seber G.A.F. Linear regression analysis. New York: John Wiley &

Sons, 1977.

Shiriaev A.N. Probability. Moscow: Nauka, 2007.

Figure 8 The characteristic realisation of the Caspian Sea level fluctuation model.

12 Kozhevnikova et al.

© 2011 The Authors
Journal of Flood Risk Management © 2011 The Chartered Institution of Water and Environmental Management

J Flood Risk Management 5 (2012) 3–13



Siegert S., Friedrich R. & Peinke J. Analysis of data sets of sto-

chastic systems. Physics Lett A 1998, 243, 275–280.

Sveshnikov A.A. Problems in probability theory, mathematical

statistics and theory of random functions. Philadelphia:

Saunders, 1968.

Walton T.L. & Borgman L.E. Simulation of

nonstationary, non-Gaussian water levels on Great

Lakes. J Waterway Port Coast Ocean Eng 1990, 116,

664–685.

Modelling Caspian Sea fluctuations 13

J Flood Risk Management 5 (2012) 3–13 © 2011 The Authors
Journal of Flood Risk Management © 2011 The Chartered Institution of Water and Environmental Management


