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Abstract Three-parameter familie of solutions is constructed for hyperbolic
differential-difference equation with shift operators of the general-type acting with
respect to all spatial variables. We prove theorem showing that the solutions obtained
are classical provided that the real part of the symbol of the corresponding differential-
difference operator is positive. Classes of equations for which these conditions are
satisfied is given.
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1 Introduction

Problems for elliptic differential-difference equations in bounded domains have been
studied quite comprehensively by now; the theory for such equations was created
and developed by Skubachevskii [1, 2]. Problems for elliptic differential-difference
equations in unbounded domains have been studied to a much lesser extent. An
extensive study of such problems is presented in Muravnik’s papers [3-5]. In partic-
ular, boundary value problems for multidimensional elliptic differential-difference
equations are considered in [3-5].

Problems for parabolic differential-difference equations were studied in
Muravnik’s monograph [6]. Vlasov and Medvedev [ 7] studied hyperbolic differential-
difference equations for the case where the shift operators act on the time variable.

As far as the present author is aware, at present, there are few papers dealing with
hyperbolic differential-difference equations containing shifts with respect to the spa-
tial variable. In [8—10], families of classical solutions are constructed for hyperbolic
equations with shifts in the space variable x; the shifts occur in the potentials.
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In the present paper, we study the existence of smooth solutions of hyperbolic
differential-difference equation in the half-space {(x, t)| x € R", t > 0}. The equa-
tion contains a sum of differential operators and shift operators with respect to each
of the spatial variables,

n n
2
uy(x,t) =a Zuxjxi(x,t) — iju(xl, cees X1, X —hj,)Cj_H, e, Xp, 1),

Jj=1 Jj=1
(L
where a, by, ..., b, and hy, ..., h, are given real numbers.

Definition 1 A function u(x, ¢) is called a classical solution of Eq. (1) if the deriva-
tives u,, and uy,,, (j = 1, ..., n) existin the classical sense (i.€., as limits of finited-
ifference ratios') at each point of the half-space {(x, )| x € R"?, t > 0} and if Eq. (1)
holds at each point of the half-space.

2 Construction of Solutions of Equation (1)

To find solutions of the equation, we use the classical operational scheme [11,
Sect.10], whereby one formally applies the Fourier transform with respect to the
n-dimensional variable x to Eq. (1),

fo = f ez,
Rn

and passes to the dual variable &.
In view of the formulas [12, Sect. 9]

F 000 f1= (—i&)" 0] Fel 1, Felf(x — x0)] = € ¢ Fy[ £1,

for the function u(&, t) := F,[u](&, t) we obtain the initial value problem

dzi{\ n ) n ] .
—Z =" a’|E + ) bjcos (h;&;) +i Y bysin(h;&) | @, R, (2)
j=1 j=1
uw(0) =0, u0) =1 3)

For convenience, in the subsequent calculations we use the notation

a(®) =Y bjcos(h;&;), BE) =Y bjsin(h;E)).

j=1 j=1
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Then Eq. (2) becomes

d*u

3 =~ (@ +a© +ipO)T e,

and the roots of the corresponding characteristic equation are determined by the
formula

kiz = +ivVa[€? + a(€) +iBE) = £ip&)e ?©,

where
1/4

p(©) = [(@¢F +a©) + 2] ", 4

1 B()
w(€) = 2arctg—az|§|2 o)

&)
Thus, the general solution of Eq. (2) has the form

e, = Cl(f)eitp(f)[cosv(f)-&-i sinp(§)] + Cz(g)e—itp(g)[cos p(&)+i sin 5;(5)]’

where C;(§) and C,(€) are arbitrary constants depending on the parameter &; to
determine these constants, we substitute the function % (€, t) into the initial conditions
(3). From the system

{ Ci(&) + Cr(¢) =0,
C1(€) — C2(&) = (i p(&)[cos p(&) +isinp©] ",

we find the values of these constants,

o 9© =i #©

L G = — .
200 9= 20

Ci(H =

As a result, the solution of problem (2), (3) is given by the formula

e~ p©)

EG)
_ e [e—tp«) Sin 9(©) i 1 pLE) cos (&) _ 1 p(€)sin p(E) y—i 1 p(E) cow(é)} _
2i p(§)
_ 1 [;tp(f) Sin () i (1 PLE) cOs PE—p(E)) _ it p(E)sin () =i (1 p(E) cos w(é)ﬂo(ﬁ))} _
2i p(§)

) [ei 1 p(©)lcos p(§)+isinp(§)] _ ,—i 1 p(§)lcos p(§)+i sin \p(f)]:|

1

- [eft G1(9) 4i (1 Go(O)=4(©) _ 41 G1(6) =it Gz(£)+w(£))} (6)
2i p(&) '
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where we use the notation

G1(§) = p©) sinp(§),  G2(§) := p(&) cos (). (7

Now we formally apply the inverse Fourier transform F{l to relation (6) and
obtain

WGt = — / ! [e—tGl(f)ei(sz(E)—¢(£)) _efGl(E)e—i(sz(f)ﬂc(&))]e—indg:
@m" n 2i p(©)

! / ! I:eflGl(f)ei(sz(E)*v(é)*xf)_elGl(ﬁ)e*f(lGz(E)+'¢(E)+X'E)]dé
20 ) 0

Since the functions a/(§), p(£), and G,(€) are even and the functions 3(§), (&),
and G(§) are odd in each of the variables £;, we transform the last expression as
follows:

| / L[e—tG]<§>ei(zcz(f)—w<£>—xf>,e'Gl@e"'(’G“W(O“'O]dg:
2i2mt ] p©)

o1 G1(O) it G2(O=p(O)—x-€) _ ;1 G1(§) ,~ilt Gz(ﬁ)+¢(5)+x-£)] de+
T2 (27T)” p(E)

f ft61<£> it G2(©)=p(E)=x-6) _ ;1 G1(§) =it G2(E)Fp(E)+x- E)]df _
p(f)

- ! / ! [’GI(O i GoO+pE)+x-6) _ =1 G1(6) =it Go (&) —p(©)— x&)]df_,_
2i2m" | ] p©
RY

/ L[e—fG1(§)ei(sz(§)—¢(§)—x-§)7etG](f)e—i(tGz(f)+¢(5)+x-5)]df -
P&
R
o
T 2iQ2m)n

/ ,)(1@ [2; e 91O 5in (1 G2 () + (&) +x - O+
R"

20 O 5in (1 Go(©) = () — v &) | dé =

= (2,1),1 f p(lg)[’G'(f) Sin (1 G2(8) + (&) +x - O+ ¢ T O5in (1 Go(©) — () — x - ©)] .
R"

+

We use the resulting representation to prove the following assertion.
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3 Existence of Smooth Solutions of the Equation (1)

Theorem 1 Under condition
a’l§]* + Y bjcos (h;&)) > 0, (8)
j=1
for all ¢ € R", the functions
F(x,1;8) := €' 9 ©sin (1 G2(&) + 9§ + x - ), ©)
H(x,1: ) := e T sin (1 G2(§) — (&) — x - §), (10)

where (&) is determined by formula (5) and G(§) and G,(§) are determined by
relations (7), satisfy Eq. (1) in the classical sense.

Proof First, let us substitute the function (9) directly into Eq. (1). To this end, we
find the derivatives

Fy(x,1;6) = ;e 91 cos (1 Go(€) + p(€) + x - §),
Fop,(x,t:6) = =€ OO sin (1 G2(§) + (&) +x - ©),
Fi(x, 1;€) = G1(§)e' D' Osin (1 Go(&) + p(©) +x- ) +
+G2(&)e' T cos (1 G2 () + (§) + x - ),
Fu(x,1:6) = [G1(©) = G3(©)] &' T sin (1 G2(§) + 9(€) +x- &) +
+2G1(£)G2(&)e' ©1© cos (t G (€) + (&) + x - &).

Now let us evaluate the expressions 2G ()G (&) and G%(f) — G%(ﬁ). Since
G1(&€) and G, (&) are defined in (7), we conclude that

2G1(€)G2(€) = p* (&) sin2¢(8).

It follows from formula (5) that [2¢(€)| < 7/2 and hence cos 2¢p(¢) > 0. Then
we have
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V1+1tg?20(8)

BE) BE) -2
=t (e e ) 1 (e s )| =

__ e |, PO e
PP+ | (@LP + al6)

__ B©® (@ +a©) 1"
@I+ ) [ (@[ + a(©)” + B2(E)

_ BE  1a*IEP +a@)l
a?l§1* + a(§) P

By virtue of condition (8), from the last relation we obtain

BE)  aEP+a@©  BE)

sm2<,0(§) = a2|£|2 +Oé(£) p2(£) o p2(§)7

and hence

2G1(9)G2(§) = B(O). (1)

With the inequality cos 2 (&) > 0 established above and under condition (8), now
we find

G1(©) — G3(6) = p*(©) [sin® p(&) — cos® p(&)] =
(3]

— —pP(E) cos 2p(§) = ———Pm = (12)
g 7 ST 250
2002 2 12
__20 (a®1€ + a2<§>> _ 2 — al).
(@€ + a(©)” + B2()

In view of the expressions (11) and (12), the function F;, becomes

Fu(x,1;6) = [—(@ € + a(©)) sin (1 G2 (§) + (&) +x - )+
+0() cos (t G2 () + (&) +x - )] ' T,

Now let us substitute the derivatives I?,t and fx,»x,» into Eq. (1),
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Fu(x,1;§) =@ ) Fo (x, 1;6) =

j=1
= [~ (@€ + () sin (t G2(€) + p(©) +x - &) +
+Bcos (1 Gr(&) + (&) +x - &) +

+a2 2512 sin (t Gz(é’) + @(6) +x- 6)]etG|(§) —
j=1

= —[a(§)sin (1 G2(§) + (&) +x - &) —

—B(€) cos (t G2(€) + p(€) +x - )] IO =

= — |:ij cos (h;&;)sin (t G2(§) + @(&) +x - &) —

Jj=1

- ij sin (h;€;) cos (t G2(&) + (&) +x - g):| et G166 —

J=1

= —ij sin (t G (&) + (&) +x-§—hj§j)etG‘(5) —

j=1

== ij sin (t GZ(&) + @(5) +X1£1 + - +xn§n - hjfj)etG](g) =
Jj=1

== bysin(t G2() + 9(€) + x1&1 + -+ x4+
j=1

(= hp)E + X+ Xl O =

== bjsin(t G2(&) + (&) +
j=1
+(x1, Xjo1, X =Ry, Xjn, s x) - e 1 =

Next, let us substitute the function (10) into Eq. (1). To this end, we find the
derivatives

Hy,(x, 15 6) = —=€;e7" 99 cos (1 Ga(€) — (&) — x - €),
Hy o (x, 15 6) = =&e7 9@ sin (1 G2 () — (&) — x - €),

H (x,t; &) = —G1()e " O ©sin (1 G2 (&) — p(&) — x - &) +
+G2(£)e™ 1 cos (1 Go(&) — (&) —x - 6),
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Hy(x,1:8) = [G1(&) — G3(©)] e @ sin (1 Go(§) — p(§) —x - &) —
—2G1(6)G2(£)e™ 1@ cos (t G2 (€) — p(€) —x - &) =

= [—@€P + a(©) sin (t G2(§) — (&) — x - §)—

—B(€) cos (t G2(€) — p(€) —x - &)]e 1T,

Now let us substitute the derivatives H;, and H,,,, into Eq. (1),

Hy(x,1;6) —a> ) Hy (x,156) =

j=1
= [~ (@€ + () sin (t G2(€) — p(&) —x - &) —
—B(€) cos (t Go(€) — p(€) —x - &) +

+a? Zgjz sin (1 G2(€) — (&) —x - §)]e ' 1O =

j=1
= —[a(§) sin (t G2(§) — p(&) —x - &) +
+B(€) cos (t G2(€) — p(&) —x - O)]e 91O =

j=1

=- {Z bjcos (h;&;)sin (t Go(§) — p(§) — x - )+

+ ij sin (h;€;) cos (t G2 (&) — (&) — x - 5):| e 161 —

Jj=1

= - ij sin(t G2(§) —p(§) —x - &+ hjfj)eftGl(f) —

j=l1

== b;sin(tG2(&) = p(©) —m& = = xby + hj€e” MO =
j=1

== bjsin(t Gy(&) = p(&) — xi& — - — xj 1€ —

j=1
—(xj —h)& —xjnbin — - —x e IO =
== bjsin(t G2(§) — (&) —

j=1

+(xy, ..., Xjo1,Xj = hj X,y xn) - eI =
—_ijH(xl ..... )Cj_l,x]'—hj,x]'+1 ..... Xp, I E)
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A straightforward substitution into Eq. (1) shows that the function H (x, t; §)
satisfies this equation in the classical sense.

Note that the functions (4) and (5) are well defined for any £ € R” under condition
(8), because the radicand in formula (4) is always positive, and the denominator in
the argument of the arctangent in (5) does not vanish. This means that the functions
(9) and (10) are smooth solutions of the Eq. (1).

The proof of the theorem is complete.

Corollary 1 Under condition (8), the family of functions

G(x,t; A, B,&) := Ae' T Osin (t G2(&) + (&) +x - &) +
+Be "I sin (t Go (&) — (&) —x - &), (13)

where p(€) is given by (5) and G (€) and G, () are given by (7), satisfies Eq. (1) in
the classical sense for any real values of the parameters A, B, and &.

We represent the condition (8) in the form
(@& + by cos (hi€) + ... + (a®& + by cos (h,&,)) > 0.

Each of the n terms on the left side of this inequality will be positive if the
conditions

O<bjh?§2a2, j=1,n.

For £ = 6> the condition (8) will be satisfied if the coefficients at the nonlocal
potentials satisfy the inequality
> b >o0.
j=1

Condition (8), holds for any shifts &y, ..., h, and any values &1, ..., &, if the
coefficients and the shifts of the equation satisfy the conditions

> b;>0, 0<bihi <2 j=Tn
j=1

These conditions are sufficient conditions that ensure the existence of a family of
smooth solutions (13) to Eq. (1).
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