WHAT ARE THE POINCARE GAUGE FIELDS?
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Gauge fields of Poincaré translations fail to be identified with gravitational fields
representing the Goldstone-type fields of spontaneously broken space-time sym-
metries.

1. INTRODUCTION

The Poincar¢ gauge was brought into play at the beginning of the 60th by Kibble,
Sciama et al. for generalizing Utiyama’s gauge version of gravity which had left
open the question about the gauge status of gravitational fields. The main difficulty
lay in the fact that gravitational fields were metric or tetrad fields, whereas gauge
potentials represented connections of fibre bundles.

The Poincaré gauge solution of this dilemma is based on the coincidence of the
tensor forms of tetrad fields h, and gauge fields Aj of the translation group, and
proclaims the identity of them. But is it in fact?

2. THE GAUGE IMAGE OF GRAVITATION THEORY

In the fibre bundle terms a metric gravitational field on an orientable space-time
manifold X* is defined as a global section g of the fibre bundle B of pseudo-Euclidean
bilinear forms in tangent spaces over X*. This bundle B is associated with the tangent
bundle T(X*) possessing the structure group GL*(4, R), and is isomorphic with the
fibre bundle W in quotient spaces GL'(4, R)/SO(3,1). The global section h of W,
which is isomorphic with g, describes gravitational field in the tetrad form. The
section /1 used to be written as a section of the principal GL(4, R)-bundle up to multi-
plication of h on the right by elements of the gauge Lorentz group.

The necessary and sufficient condition for gravitational field to exist on the manifold
X* is the contraction of the structure group GL'(4, R) of the tangent bundle to the
Lorentz group. It means the existence of some atlas ¥, = {U,, y,;} of T(X), whose
transition functions gluing the patches (U, y;) of trivialization of T(X) are elements
of the gauge Lorentz group SO(3, 1) (X). With respect to this atlas the metric gravi-
tational field g is represented by the constant Minkowski metric field #, but h takes
values in the centre of the quotient space GL*(4, R)/SO(3, 1). The field h can be
represented by the family of matrix (tetrad) fields {,(x). x € U,} acting in the typical
fibre R* of T(X) and describing the gauge transformation between a given atlas ¥
of T(X) and the atlas ¥,. Changes of ¥ lead to the following gauge transformations
of the tetrad fields h;:

(1) hi(x) - G(x) h(x), xeU,

610 Czech. J. Phys. B 33 [1983]



G. Sardanashrily: Wiat are the Poincaré gauge fields?

To build the gauge version of gravitation theory we may base our ideas on Einstcin’s
relativity and equivalence principles reformulated in the fibre bundle terms [1].

In these terms the relativity principle proves to be identic with the gauge principle
of the covariance under the gauge group GL(4, R)(X) of all transformations of
atlases of the tangent bundle T(X). This group contains the subgroup of holonomic
transformations, when the choice of atlas ¥ = {U,, y; = do;} of T(X) correlates
with the choice of coordinate atlas ¥, = (U,. ¢;} of the manifold X*, and this cor-
relation is strictly retained under changes of the bundle and coordinate atlases.

Thus the gravitation theory can be build directly within the framework of gauge
theory of external symmetries. As distinguished from the internal symmetry case,
such a theory containes two kinds of gauge transformations, namely, the familiar
atlas transformations of a matter field bundle, but also the atlas changes of the
tangent bundle. The atlases of these bundles are equivalent, but not always the same,
and their gauge transformations do not correlate in general and result in different
conservation laws. Utiyama had remarked this fact and had brought tetrad gravita-
tional fields into being just to secure the invariance under the tangent space gauge
transformations, while the invariance under gauge transformations of matter fields
was provided with inserting Lorentz gauge ficlds as in internal gauge models[2].

However the relativity principle fails to fix the Minkowski signature of metric
fields, and consequently the equivalence principle must supplement it. The equivalence
principle is formulated in the fibre bundle terms as the postulate of the existence of
a reference frame, where Lorentz invariants can be defined everywhere on a manifold
X*, and they would be conserved under parallel translations.

This postulate holds, if the connection on the tangent and associated bundles can
be reduced to the Lorentz gauge fields, that, in turn, entails the contraction of the
structure group GL+(4, R) of these bundles to the Lorentz group, and consequently
provides the existence of a gravitational field on X*. 1In this fashion the equivalence
principle establishes the situation of spontancous breaking gauge external symmetries
down to the Lorentz gauge group, and gravitational field figures as the sui generis
Goldstone ficld corresponding to this breakdown [1, 3—5]. Thus just the Goldstone
field treatment of gravitational field solves the dilemma of its gauge status.

Now we return to the title question of our paper.

3. THE NONCONVENTIONAL POINCARE GAUGES

The idea on the Poincaté gauge gravitation dominated in gauge gravitation re-
searches in the 60— 70th. Why?

In Special Relativity a space-time represents the affine Minkowski space, and the
Poincaré group being the motion group of this space represents the fundamental
dynamic group of Special Relativity, whose unitary representations arc identified
with the free particle states in Special Relativity. Of course, it motivated attempts
to complete gauging internal and intrinsic spin symmetries with gauging the Poincaré
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group. However these attempts faced the specificity of gauging this group as the
dynamic group.

This specificity lies in the fact that, in contrast with the internal and spin trans-
formations varying field functions at a point, generators of dynamic symmetries are
realized by differential operators

(2) T, = ¢loxt, LY =2

LAY 1Al
W / wy = 2NTC XY = 2 x7¢[Cx

which may be thought of, on the one hand, as operators of coordinate transformations
and. on the other hand, as operators of transitions {rom point to point. Both of these
interpretations are equivalent in a flat space, but differ from each other under gauging.

Authors of the first Poincaré gauge works (T. W. Kibble, D. Sciama and their
followers) adhered to the coordinate interpretation of the Poincaré generators (2) [6].
Thev combined the gauging of the Lorentz intrinsic spin transformations, con-
sidercd by Utiyama with coordinate translations x* — x* + a*. Localization of these
translations x —> x* + a"(x) reproduced the group of general coordinate transform-
ations, which induced. in turn, the holonomic subgroup of the gauge group GL(4.
R}(X). And as like as in Utiyma’s model just the requirement of invariance under
these holonomic transformations, which had nothing to do with gauge translations.
called into being gravitational field in the discussed model. Thus the gauge status of
gravitational fields in Kibbles et al. approach is far from the conventional gauge
potcntials.

The procedure of gauging the Poincaré transformations (2) interpreted as point-to-
point transitions was proposed by F. Hehl. P. von der Heyde et al. [ 7]. This procedure
does not reduce to localization of group paramcters only, but modificates also the
generators of the Poincar¢ group by replacing ordinary derivatives in (2) with the
covariantones: ¢, —» D, = ¢, — A,. where A is a certain Lorentz connection. Hence
the tocalization of a Poincaré transformation p = exp (13, + I"(LyY + LI)) takes

ny v

the nonconventional forim

(3 p(x) = exp ("(x) D, + [“(x) (L + L))

™ results from L™ by the replacement ¢, — D,

where L

The replacement ¢, — D, seems quite natural as generalization of translations in
a flat space, but it violates the familar commutation relations of the Poincaré group,
e.g., translation generators become noncommutative: [D,. D\‘] £ 0. Obviously,
transformations (3) fail to compose the conventional gauge Poincaré group P(X).

At the same time the invariance of a matter ficld Lagrangian under transformations
(3) reduces on extremal fields to the familiar invariance under gauge Lorentz spin
transformations and holonomic gauge GL(4. R)-transformations, which are the same
that we have faced in Utiyama’s and Kibble's models.

Thus we see that both discussed Poincaré gauge versions being outside the con-
ventional gauge scheme fail to provide gravitational field with the status of the gauge
potential of the Poincaré translations. in spite of the initial declaration.
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Indeed, let us suppose that the tetrad gravitational field /i and the translation
connection h' being realized by the matrix fields h; and h7, respectively, in R* with
respect to some atlas ¥ are identified. Let ¥ be ¥,. Then h; being defined up to right
Lorentz transformations can be represented by the unit matrix function h; = Id R*
on all patches U,;. Then the translation connection h’ identified with i must reduce to
the soldering form 0 on X*, where 0 can be defined as the identic mapping of T(X)
on itself. But then, in virtue of the gauge transformation law of /i, such a connection
has to be identified with 0 with respect to any atlas ¥ of T(X), and thereby it fails
to coincide with /i  Id R* in atlases ¥ 4 ¥,

Remark that some authors [8] proposed to identify h with (kT + 0), it does not
change the main conclusion about the impossiblity to identify gravitational fields
with gauge potentials of Poincaré translations.

This result returns us to the problem of physical treatment of Poincaré translations
acting inside fibres of a bundle and their gauge fields.

In the discussed case of the affine frame bundle the Poincaré translations are
translations of tangent vectors. Some authors [9] considered the realization of such
translations on functions f(x, r,) depending not only on a space-time point x, but
also on a tangent vector v, e.g. such functions possess sui generis “internal affine
symmetry”. For instance, the relevance of such functions for describing hadrons was
discussed.

Alternatively to applying tangent vectors as arguments of field functions, another
approach [12] uses them as values of field functions. Such functions are considered
to take values in the space V x T of some nonlinear realization of the Poincaré group,
where V' is a space of representation of the Lorentz group, but T = P/SO(3,1)
represents the typical fibre of AT(X). Herewith the translation subgroup T of P acts
only on Goldstone fields taking values in T. These fields can be removed by a certain
translation gauge, but the translation connection h” retains as some tensor field
on X*. However the physical relevance of h” remains open to questions. Indeed,
only if the translation connection form h” reduces to the soldering form 0, the co-
variant derivative D0 represents the familiar geometric object, namely, the torsion
form.

This fact motivates some authors to restrict their attention only to affine connection
expressed by the soldering form 0 [10]. But, in spite of some opinions, the soldering
form itself is unable to define any torsion or gravitational fields. A linear connection
having been established, the parallel transference of 0 carried out by torsion com-
ponents of this connection picks out the torsion part from the whole connection.
Coefficients h%(x) of the soldering form 0 = h°,, h® = hi dx", written with respect
to a certain atlas ¥ also make sense of tetrad cocfficients only if a gravitational field
has been defined, and if ¥ is the atlas ¥, with regard to this field.

Thus we observe that the gauging of the Poincaré group as the dynamic group
leads to nonconventional gauge models, while the standard Poincaré gauge leaves
the question about the physical relevance of translation gauge fields open. And no
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4. THE CONVENTIONAL POINCARE GAUGE

The conventional gauge technique can be applied for gauging the Poincaré group
if one does not for a time consider its physical role as the dynamic group, and looks
at it as at an abstract holonomy and structure group of some fibre bundle [8—12].

Because of our goal to match gravitational and translation gauge fields, we restrict
ourselves in consideration of the affine tangent bundle AT(X) or the associated
principal bundle A(X) in affine frames. These bundles are associated with the tangent
bundle T(X) and with the linear frame bundle L(X), and consequently the structure
affine group GA(4, R) of TA(X) and A(X) contracts to the linear group GL(4. R).

An affine connection I-form 4 on the bundle 4(X) splits in two components
A = A" + A", where A" is a lincar connection, but A" = A%T, dx* is some R*-valid
translation connection form, whose coefficients A}, represent translation gauge fields.
Owingtothecontraction of the structure group of A(X)to GL(4, R) the global section S
of the associated bundle in quotient spaces GA(4, R)/GL(4, R) exists. Then one can
expand the translation form A7 in two parts A¥ = 4% + ", where 4% is evaluated
from the condition (D — A%) S = 0, D = d — A", and it reads: (4% = (DS)".

It is clear that just the component A° is responsible for the inhomogeneous trans-
formation law of the whole connection A" under gauge translations, whereas /i’ is
invariant under translations and is a tensor under gauge linear transformations.

Moreover, theie is always a certain translation gauge, where the part A% of the
translation connection A" gocs to zero, and A" reduces to the homogeneous part /7.
For instance, the reduction A" = h” occurs in all atlases with only linear transition
functions, if one cliooses S coinciding with the zero global function in these atlases.

Let us fix this translation gauge. Then one can make use of the known theorems
establishing the one-to-one correspondence between general affine connections A
on A(X) and pairs (A%, i) of linear connections A~ on L(X) and R*-valued forms /1"
on X*. This correspondence reads

AR BT RY Dh"
0 =) )

where the general affine connection A4 and its curvature F are expressed by (5 » 3)-
. . r
matrices acting on columns (J, re R* but RF denotes the curvature form of the

linear connection AL

The translation connection form /" determines linear transformations h’(x) : T,—
— T, of tangent spaces T, at every point x € X. With respect to some atlas of T(X)
it is represented by a family of matrix fields hi = ,h"); " acting in R* just as the
tetrad gravitational field does. But the gauge transformation law of the connection
form i :h{ - Gh{G™", differs from the transformation law (1) of the tetrad
gravitational field /. And just this difference destroys the hypothetic identity of
hT and .
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Poincaré gauge version justifies the identity of gravitational fields and translation
gauge potentials. Moreover, one has the mpression that the gauging of dynamic
groups makes no sense in general.
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