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Abstract: Sea transport holds the first place in the total number of freight shipments of
international transportation. Rail transport takes more than 87% of domestic freight traffic and
is increasing annually. In particular, Russian Railways deals with scheduling in international
multimodal transport. Sea port-railway transshipment points have a key role in the realization
of such transportation. This paper considers the complex problem of unloading the arriving
vessels and the formation of trains with the objective function of minimizing the total weighted
delivery time of cargo to the destination point and minimizing the cost of forming trains. Two
models (binary and integer) were developed and compared. The comparison was provided on
pseudo real data which corresponds to Far-East Railway with numbers of vessels and berths
comparable with presented in literature. The models were run using Gurobi optimizer.
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1. INTRODUCTION

Supply chains disruptions caused by the pandemic force lo-
gistic companies to look for the expenses cut options. One
of these is to develop new efficient scheduling algorithms
and methods for logistics automation.

Multimodal transportation is one engaging two or more
different types of transport, such as water, road or air
transport. A harbors terminal considered in this paper
consists of seaside represented by a set of berths with
loaders and a landside with rails. Such harbors play an
essential role in international multimodal transportation
since vast amount of international cargo are marine while
domestic ones are railway. Especially in counties with
huge area covered by railroads like Russian Federation,
Australia or Canada.

In general, the problem formulation can be given as fol-
lows. A port and its berths are known. We are given a
planning horizon, during which we have to define a berth
for unloading for all incoming vessels. Each berth can un-
load only certain types of cargo. A port consists of several
operational facilities: berths (seaside), where vessels are
unloaded (or loaded); a cargo terminal (yard), which is a
buffer area for cargo waiting for further transportation; a
loading terminal (landside), where cargo is loaded on land
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transport and sent to destinations. After unloading the
vessels, all cargo has to be assigned to trains for delivery
to the destinations.

Planning for harbor seaside is known as Berth allocation
problem (BAP) or Berth scheduling problem and shown
to be NP-hard by Lim (1998). The BAP objective is to
schedule every vessel on a certain berth in order to mini-
mize tardiness, expenses or waiting time. BAPs are usually
solved with optimization packages or some heuristic or
metaheuristic algorithms. Planning for harbor landside is a
Train Formation Problem (TFP). The TFP objective is to
obtain railcars assignation and trains’ departure schedule
in order to minimize tardiness, expenses or waiting time.

Al-Refaie and Abedalqader (2021) present two approaches
to constructing a model for the berth allocation problem.
The first approach is for normal operation of the berth,
and the second one is for the emergency situation for
handling as many vessels as possible in the shortest time.
Experiments were carried out at real data examples with
six vessels and a single wharf for the first model and for 13
vessels for the second one. The LINGO 11.0 optimizer was
used to solve the problem, which took 48 hours to solve
the first example.

Correcher et al. (2019b) deal with ports with complex
layouts that impose certain constraints on the arrival and
departure of vessels. A mixed integer linear programming
model and a heuristic algorithm are proposed. A heuristic
algorithm is presented with an exact solution obtained
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using the CPLEX MILP optimizer for randomly generated
examples from 10 to 100 vessels.

Correcher et al. (2019a) consider the complex problem
of the distribution of dynamic berths (DBAP) in which
vessels can dock anywhere on the berth without requiring
a berth discretization and the problem of assigning quay
cranes (QCAP). For a continuous problem with constant
crane assignment, a mixed integer linear model is pro-
posed. The model is extended by adding several fami-
lies of admissible inequalities. The authors also propose
an iterative branch-and-cut algorithm. Experiment results
show that problems with up to 40 vessels can be optimally
solved.

A variant of the DBAP and QCAP problem in which each
berth can serve multiple vessels at the same time if their
total length is equal to or less than the length of the berth
is discussed by El Hammouti et al. (2019). A Modified
Sailfish Optimizer (MSFO) metaheuristic based on the
hunting behavior of a sailfish has been developed. Com-
putational experiments on examples with 60 vessels and
13 berths show results comparable to other metaheuristic
algorithms.

Cervellera et al. (2021) investigate application of complex
Markov decision problems to the classical BAPs. The prob-
lem is considered as assigning berths to vessels according
to a parameterized policy function that drives the tem-
poral evolution of the environment, instead of the usual
MILP formulation. Experiments show that this approach
can be useful in some special cases of the problem.

A similar problem of train-to-train transshipment is con-
sidered by Cichenski et al. (2017), but the problem con-
sidered in our paper is different because of different types
of transportation.

As for train formation problem (TFP), it is studied widely
as a separate problem of railway companies.

Lan et al. (2019) optimize three subproblems of car flow
routing, TFP, and train routing minimizing the total
transportation cost, accumulation cost, and classification
cost. A model for GUROBI solver is constructed for the
small- and medium-size cases of the problem. For large
instances, authors suggest a two-stage Benders-and-Price
approach with an arc-based model with some variables
fixed as the corresponding values fetched from the first
phase.

Lin and Zhao (2019) study a train formation problem
regard to recurring patterns in rail loading stations. A non-
linear 0-1 programming model for LINGO optimization
package is constructed.

A combined algorithm based on a goal programming
approach and an L-p norm method along with a Simulated
Annealing algorithm are suggested by Alikhani-Kooshkak
et al. (2019). Authors solve such problems as customers
satisfaction level, optimizing yard activity and the problem
of minimizing underutilized trains tonnage.

To obtain high-quality solution of the train formation
problem in the seaport, it is necessary to take into account
the features of the port. However, there are few publica-
tions that jointly consider the BAP and TFP, and since
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BAP is NP-hard then the joint problem is also NP-hard.
For example, this joint problem is considered by Yan et al.
(2020b). Operators are assumed to have low computing
resources and tight time limits. The problem is formu-
lated as an integer programming model. A tailored rolling
horizon approach with the adaptive horizon and back-
tracking strategy is proposed. Computation experiment
is conducted using a GUROBI solver. Authors conclude
that the performance of quay cranes is the most significant
factor in this problem. In next paper, Yan et al. (2020a)
the schedule plan of trains and the transshipment plan are
determined simultaneously. A mixed integer programming
(MIP) for the combined problem is proposed. Relaxation
of some variables and adding some additional constraints
makes the model more effective. Extended experiments
still show that quay cranes are still the most important
factor, and that increasing the storage cost of import
containers leads to a more effective transshipment plan.

There are many companies, i.e. Russian Railways, which
provide comprehensive logistics services. The income of
these companies depends both on seaside and landside
planning. Since combination of optimal solutions of BAP
and TFP obtained independently won’t guaranteed to be
an optimal solution of combined BAP-TFP problem, we
propose models for combined BAP-TFP problem. The
objective of BAP-TFP problem is to unload marine cargo
to trains and deliver to its destinations.

In this paper, we compare two models made by us for BAP-
TFP problem: binary and integer. The purpose of integer
model was to increase scheduling interval. The number of
decision variables in the binary model depends on time
period discretization, which is time interval over sampling
rate. Since the corresponding decision variable in integer
model was depending on vessels number, we expected
significant increase in productivity i.e. computational time
reducing.

The rest of paper is organized as follows. Section 2 de-
scribes the problem itself. Section 3 introduces binary
and integer models. Section 4 gives a comparison between
binary and integer models. Finally, section 5 presents our
conclusions.

2. THE PROBLEM

The problem’s objective is to deliver cargoes from harbors
to the destination as soon and as cheap as possible. Car-
goes arrive in harbor on vessels, which must be assigned for
unloading at a specified berth at a certain time, then cargo
trains must be formed which are railed to their destination.
Each berth is equipped with a set of loaders, the type and
number of which affect the unloading speed and the variety
of cargo types that can be unloaded at that berth. Each
cargo is of a specific type: coal, non-ferrous metals, etc.

The first part of the problem can be characterized as a
dynamic BAP problem with discrete berth assignment
(only one vessel may stay at a berth at any given time)
and deterministic arrival and unloading times of vessels.

The second part, which is the problem of train formation,
can be characterized as a cargo clustering problem based
on such attributes as destination, cargo type, volume,
arrival time, and weight coefficient.
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Fig. 1. Structure of a harbor.

The arrival times of vessels in the port during the planning
period are pre-determined. Formed trains move directly to
one of the destinations. All destinations are the nearest
marshalling yards to the port.

For each cargo, a weight coefficient is assigned and there is
a fixed cost for the formation of the trains. The objective
function is to minimize the total weighted cost of delivering
all cargoes to their destinations.

In Fig. 1 the scheme of a harbor is presented. At first, it
is necessary to unload a vessel (BAP). After all goods are
unloaded, it is possible to place them at trains (TFP) with
further delivery by railway.

3. MODELS

Let’s introduce the notation of the sets used in the prob-
lem:

B — set of all vessels coming to the port;

M - set of all berths;

J — set of all goods;

K — set of all product types;

D — set of all destinations;

L — set of all trains;

T ={t € N|t < T/AT} — set of time moments
within the planning horizon.

We list the characteristics of their designation for vessels,
cargo and berths necessary to draw up constrains.

For each train, we have:

e Dy € D — destination;

e ¢ € N — maximum number of railcars;

e A € N — minimum time interval between train
departures;

e a € N — train formation cost.

For each product J € J at vessel B € B the following
characteristics are known:

JB C J —set of all goods at the vessel B;
K; — type of the good;

rp — release time of the vessel B;

my < ¢ — amount of the product in railcars;
wy — weight of the good;

Dj € D — destination;
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e d; — time of cargo transportation from the port to
the destination.

For each berth M € M the following characteristics are
known:

e KM C K - set of types of cargo that the berth is
capable of unloading M;

e r3; — release time;

e v)s — the amount of cargo unloaded at the berth per

time unit;
e pp r —handling time of the vessel B € B at the berth
M e M,
2L Ky e KM,
peM = geas M (1)

+o00, K;¢KM.

3.1 Decision variables

All parameters were denoted. Then two lists of decision
variables are presented. For the binary model, the follow-
ing decision variables were introduced:

e z(B, M,t) — main binary decision variable,
x(B, M,t) = 1, iff the vessel B € B started unloading
at the berth M € M at the time ¢t € T

e y(J, L) — binary decision variable, y(J, L) = 1, iff the
product J € J is assigned to the train L € L;

e (1, € N — completion time of the train L € L.

In the integer model, another decision variables were
created:

e {(B,M,n) — main integer decision variable,
t(B, M, t) =T, iff the vessel B € B started unloading
at the berth M € M under number n € N at the time
T,N={zeN|z <N}, where

U

N = max < dim
MeM
KeKM

BK} < dim B,

where BX — set of vessels with at least one cargo of
the type K;

e 0(B, M,n) — binary decision variable, 6(B, M,n) =1
iff the vessel B € B is unloaded at the berth B in
schedule M € M under number n € N;

e y(J, L) — binary decision variable, y(J, L) = 1, iff the
product J € J is assigned to the train L € L;

e (1, € N - completion time of the train L € L.

In the binary and in the integer models, the main de-
cision variables characterize the same thing (start time
of handling) but in different way. In the integer model
additional variables §(B, M,n) = 1 are added in order to
set simpler constraints. Both y(J, L) and C}, are the same
in the models.

The objective function is the same for both models and
can be written as follows:
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F=Y w;- (Z CL'y(JvL)‘f'dJ) +

JeJ LeL

delivering time cost

a- Z min{l,z:y(J,L)}7 (2)

LeL JeJ

train formation cost

where w; — cargo weight coeflicient, C', — train release
time, y(J, L) — indicator if the cargo was assigned on the
train, dj — delivery time, a — train formation cost.

3.2 Time moments

In the integer model, the main variable defines the han-
dling start time of the vessel by itself. In the binary model,
handling start time of the vessel B € B can by defined by
the following way:

thar(@) = Y > t-a(B,M,1). 3)

MeMteT

Similarly, it is possible to set handling end time of the
vessel B € B at the binary model:

tina(®) = thape@) + D D e -a(B, M1, (4)
MEM teT

At the same time, it is possible to define release time of a
product J € J at the vessel B € B. All products are ready
when the certain vessel is unloaded:

ry(z) =t8 ,(x), JeJP. (5)

end

3.8 BAP constraints

Several specific constraints appear in response to the
joint problem of railway and sea port optimization. The
differences between integer and binary model exist only in
sea port constraints, which are presented at first.

Obviously, unloading of each vessel can be carried out
only once at one berth. In binary model this means that
only one decision variable z(B, M, t) (indicator of handling
start time) equals to one for each vessel:

> Y w(B,Mt)=1,YBeB, VBeB.  (6)
MeMteT

In the integer model, this constraint can be written sim-
ilarly. Instead of z(B, M,t) we use §(B, M,n) (index of
unloading for each vessel):

> > 4B.Mn)=1, VBEB. (7)

MeM neN

That is impossible to unload a vessel before its arrival or
beyond a berth availability interval. In the binary model,
it is possible to set all variables x(B, M, t) equal zero for
all forbidden time moments:

VteT:
t <max(rg,ry) — x(B,M,t) =0,
VBeB, VM eM. (8)
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In the integer model, there are decision variables t(B, M, n)
which are linked with a time moments directly. This means
we have to set the following constraint for them:

t(B,M,n) > max(rg,rm),
VB e B,YM € M,Vn e N. (9)

Because of the Far East region ports structure at any
time moment at each berth, no more than one vessel
is unloaded. In the binary model, tricky constraint was
introduced. For each berth if any vessel is under unloading
then during processing time of certain vessel no other
vessel can be unloaded. For this issue, additional variable
0 = max{0,t — py} was introduced. Then we can sum up
the following expression for each time moments ¢ € T:

DS

BeB f=max{0,t—pp }

x(B7 M7 0) S 1’

VM eM, VteT. (10)
If (B, M,0) is equal to one, then at time period [0; ]
only one vessel is handled. In the integer model three
constraints have been set for this issue:

(t(Bj,M,n) +pB;M - §(Bj,M,n)) -0(Bi, M,n+ 1),
VM € M,VB;,B; € B, Yn e N\ {|N[}, (11)

> 6(B,M,n) <1, VM eM, VneN,  (12)
BeB
§(B,M,n+1)< > §(B,M,n),
BeB\{B}
VBeEB, VM eM, 2<n<|N|. (13)

The first of them define that handling start time of a
vessel which undergo unloading by the (n + 1)-th at
the berth B is greater than a handling end time of a
vessel which is processed at the same berth by n-th. The
next condition prohibits for each berth the possibility
of unloading two vessels under the number n. The last
constraint declares that after unloading the n-th vessel,
the (n + 1)-th vessel should be unloaded (omissions in
numbering are prohibited).

Each berth can unload only an allowed product type set.
This constraint is the same for the both models. If it
is unfeasible to unload a certain vessel at a berth, then
x(B, M,t) =0 in the binary model:

K; ¢ KM — 2(B,M,t) =0,

VM eM, VBeB, VJeJP vteT. (14)
The same condition was set for the integer model:
K; ¢ KM - 6(B,M,n) =0,
VM €M, VBe€B,VJ€J? vneN. (15)

3.4 TFP constraints

Constraints related to the assignment of cargo to trains are
the same for both models. Each product unloaded from a
vessel can be assigned to only one train:

> y(JL)=1, VJ €.
LeL

(16)
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The number of railcars in each train does not exceed the
specified number, then if a product is assigned to a train
the remaining train capacity decreases by the volume of
this product. Total volume of all goods assigned to a train
cannot exceed a defined value:

S y(4,L)-my <e¢ VLEL
JeJ

(17)

We introduced virtual trains. The maximum number of
trains required to deliver all cargo is equal to the number of
all cargo arriving at all vessels during the planning period.
Then the capacities of the sets of trains L and goods J
coincide, i.e. |L| = |J|. We will assign a destination to
each train as follows: D,y = D(z,), where i = 1,...,[J|.
Initially, we will consider all trains “virtual”. A destination
is set for each virtual train, but no cargo is assigned that
can be sent as part of it. If one or more products are
assigned to a train in the final schedule, then the train
ceases to be virtual. If no cargo is assigned to a certain
train, then it remains virtual and is not included in the
final schedule. In this case, the train can contain only
goods that must be delivered to the destination to which
the train is heading. The cost of forming a virtual train,
unlike a real one, is not taken into account in the objective
function, so the solution will contain a minimum number
of real trains. The introduction of virtual trains makes it
guaranteed to get a valid solution. For each product, the
destination coincides with the destination of the train on
which this product was assigned:

D;#Dp—y(J,L)=0,VJeJ, VL € L. (18)
The train departs not earlier than the goods specified on
it are available. In this case, a train release time must be
greater than the release time of all products assigned to
it:

Cr > r}la.%({rJ(a:) -y(J, L)}, VL € L. (19)

€

At least a specified interval A must pass between the
departures of any two trains. Then if two trains are not
virtual, the min{1,> ;5 y(J, L1), > ;c5 y(J, L2)} will be
equal to one. In opposite case (at least one train is virtual)
this expression equals to zero and there is no necessity in
such a constraint:

CL, = Cp,| > A-min{1,> " y(J, L1), > y(J, L)},
JeJ JeJ
VL1, Ly € L. (20)
4. COMPARISON

There are advantages as well as disadvantages in both
models. The main difference is the number of main decision
variables. Two of three parameters of decision variables
z(B, M,t) and t(B, M,n) are the same, but the last one
differs. In the binary model, the third parameter of the
variable is a time moment, while in the integer model it is
an index in loader planning. It is important to note that
number of indexes N is less or equals to the number of all
vessels B and significantly less than total time moments
number T. In the diagram below, there is a scheme of
decision variables arrays.
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Dimensions of z(B, M,t): Dimensions of t(B, M,n):

dim M dim M

dim B dim B

dim T dimN < dimB

The planning period was chosen as one week. That is
the most popular period presented in scientific literature.
The time unit is 20 min (discretization), so dim T = 504
(planning horizon — 1 week, time unit — 20 min) and
dim B =~ 10.

Thus, changing a binary model to an integer one can sig-
nificantly reduce the number of decision variables and con-
straints. At the same time, possible values of variables are
greater in the integer models. In addition, the constraint
(10) in the binary model was replaced by constraints (11)-
(13) in the integer model. It is quite difficult to decide what
is better. In the binary model this constraint is only but
rather difficult for optimizer. The opposite issue is in the
integer model: instead of one, there are three constraints,
but all of them are easier.

5. RESULTS

Researchers use different solution methods for different
sizes of input data and different problem statements. Both
short planning horizons lasting from 6 hours and long ones
— up to several months and years are considered. Since the
problem is NP-hard, it is impossible to get an optimal
solution of large-sized examples using an optimizer. In
this paper, a planning horizon of 1 week was chosen,
since at such an interval release times of vessels become
known, and there is also enough time to obtain a solution
using the optimizer. We considered the Far Eastern region,
where 4 ports are located: Vladivostok, Vanino, Nakhodka,
Vostochny, in which there are 15, 13, 5 and 4 berths,
respectively. The number of incoming vessels depends on
the port, but varies from 3 to 12. Vessels can contain
several types of cargo at the same time: ferrous and non-
ferrous metals, coal, timber, alumina and containers. At
the same time, containers are equivalent to one railway
car, and other types of cargo are measured in tons. To
unify the volume of all types of cargo, everything was
converted into a Twenty—foot Equivalent Unit (TEU) -
a conventional unit of measurement for the capacity of
cargo vehicles. Thus, one container, TEU and a standard
railcar are equivalent and correspond to the same volume
of cargo. There are from 1000 to 5000 TEU on each vessel.
For small ports with a low unloading rate, vessels from 150
TEU are possible. The total volume of cargo arriving at
the port per week was calculated based on the reporting
data for 2020. The rate of unloading of vessels at berths
varies for each type of cargo and for each berth and lies
in the interval from 15 to 50 TEU per unit of time (20-
minute interval). Seven nearest marshalling yards have
been selected as destinations, the travel time to which from
each port is determined using Dijkstra’s algorithm. The
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Berth x Binary Integer
Vessel model model

Time, | Gap, | Decision | Time, | Gap, | Decision

sec. % variables sec. % variables

4x3 4 0 7104 0.8 0 1092
4x4 4 0 8616 0.13 0 616
4x5 2 0 10460 0.14 0 480
5x3 1367 0 12672 3600 10.8 5157
5x5 3600 7 15356 3600 9.3 2881
5x7 21 0 21546 46 0 4151
13x6 3600 2.8 54812 3600 2.8 15968
13x8 3600 8.7 69708 3600 2.6 18124
13 x 10 | 3600 9.2 82080 3600 4.5 22180
15x 8 3600 1 83432 3600 1 23912
15 x 10 | 3600 4.8 107106 3600 0.9 30912
15 x 12 | 3600 8.5 116802 3600 3.4 28242

technical speed of movement of freight trains is assumed
to be 44 km/h. The length of each train cannot exceed
80 rail cars. If cargo arrives in a volume exceeding 80
TEU (80 railway cars), such cargo is divided into several
with the same destination, but the volume of which does
not exceed 80 TEU (for example, 123 TEU = 80 TEU
+ 43 TEU). This allows us to reduce the number of
goods under consideration. Instead of considering each
TEU separately, batches of TEUs with the same data are
considered at once, which reduces the number of decision
variables used. An interval of 20 minutes was selected
per unit of time in the model. This is due to the fact
that it allows you to significantly reduce the set of all
possible time moments, and also correlates well with the
time discretization adopted by rail and sea freight. Thus,
a planning horizon of 1 week is equivalent to 504 intervals
of 20 minutes. A weight coefficient is set for each cargo,
taking a value from 1 to 10, while they differ for each type
of cargo. For example, for coal it lies in the range from 1 to
3, and for containers from 7 to 10. The cost of forming one
train (including assigning a locomotive to it) is assumed
to be 200, which is on average equivalent to forming a new
train of 40 railcars. The model is implemented in C++
and solved using the Gurobi 9.1.2 optimizer on an Intel
Core 19-10980HK processor, 32 Gb RAM. The choice of
the Gurobi solver is justified by the fact that it is well
acclaimed in solving BAP problems having a scale similar
to ours. Although Gurobi works slower on average on
large input data compared to heuristic algorithms, it gets
a solution that is closer to optimal. Priority is given to
the quality of the solution, not the speed of calculations,
because the solution time is much less than the planning
horizon. At the same time, the duration of possible delays
arising in the schedule as a result of inaccuracy of the
solution significantly exceeds the solution time. Input data
sets of various dimensions were generated, the maximum of
which included 15 berths and 12 vessels. To find a solution,
the optimizer’s working time was limited to one hour. The
results of the experiments and comparison are presented
in Table 1.
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