technology with wavelengths from millimeters to centimeters, as well as in optical technology with wavelengths from hundreds of nanometers to several micrometers. A numerical analysis of the bending of a loaded waveguide is given.

Keywords: electromagnetic waves, modeling, Galerkin method

Быков А.А. Моделирование распространения электромагнитных волн в нерегулярном нагруженном волноводе // Труды Российского научно-технического общества радиотехники, электроники и связи имени А.С. Попова: Материалы 15-й Международной научно-технической конференции "Акустооптические и радиолокационные методы измерений и обработки информации", ARMIMP-2022. ACTPAXAHb, 03-07.10.2022. ISBN 978-5-905278-52-5. DOI: 10.25210/armimp-2022-17. EDN: VYNPVY

СОВРЕМЕННЫЕ И КЛАССИЧЕСКИЕ МЕТОДЫ РАСЧЕТА СОБСТВЕННЫХ ВОЛН ОПТИЧЕСКИХ СВЕТОВОДОВ И ВОЛНОВОДОВ С ИМПЕДАНСНОЙ ГРАНИЦЕЙ

А.А. Быков

МГУ имени М.В.Ломоносова, физический факультет, кафедра математики abykovmsu@gmail.com

Дан обзор основных классических (ВКБ, прогонка, характеристическое уравнение, Галеркина) и современных (неполный метод Галеркина, метод гомотопии) для расчета собственных волн цилиндрического волновода и волновода с импедансной границей. Проведено сравнение методов по критерию общности, точности, скорости сходимости.

Ключевые слова: собственные волны, моделирование, импеданснаяы граница

DOI: 10.25210/armimp-2022-18

EDN: HKISAF

1. Собственные моды аксиально симметричного оптического световода

Сформулируем метод ВКБ расчета собственных функций краевой задачи для обобщенного уравнения Гельмгольца. Пусть декартовы координаты (ξ, η, ζ) , $r^2 = \xi^2 + \eta^2$, $\xi = r \cos \varphi$, $\eta = r \sin \varphi$. Пусть плотность среды задана функцией $\rho = \rho(r)$. Найдем все (или некоторые) значения параметра γ , при которых уравнение

$$\Delta_{\xi\eta}u+\frac{\partial^2 u}{\partial\zeta^2}+\lambda^2\rho^2u=0,$$

или, что то же самое, $\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial u}{\partial r}) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \varphi^2} + \frac{\partial^2 u}{\partial \zeta^2} + \lambda^2 \rho^2 u = 0$, имеет нетривиальное решение вида $u(\xi,\eta,\zeta) = y(r)e^{i\nu\varphi}e^{i\gamma\lambda\zeta}$. Далее используем обозначение x вместо r. Из обобщенного уравнения Бесселя $\frac{1}{x}\frac{d}{dx}(x\frac{dy}{dx}) - \frac{\nu^2}{x^2}y + \lambda^2(\rho^2 - \gamma^2)y = 0$ получим $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + (-\frac{\nu^2}{x^2} + \lambda^2(\rho^2 - \gamma^2))y = 0.$

Предполагаем, что $\gamma \in (\rho_{\min}, \rho_{\max})$. Приведем обобщенное уравнения Бесселя к каноническому виду:

$$\frac{d^2y}{dx^2} + \tilde{p}(x)\frac{dy}{dx} + \tilde{q}(x)y = 0.$$
 Выполним замену $y = \exp\left(-\frac{1}{2}\int_{x_0}^x \tilde{p}(t)dt\right) \cdot z,$

67

Материалы 15-й Международной научно-технической конференции «Акустооптические и радиолокационные методы измерений и обработки информации». Том. XV. Астрахань, 3-7 октября 2022. ISBN 978-5-905278-52-5. DOI: 10.25210/armimp-2022. EDN: TPXNXO

где
$$\frac{d^2z}{dx^2} + \left(\tilde{q} - \frac{\tilde{p}^2}{4} - \frac{1}{2}\tilde{p}'_x\right)z = 0, \quad \tilde{p}(x) = \frac{1}{x}, \quad \tilde{q}(x) = -\frac{n^2}{x^2} + \lambda^2(\rho^2 - \gamma^2), \text{ и тогда } y(x) = \frac{z(x)}{\sqrt{x}},$$

 $\frac{d^2z}{dx^2} + \left(-\frac{\nu^2 - 1/4}{x^2} + \lambda^2(\rho^2 - \gamma^2)\right)z = 0.$

2. Случай большого азимутального числа

Рассмотрим уравнение собственных волн аксиально симметричного оптического световода при $\nu^2 - \frac{1}{4} = \lambda^2 \beta_n^2$, и тогда $d^2 z = \begin{pmatrix} \beta^2 \\ \beta_n^2 \end{pmatrix}$

$$\frac{d^2z}{dx^2} + \lambda^2 \left(-\frac{\beta^2}{x^2} + (\rho^2 - \gamma^2) \right) z = 0.$$

Используем метод ВКБ. Точки поворота найдем из уравнения $\rho^2 - \gamma^2 = \frac{\beta^2}{x^2}$, равносильного

$$\frac{\lambda_m}{\pi} \left(\int_{x_1}^{x_2} \sqrt{\rho^2(x) - \gamma^2 - \frac{\nu^2 - 1/4}{\lambda_m^2 x^2}} \, dx + \frac{\pi}{2} \right) = m.$$

Пусть $\rho(x) = \sqrt{\frac{a - x^2}{b + x^2} + c}$. Тогда дисперсионное уравнение $\frac{a - x^2}{b + x^2} + c - \gamma^2 - \frac{n^2 - 1/4}{\lambda^2 x^2} = 0$ примет вид

$$s^{2}\lambda^{2}[1-c+\gamma^{2}]+s[-\lambda^{2}(a+bc-\gamma^{2}b)+(\nu^{2}-\frac{1}{4})]+(\nu^{2}-\frac{1}{4})b=0.$$
 Пусть $A=\lambda^{2}[1-c+\gamma^{2}],$

 $B = \lambda^2 (a + bc - \gamma^2 b) - (\nu^2 - \frac{1}{4}), \quad C = (\nu^2 - \frac{1}{4})b,$ тогда точки поворота найдем в явном виде:

 $x_{1;2}^2 = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$. Поставим граничные условия излучения в центральной области. В центральном однородном цилиндрическом объеме

$$\frac{d^2z}{dx^2} + \lambda^2 \left[(\rho^2 - \gamma^2) - \frac{\nu^2 - 1/4}{\lambda^2 x^2} \right] z = 0.$$

Точку поворота найдем из равенства $q(x)\Big|_{x_a} = \left[(\rho^2 - \gamma^2) - \frac{\nu^2 - 1/4}{\lambda^2 x^2} \right]_{x=x_a} = 0.$ Сопутствующее

уравнение имеет вид $\frac{d^2 z}{dx^2} + \lambda^2 q'_x(x_a) z = 0$, где $q'_x\Big|_{x_a} = (\rho^2)'_x + 2 \frac{n^2 - 1/4}{\lambda^2 x^3}\Big|_{x=x_a} > 0$. В окрестности

внутренней точки поворота x_a будет $z(x) = \operatorname{Ai}\left(-(x - x_a)\lambda^{2/3}\sqrt[3]{q'_x(x_a)}\right)$. На рис. 1 показан профиль одной из собственных мод. найдеммый из

На рис. 1 показан профиль одной из собственных мод, найдеммый из решения дисперсионного уравнения. В центральной области поле стремится к нулю по степенно-экспоненциальному закону. Во внешней области мы специально оставили иллюстрацию эффекту накопления погрешности численного решения задачи Коши. Правее внешней точки поворота решение обобщенного уравнения Бесселя экспоненциально возрастает, это отражается в численном счете.

Рис. 1. Решение задачи на собственные значения для осесимметрического световода с двумя точками поворота.

68

3. Метод прогонки

Найдем решение уравнения $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(-\frac{\nu^2}{x^2} + \lambda^2(\rho^2 - \gamma^2)\right)y = 0$ на сетке $a = x_0 < x_1 < ... < x_n = b$, *x* ∈ [*x*_{*n*-1},*x*_{*n*}]. На каждой ячейке сетки в области положительного младшего коэффициента $-rac{
u^2}{x^2} + \lambda^2 (
ho^2 - \gamma^2)$ найдем решение в виде $y(x) = u_n Y_
u^{(1)}(\lambda p_n x) + v_n Y_
u^{(2)}(\lambda p_n x)$, где $p_n = \sqrt{
ho_n^2 - \gamma^2} > 0$. младшего коэффициента получим уравнение отрицательного $\frac{d^2 y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(-\frac{\nu^2}{x^2} - \lambda^2(-\rho^2 + \gamma^2)\right)y = 0$ решение $y(x) = u_n Z_{\nu}^{(1)}(\lambda q_n x) + v_n Z_{\nu}^{(2)}(\lambda q_n x),$ $q_n = \sqrt{-\rho_n^2} + \gamma^2 > 0$. Условия сопряжения на границах ячеек сетки $u_n Z_n^{(1)}(\lambda q_n x_n) + v_n Z_{\nu}^{(2)}(\lambda q_n x_n) = u_{n+1} Z_{n+1}^{(1)}(\lambda q_{n+1} x_n) + v_{n+1} Z_{n+1}^{(2)}(\lambda q_{n+1} x_n),$ $u_n q_n (Z_n^{(1)})' (\lambda q_n x_n) + v_n q_n (Z_n^{(2)})' (\lambda q_n x_n) = u_{n+1} q_{n+1} (Z_{n+1}^{(1)})' (\lambda q_{n+1} x_n) + u_{n+1} q_{n+1} (Z_{n+1}^{(2)})' (\lambda q_{n+1} x_n),$ дают парциальное условие сшивания: $\begin{pmatrix} Z_n^{(1)}(\lambda q_n x_n) & Z_n^{(2)}(\lambda q_n x_n) \\ q_n(Z_n^{(1)})'(\lambda q_n x_n) & q_n(Z_{n+1}^{(2)})'(\lambda q_n x_n) \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix} = \begin{pmatrix} Z_{n+1}^{(1)}(\lambda q_n x_n) & Z_n^{(2)}(\lambda q_n x_n) \\ q_{n+1}(Z_{n+1}^{(1)})'(\lambda q_{n+1} x_n) & q_{n+1}(Z_{n+1}^{(2)})'(\lambda q_{n+1} x_n) \end{pmatrix} \begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix}.$ Пусть $Y_n = (u_n, v_n)^T$, тогда в узле сетки $A_n Y_n = B_{n+1} Y_{n+1}, n \in \{0, ..., N-1\}$. Запишем условия сшивания в виде $Y_{n+1} = D_n Y_n$, граничные условия $\gamma_0^T Y_0 = 0$, $\gamma_N^T Y_N = 0$. Метод прогонки можно сформулировать следующим образом. Пусть U_{n+1} = $D_n U_n$ для $n \in \{0;...;N-1\}$. Решим задачу на собственные значения $D_n E_n = E_n \Lambda_n$, $D_n = E_n \Lambda_n E_n^{-1}$, и пусть $\hat{U}_n = U_n H_n,$ $U_n = E_n P_n,$ $P_n = E_n^{-1} U_n,$ причем $\hat{U}_n = E_n.$ Тогда $U_n H_n = E_n,$ $H_n = U_n^{-1} E_n = (E_n P_n)^{-1} E_n = P_n^{-1} E_n^{-1} E_n = P_n^{-1}, \quad U_{n+1} = D_n \hat{U}_n = D_n E_n = E_n \Lambda_n, \quad U_{n+1} = E_{n+1} P_{n+1}, \quad \text{и наконец}$ $P_{n+1} = E_{n+1}^{-1}U_{n+1} = E_{n+1}^{-1}E_n\Lambda_n$. Эти формулы описывают прямой ход прогонки.

Для коэффициентов суммирования получим $Y_n = U_n C_n = \hat{U}_n \hat{C}_n$, $U_n C_n = U_n H_n \hat{C}_n$, $C_n = H_n \hat{C}_n$. Начальные условия: $U_0 = E_0$, $Y_0 = U_0 C_0$, $\gamma_0^T U_0 C_0 = 0$. Это обратный ход прогонки.

В задаче о собственных волнах следует положить $Y_0 = E_0^{(+)}$, $U_0 = (E_0^{(+)}, E_0^{(-)})$, $\gamma_0^T Y_0 = \gamma_0^T (E_0^{(+)}, E_0^{(-)}) C_0 = 0$. Пусть $(E_0^{(+)}, E_0^{(-)}) C_0 = E_0^{(+)}$, $C_0 = (1;0)^T$, и наконец найдем матрицы граничных условий: $\gamma_0 = E_0^{(-)}$, $\gamma_N = E_N^{(+)}$. Собственные значения найдем из условия нетривиальной разрешимости однородной системы с однородными граничными условиями.

Приведем пример численного решения уравнений прогонки для осесимметрического волновода.

для осесимметрического световода методом прогонки.

4. Метод Галеркина.

Пусть $\rho(x) \to \rho_{\infty}$ при $x \to +\infty$, $\rho_{\infty} > 0$, $\rho(x) \ge \rho_0$, $\rho_0 > 0$. Условие $\rho_0 > 0$ можно заменить условием сходимости $\int_a^b \rho(x) dx$. Найдем решения уравнения

$$\frac{1}{x}\frac{d}{dx}\left(x\frac{dy}{dx}\right) + \left(-\frac{\nu^2}{x^2} + \lambda^2(\rho^2 - \gamma^2)\right)y = 0,$$

для которых $\gamma \in (\rho_{\infty}, \rho_{\max})$. Запишем это уравнение в виде

$$-\frac{d}{dx}\left(x\frac{dy}{dx}\right) + \left(\frac{\nu^2}{x} - \lambda^2(\rho^2 - \rho_\infty^2)x\right)y = \lambda^2(\gamma^2 - \rho_\infty^2)xy,$$

поставим краевую задачу на собственные значения

$$\begin{aligned} &-\frac{d}{dx}(p(x)\frac{dy}{dx}) + q(x)y = \mu w(x)y, \quad a < x < b, \\ &(Y_{\nu}^{(1)}(\lambda q_0 x)y'_x - \lambda q_0(Y_{\nu}^{(1)})'(\lambda q_0 x)y(x))\Big|_{x=a} = 0, \\ &(Y_{\nu}^{(2)}(\lambda q_0 x)y'_x - \lambda q_0(Y_{\nu}^{(2)})'(\lambda q_0 x)y(x))\Big|_{x=b} = 0, \\ &\mu \in \{\mu_1, \mu_2, \ldots\}. \end{aligned}$$

Сформируем координатную систему $\{\varphi_1(x),...,\varphi_M(x),...\} \in D(A)$, где A есть оператор этой краевой задачи. Решение ищем в виде $y = \sum_{j=1}^{M} \varphi_j C_i = \Phi^T C$, коэффициенты суммирования найдем из семейства соотношений ортогональности невязки:

 $\left[\int_{a}^{b} \Phi(\mathbf{r}) \left(\int_{a}^{b} d(\mathbf{r}) \left(\frac{d}{d} \left(\mathbf{r} - \mathbf{r}\right) \right) d\mathbf{r} \right] d\mathbf{r} \left[\int_{a}^{b} \Phi(\mathbf{r}) \left(\frac{d}{d} \left(\mathbf{r} - \mathbf{r}\right) \right) d\mathbf{r} \right] d\mathbf{r} \left[\int_{a}^{b} \Phi(\mathbf{r}) \left(\frac{d}{d} \left(\mathbf{r} - \mathbf{r}\right) \right) d\mathbf{r} \right] d\mathbf{r} \left[\int_{a}^{b} \Phi(\mathbf{r}) \left(\frac{d}{d} \left(\mathbf{r} - \mathbf{r}\right) \right) d\mathbf{r} \right] d\mathbf{r} \left[\int_{a}^{b} \Phi(\mathbf{r}) \left(\frac{d}{d} \left(\mathbf{r} - \mathbf{r}\right) \right) d\mathbf{r} \left(\frac{d}{d} \left(\mathbf{r} - \mathbf{r}\right) \right) d\mathbf{r} \right] d\mathbf{r} \left[\int_{a}^{b} \Phi(\mathbf{r}) \left(\frac{d}{d} \left(\mathbf{r} - \mathbf{r}\right) \right) d\mathbf{r} \left(\frac{$

$$\left|\int_{a}^{b}\Phi(x)\cdot\left(-\frac{d}{dx}(p(x)\frac{d\Phi^{T}}{dx})+q(x)\Phi^{T}\right)dx\right|C=\mu\left[\int_{a}^{b}\Phi(x)\cdot w(x)\Phi^{T}dx\right]C.$$

Получим обобщенную задачу на собственные значения для кувавдратной матрицы:

$$\left[< \frac{d\Phi}{dx} \mid p \mid \frac{d\Phi^T}{dx} > + < \Phi \mid q \mid \Phi^T > \right] \vec{C} = \mu < \Phi \mid w \mid \Phi^T > \vec{C},$$

более кратко: $AC = \mu BC$. При $M \to \infty$ найденные из этой задачи собственнеы значения стремятся к точным.

Список литературы

70

- 1. Ярив А., Юх П. Оптические волны в кристаллах. М.: Мир, 1987.
- 2. Арсеев П. И., Манцевич В. Н., Маслова Н. С., Панов В. И. Особенности туннельных процессов в полупроводниковых наноструктурах // Успехи физических наук. 2017. Т. 187. N 11. С. 1147-1168.
- Gainullin I.K. Three-dimensional modeling of resonant charge transfer between ion beams and metallic surfaces // Physical Review A. - 2017. - V. 95. - N. 5. - P. 052705.
- 4. Гавурин М.К. Численные методы. М.: Наука, 1971.

MODERN AND CLASSICAL METHODS FOR CALCULATING THE EIGENWAVES OF OPTICAL LIGHT GUIDES AND WAVEGUIDES WITH AN IMPEDANCE BOUNDARY

A.A. Bykov

Lomonosov Moscow State University, Faculty of Physics, Department of Mathematics abykovmsu@gmail.com

An overview of the main classical (VKB, run, characteristic equation, Galerkin) and modern (incomplete Galerkin method, homotopy method) methods for calculating the eigenwaves of a cylindrical waveguide and a waveguide with an impedance boundary is given. The methods are compared according to the criterion of generality, accuracy, and convergence rate.

Keywords: natural waves, modeling, impedance boundary

Быков А.А. Современные и классические методы расчета собственных волн оптических световодов и волноводов с импедансной границей // Труды Российского научно-технического общества радиотехники, электроники и связи имени А.С. Попова: Материалы 15-й Международной научнотехнической конференции "Акустооптические и радиолокационные методы измерений и обработки информации", ARMIMP-2022. АСТРАХАНЬ, 03-07.10.2022. ISBN 978-5-905278-52-5. DOI: 10.25210/armimp-2022-18. EDN: HKISAF

Материалы 15-й Международной научно-технической конференции «Акустооптические и радиолокационные методы измерений и обработки информации». Том. XV. Астрахань, 3-7 октября 2022. ISBN 978-5-905278-52-5. DOI: 10.25210/armimp-2022. EDN: TPXNXO