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ABSTRACT

A parity is a labeling of the crossings of knot diagrams which is compatible with
Reidemeister moves. We define the notion of parity for based matrices — algebraic
objects are introduced by Turaev in his research on virtual strings. We present the
reduced stable parity on based matrix which gives a new example of a parity of virtual
knots.
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0. Introduction

Manturov [8] defined a parity as a rule to assign labels 0 and 1 (considered as
elements of Z2) to the crossings of knot diagrams in a way compatible with Reide-
meister moves. Capability to distinguish odd and even crossings allows to treat the
crossings differently when transforming knot diagrams or calculating their invari-
ants. The notion of parity has proved to be an effective tool in knot theory. It
allows to strengthen knot invariants to prove minimality theorem and to construct
(counter) examples [5].

Then a natural question is to describe existing parities on virtual knots. So far,
the only known parity on virtual knots was the Gaussian parity [8]. On the other
hand, virtual knots can be viewed as knots in surfaces modulo isotopy, Reidemeister
moves and (de) stabilization. The parities for knots in a fixed surface are well
known [5]. They come from the homology of the underlying surface: the parity of a
knot crossing is the homology class of a knot half at the crossing. This is the point
where a link to the based matrices is established.

Based matrices were introduced by Turaev [11] in his research on virtual strings
(also known as flat knots). One can assign to a diagram of a flat knot the matrix
whose elements are the intersection numbers of diagram halves at the crossing of
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the diagram. Reidemeister moves induce transformations of based matrices. The
reduced form of based matrices is a powerful invariant of flat knots, and some other
known invariants can be deduced from it.

Later, analogues of based matrices were introduced for virtual knots [12], sin-
gular flat knots [1, 4], framed and long virtual knots [10] and virtual links [2].

The aim of this paper is to define a parity on based matrices and find new
parities for flat and virtual knots.

This paper is structured as follows. Section 1 recalls definitions of flat knots,
parity and based matrices. In Sec. 2, we introduce the definition of parity and parity
functor on based matrices and present an example of such a parity — the stable
parity. The stable parity determines a new parity on flat and virtual knots.

1. Definitions

1.1. Virtual and flat knots

A 4-graph is any union of four-valent graphs and trivial components, i.e. circles
considered as graphs without vertices and with one (closed) edge. A virtual diagram
is an embedding of a 4-graph into plane so that each vertex of the graph is marked
as either classical of virtual vertex. At a classical vertex, a pair of opposite edges
(called overcrossing) is chosen. The other pair of opposite edges at the vertex is
called undercrossing. The vertices of the diagram are called also crossings.

Virtual crossings of a virtual diagram are usually drawn circled. The under-
crossing of a classical vertex is drawn with a broken line whereas the overcrossing is
drawn with a solid line (see Fig. 1). A diagram without virtual crossings is classical.

Definition 1.1. A virtual link [7] is an equivalence class of virtual diagrams modulo
Reidemeister moves and detour moves (Fig. 2).

Fig. 1. Virtual trefoil diagram with two classical and one virtual crossings.

Fig. 2. Reidemeister moves and the detour move.
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A unicursal component is a minimal set of diagram edges which is closed under
passing from an edge to its opposite (at some end of the edge) edge. A diagram
with one unicursal component is called a diagram of a virtual knot.

Below we assume that the unicursal components of diagrams are oriented.
There is another description of virtual knots.
A virtual link can be viewed as an equivalence class of pairs (S, D) where S is a

closed oriented surface and D is a diagram in S whose crossings are all classical [6].
The equivalence relation is generated by diagram isotopies, classical Reidemeister
moves and stabilizations (see Fig. 3) which change the surface.

For example, the virtual trefoil can be given by a diagram in the torus (Fig. 4).
If one excludes the stabilization moves she gets a knot theory in a given surface.
If one admits crossing switch transformations (Fig. 5) of virtual diagrams, i.e.

neglects the over-undercrossing structure, one gets the theory of flat knots.
Equivalently, flat knots (links) are equivalence classes of flat diagrams (4-valent

graphs whose vertices are virtual crossing and classical crossings without under-
overcrossing structure, Fig. 6) modulo flat Reidemeister moves (Fig. 7).

Fig. 3. Stabilization move.

Fig. 4. Virtual trefoil.

Fig. 5. Crossing switching.

Fig. 6. Flat knot diagram.
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Fig. 7. Flat Reidemeister moves.

Flat knots can be also identified with generic immersions of the circle into sur-
faces considered up to homotopies, isomorphisms and stabilizations/destabiliza-
tions.

1.2. Based matrices

Let H be an abelian group.

Definition 1.2 ([11]). A based matrix with coefficients in the group H is a triple
(G, s, b) where G is a finite set, s ∈ G and a map b : G × G → H which defines a
skew-symmetric matrix, i.e. b(h, g) = −b(g, h) for any g, h ∈ G.

Let us denote G◦ = G\{s}.
The motivating example of based matrices comes from intersection matrices for

diagrams of flat knots. Let H = Z or Z2.

Example 1.3 (Based matrix of a virtual (flat) knot). Let D be a diagram
of an oriented virtual or flat knot in a surface S and V(D) be the set of its classical
crossings. For any crossing c ∈ V(D) define the left half Dl

c and the right half Dr
c

of the diagram at the crossing, as shown in Fig. 8.
The left halves Dl

c, c ∈ V(D), and the diagram D correspond to elements of the
homology group H1(S, H).

Let us define the based matrix of the diagram. Let G(D) = V(D) � {s} where
s is a formal element. The map bD is given by the formula

bD(c, c′) = Dl
c · Dl

c′ , bD(c, s) = Dl
c · D, bD(s, s) = D · D = 0, (1.1)

where c, c′ ∈ V(D) and the dot denotes the intersection map

H1(S, H) × H1(S, H) → H0(S, H) = H.

Fig. 8. Halves of the diagram.
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In other words, bD(c, c′) is the intersection number of the cycles Dl
c and Dl

c′ . The
triple T (D) = (G(D), s, bD) is the based matrix of the diagram D.

For example, in case H = Z2 for the diagram D in Fig. 6 with three classical
crossings we have G(D) = {s, 1, 2, 3} and

bD =

⎛
⎜⎜⎜⎜⎝

0 1 1 0

1 0 0 0

1 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ .

Definition 1.4. Let T = (G, s, b) be a based matrix. Then

• an element g ∈ G◦ is called annihilating if b(g, h) = 0 for any h ∈ G;
• an element g ∈ G◦ is called core if b(g, h) = b(s, h) for any h ∈ G;
• elements g1, g2 ∈ G◦ are called complementary if b(g1, h) + b(g2, h) = b(s, h) for

any h ∈ G.

Definition 1.5. Two based matrices are homologous if one can be obtained from
the other by a sequence of the operations:

• M1 which transforms (G, s, b) into (G1 = G�{g}, s, b1) such that b1 : G1 ×G1 →
H extends b and b1(g, h) = 0 for all h ∈ G1;

• M2 which transforms (G, s, b) into (G2 = G�{g}, s, b1) such that b2 : G2 ×G2 →
H extends b and b2(g, h) = b2(s, h) for all h ∈ G2;

• M3 which transforms (G, s, b) into (G1 = G � {g, g′}, s, b1) such that b3 : G3 ×
G3 → H is any skew-symmetric map extending b with b3(g, h) + b3(g′, h) =
b3(s, h) for all h ∈ G3

and the inverse operations M−1
1 , M−1

2 , M−1
3 .

Definition 1.6. A based matrix is called primitive if it contains neither annihilat-
ing, nor core, nor complementary elements.

Lemma 1.7 ([11]). Any based matrix is homologous to a unique up to isomor-
phism primitive based matrix.

Lemma 1.8 ([11]). If two virtual (flat) diagrams are equivalent then the corre-
sponding based matrices are homologous.

Lemmas 1.7 and 1.8 imply that the unique primitive based matrix T•(D) =
(G•(D), s, b•) homologous to the based matrix T (D) = (G(D), x, bD) of a virtual
(flat) knot diagram is an invariant of virtual (flat) knots.

1.3. Parity

Let K be a virtual or flat knot. Consider the set K of the diagrams of the knot K.
The set K can be considered as the objects of a diagram category whose morphisms
are compositions of isotopies and Reidemeister moves.
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For any diagrams D, D′ ∈ K and a morphism f : D → D′ between them, there
is a correspondence f∗ : V(D) → V(D′) between the crossings of the diagrams. The
map f∗ is a partial bijection between the crossing set because some crossing can
disappear within the transformation f and other crossing can appear by a first or
second Reidemeister move.

Let A be an abelian group.

Definition 1.9. A parity on the diagrams of the knot K with coefficients in the
group A is a family of maps pD : V(D) → A from the sets of crossings V(D) of knot
diagrams D, such that

• Reidemeister moves do not change the parity value of any crossing (which survives
under the move),

• the sum of parities values of the crossing participating in a Reidemeister move is
equal to zero (Fig. 9).

The first and the main example of parity on virtual knots is the Gaussian parity
(with coefficients in Z2).

Example 1.10. The Gaussian parity of a crossing is the parity of the number of
classical crossings that lie on a half of the knot corresponding to the crossing. For
example, a diagram of the virtual eight-knot in Fig. 10 has two odd and one even
crossings.

Fig. 9. Parity axioms.

Fig. 10. Gaussian parity on a virtual knot diagram.
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Another example are homological parities on diagrams of knots in a fixed
surface S.

Theorem 1.11 ([5]). Let p be a parity for diagrams of some (flat) knot K in a
surface S with coefficients in a group A. Then there exists a unique homomorphism
φ : H1(S, Z2)/[K] → A such that for any crossing v of a knot diagram D its parity
is equal to p(v) = φ[Dl

v]. Here Dl
v is the left half of the diagram at the vertex v (see

Fig. 8).

As a corollary of the theorem we have the statement that any parity on classical
knots is trivial.

Theorem 1.11 shows that a parity on diagrams of knots in a fixed surface is
determined by the homology of the surface. Since homological information on the
knot is accumulated by the based matrix of the diagram, we can express the parity
in terms of based matrices and use this expression to define a parity for virtual and
flat knots.

2. Parity on Based Matrices

Let A be an abelian group.

Definition 2.1. A parity on based matrices with coefficients in A is a family of
maps pT : G → A defined for any based matrix T = (G, s, b) such that

(P0) if a based matrix T ′ is obtained from a based matrix T by adding an annihi-
lating or core element of a pair of complementary elements then for any g ∈ G

pT (g) = pT ′(g);
(P1) if g ∈ G◦ is an annihilating or core elements then pT (g) = 0,
(P2) if g1, g2 ∈ G◦ are complementary then pT (g1) + pT (g2) = 0,
(P3) if g1, g2, g3 ∈ G◦ such that b(g1, h)+ b(g2, h)+ b(g3, h) = b(s, h) for any h ∈ G

then pT (g1) + pT (g2) + pT (g3) = 0.

By definition we set pT (s) = 0.

Example 2.2. Gaussian parity with coefficients in A = Z or Z2 on based matrices
with coefficients in A is given by the formula pT (g) = b(g, s) ∈ A. The parity
properties follow from the fact that the moves Mi, i = 1, 2, 3, extend the form b

and in particular keep the value b(g, s), g ∈ G◦, and from the equality b(s, s) = 0.

Below we use a more general notion than parity — parity functor [9]. Parity
functor uses different coefficient groups for different diagrams, and the coefficient
groups are linked by (partial) isomorphism which allow to identify parity values of
a crossing under transformations (isotopies and Reidemeister moves). Here is the
formal definition.
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Definition 2.3. A parity functor on based matrices is a family of maps PT : G →
A(T ) into abelian groups A(T ) defined for any based matrix T = (G, s, b) such that

(P0) if a based matrix T ′ = (G′, s, b′) is obtained from a based matrix T = (G, s, b)
by a move f of type M1, M2 or M3 then there is a fixed monomorphism
A(f) : A(T ) → A(T ′) such that PT ′(g) = A(f)(PT (g)) for any g ∈ G;

(P1) if g ∈ G◦ is an annihilating or core element, or g = s then pT (g) = 0,
(P2) if g1, g2 ∈ G◦ are complementary then PT (g1) + PT (g2) = 0,
(P3) if g1, g2, g3 ∈ G◦ such that b(g1, h)+ b(g2, h)+ b(g3, h) = b(s, h) for any h ∈ G

then PT (g1) + PT (g2) + PT (g3) = 0.

Any parity p with coefficients in a group A is a parity functor with the coefficient
groups A(T ) = A, the maps PT = pT and the monomorphisms A(f) = idA.

Definition 2.4. Let T = (G, s, b) be a based matrix and C be some partition of G

into disjoint subsets such that {s} ∈ C. The subgroup

Ann(C) = {v ∈ Z[G◦] | ∃ k ∈ Z : ∀C ∈ C b(v, χC) = k · b(s, χC)}, (2.1)

in Z[G◦] where χC =
∑

g∈C g, is called the annulator of the partition C.
The derived partition AC of C is the partition which consists of {s} and the

equivalence classes of the following relation on G◦:

g1 � g2 ⇔ g1 − g2 or g1 + g2 ∈ Ann(C). (2.2)

We say that a partition C of G is finer than a partition C′ (C 	 C′) if all classes
of C′ are unions of some classes of C.

Lemma 2.5. If C 	 C′ then AC 	 AC′.

Proof. Let C 	 C′. Then Ann(C) ⊂ Ann(C′). Indeed, if v ∈ Ann(C) then b(v, χC) =
k · b(s, χC) for any C ∈ C. For any C′ ∈ C′ we have C′ = �iCi, Ci ∈ C. Then
χC′ =

∑
i χC and

b(v, χC′) =
∑

i

b(v, χCi) =
∑

i

k · b(s, χCi) = k · b(s, χC′).

For the relation AC 	 AC′ it suffices to show that for any C ∈ AC and C′ ∈ AC′

such that C ∩ C′ �= ∅ one has inclusion C ⊂ C′. Let x ∈ C ∩ C′ and y ∈ C. Then
x ± y ∈ Ann(C) ⊂ Ann(C′). Hence, x and y belong to the same class in AC′, i.e.
x, y ∈ C′. Thus, C ⊂ C′.

Let C0 =
⋃

g∈G{{g}} and Cn = AnC0. Then C0 	 C1 	 C2 	 . . .. Let C∞ =
limn→∞ Cn. The partition C∞ is called the stable partition. Let U = Ann(C∞) and
Ast = Z[G◦]/U . There is a natural map P st : G◦ → Ast which maps an element g

to the coset gU .
Repeating this construction for all based matrices T = (G, s, b), we get a fam-

ily of stable partitions C∞(T ), groups Ast(T ) = Z[G◦]/Ann(C∞(T )) and maps
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P st
T : G◦ → Ast(T ). We claim that these maps form a parity functor on based

matrices. We will check the claim in a more general situation.

Definition 2.6. A family C of partitions C(T ) of the sets G where T = (G, s, b)
are based matrices, is called a tribal system if

• {s} ∈ C(T ) for any T = (G, s, b);
• if a based matrix T ′ is obtained from a based matrix T = (G, s, b) by adding an

annihilating or core element of a pair of complementary elements then C(T ) =
C(T ′) ∩ G, i.e. for any C ∈ C(T ) there exists a unique C′ ∈ C(T ′) such that
C = C′ ∩ G;

• if g1, g2 ∈ G◦ in a based matrix T = (G, s, b) are complementary then there exists
C ∈ C(T ) such that g1, g2 ∈ C.

The classes C ∈ C(T ) are called tribes.

Remark 2.7. We can reformulate the second and the third properties of a tribal
system as follows:

• if two elements belong to one tribe and survive after a transformation of the base
matrix then after the transformation they remain in one tribe;

• complementary vectors belong to one tribe.

Theorem 2.8. Let C be a tribal system. For any based matrix T = (G, s, b), let
AC(T ) = Z[G◦]/Ann(C(T )) and PC

T : G◦ → AC(T ) be the natural maps. Then the
maps PC

T define a parity functor on based matrices with coefficients AC(T ).

The parity functor PC
T is called the parity functor associated with the tribal

system C.
First we prove an auxiliary lemma.

Lemma 2.9. Let T = (G, s, b) be a based matrix and T ′ = (G′, s, b′) be the result
of an operation M1, M2 or M3 applied to T . Let C′ be a partition of G′ such that
{s} ∈ C′ and there exists C′ ∈ C′ such that G′\G ⊂ C′. Then

(1) Ann(C′ ∩ G) = Ann(C′) ∩ Z[G◦]
(2) A(C′ ∩ G) = A(C′) ∩ G

Proof. (1) Since G′\G ⊂ C′, we have C′∩G = C′\{C′}∪{C} where C = C′∩G. By
definition, we have b′(v, χC′) = b′(v, χC) + l · b′(v, s) for any v ∈ Z[G′◦] where l = 0
when the element in G′\G is annihilating, and l = 1 when the new element is core
or when G′\G consists of a pair of complementary elements. Hence, b′(s, χC′) =
b′(s, χC). Then the pair of conditions for the classes C′ and {s} in the definition of
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I. Nikonov

Ann(C′) is equivalent to the pair of conditions for the classes C and {s}:{
b′(v, χC′) = k · b′(s, χC′)

b′(v, s) = k · b′(s, s) = 0
⇔

{
b′(v, χC) = k · b′(s, χC)

b′(v, s) = 0.

This means that we can replace the tribe C′ with C in the definition of Ann(C(T ′)),
i.e. replace the partition C′ with the partition C′\{C′} ∪ {C} = C′ ∩ G. Thus,

Ann(C′) ∩ Z[G◦] = {v ∈ Z[G◦] | ∃ k ∈ Z : ∀C′′ ∈ C′ b′(v, χC′′) = k · b′(s, χC′′)}
= {v ∈ Z[G◦] | ∃ k ∈ Z : ∀C′′ ∈ C′ ∩ G b(v, χC′′) = k · b(s, χC′′)}
= Ann(C′ ∩ G).

(2) Let ∼A(C′∩G) and ∼A(C′) be the equivalence relations on G◦ determined by the
correspondent partitions. Then for any g1, g2 ∈ G◦ we have a chain of equivalences

g1 ∼A(C′∩G) g2 ⇔ g1 ± g2 ∈ Ann(C′ ∩ G) ⇔ g1 ± g2 ∈ Ann(C′) ⇔ g1 ∼A(C′) g2.

Thus, the partitions A(C′ ∩ G) and A(C′) ∩ G coincide.

Proof of Theorem 2.8. The properties (P1), (P2), (P3) follow from the definition
of the annulator Ann(C(T )).

Let us check the property (P0). Let a based matrix T ′ = (G′, s, b′) is obtained
from a based matrix T = (G, s, b) by adding an annihilating or core element of a
pair of complementary elements. We need to show that the natural map AC(T ) →
AC(T ′) which maps g ∈ G to g, is a well defined monomorphism. This condition
is equivalent to the equality Ann(C(T ′)) ∩ Z[G◦] = Ann(C(T )). The last statement
holds by Lemma 2.9.

Proposition 2.10. The stable partition C∞ is a tribal system.

Proof. Let T = (G, s, b) be a based matrix. By the definition of annulator, for any
partition C(T ) of G any pair of complementary elements belongs to one tribe of the
partition AC(T ).

Let T ′ = (G′, s, b′) is obtained from T by an operation M1, M2 or M3. Let us
show that C∞(T ′) ∩ G = C∞(T ).

Let C̃0(T ′) be the partition of G′ which consists of {s}, one-element sets {g},
g ∈ G◦, and the subset G′\G. Then C0(T ′) 	 C̃0(T ′) 	 AC0(T ′) = C1(T ′).

Let C̃n(T ′) = AnC̃0(T ′) and C̃∞(T ′) = limn→∞ C̃n(T ′). By Lemma 2.5, we have
Cn(T ′) 	 C̃n(T ′) 	 Cn+1(T ′). Hence, C̃∞(T ′) = C∞(T ′).

By definition C̃0(T ′) ∩ G = C0(T ). Lemma 2.9 implies that

C̃n(T ′) ∩ G = AnC̃0(T ′) ∩ G = An(C̃0(T ′) ∩ G) = AnC0(T ) = Cn(T ).

Then C∞(T ) = C̃∞(T ′) ∩ G = C∞(T ′) ∩ G. Thus, C∞ is a tribal system.

Theorem 2.8 and Proposition 2.10 imply the following corollary.
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Parity on based matrices

Corollary 2.11. The family of maps P st
T is a parity functor (called the stable

parity functor) with coefficients in the groups Ast(T ).

Example 2.12. Consider a based matrix T = (G, s, b) with coefficients in Z2 where
G = {s, 1, 2, 3, 4, 5, 6, 7, 8} and b be given by induces the matrix B (s corresponds
to the first row and column).

B =

s 1 2 3 4 5 6 7 8⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 1 0 1 1 0 0
0 1 1 0 0 0 1 1 0
0 0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 1
0 1 1 1 1 0 0 0 1
0 0 0 1 1 0 0 0 1
0 0 0 0 0 1 1 1 0

Let us find the stable partition. We look for the pairs of rows whose sum is
equal to the first row. Those are the rows 1 and 2. This means the elements {1, 2}
form one class in the partition C1. We replace the columns with numbers 1 and 2
by their sum (it corresponds to the vector χ{1,2}) and get the matrix B1. We use
separators between rows to distinguish the classes of the partition. Then we look
for rows in the matrix B1 as before. Repeating the process, we get the sequence of
the partitions C2, C3 and the corresponding matrices B2, B3 whose rows correspond
to the elements of G and the columns correspond to the classes of the partition.

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0

0 0 1 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 1
0 0 1 1 0 0 0 1
0 0 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 1 1 1 0

0 0 1 1 1 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1

0 0 0 0 0 1
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 0 0

0 0 1 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 1

0 0 0 0 1

0 0 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

C0 = {{s}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}},
C1 = {{s}, {1, 2}, {3}, {4}, {5}, {6}, {7}, {8}},
C2 = {{s}, {1, 2}, {3, 4}, {5}, {6, 7}, {8}},
C3 = {{s}, {1, 2}, {3, 4}, {5, 6, 7}, {8}} = C∞.
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I. Nikonov

The partition C3 stabilizes (there are no two rows from different classes whose
sum gives the first row of the table). Thus, C3 = C∞ is the stable partition.

The annulator of C∞ in Z[{1, 2, 3, 4, 5, 6, 7, 8}] is generated by the elements 2 · i,
i = 1, . . . , 8 and 1 + 2, 3, 4, 5 + 6, 5 + 7 (we look for combinations of rows in the
table B3 that give zero row). Then Ast = Z2 ⊕ Z2 ⊕ Z2 and the parity map is the
following:

P st(1) = P st(2) = (1, 0, 0), P st(3) = P st(4) = (0, 0, 0),

P st(5) = P st(6) = P st(7) = (0, 1, 0), P st(8) = (0, 0, 1).

Let us modify the definition of parity functor in Theorem 2.8 in order to get a
parity on based matrix.

2.1. Reduced parity functor

Let T0 = (G0, s0, b0) be a based matrix with coefficients in H and let C be a tribal
system defined on the based matrices T = (G, s, b) homologous to T0.

For a based matrix T = (G, s, b), consider the map P̂C
T from Z(G◦) to the group

ÂC(T ) = H [C(T )]/〈b̂(s)〉 where 〈b̂(s)〉 is the cyclic subgroup generated by

b̂(s) =
∑

C∈C(T )

b(s, χC) · C, (2.3)

defined by the formula

P̂C
T (g) =

∑
C∈C(T )

b(g, χC) · C. (2.4)

The kernel of the homomorphism P̂C
T is the annulator Ann(C(T )). Hence, the

group AC(T ) embeds in ÂC(T ). The family of maps P̂C
T is a parity functor with

coefficients in the groups ÂC(T ). For an operation f : T → T ′, T = (G, s, b), T ′ =
(G′, s, b′), of type M1, M2 or M3 the monomorphism ÂC(f) : ÂC(T ) → ÂC(T ′) is
given by the formula

ÂC(f)

⎛
⎝ ∑

C∈C(T )

λC · C
⎞
⎠ =

∑
C∈C(T )

λC · f(C) + l · λs · C′
f , (2.5)

where f(C) ∈ C(T ′) is the unique tribe such that f(C) ∩ G = C, λs = λ{s},
C′

f ∈ C(T ′) is the tribe containing G′\G, and l = 0 when f is of type M1 and l = 1
when f is of type M2 or M3.

Let T• = (G•, s, b•) be a primitive based matrix which is obtained from T by
deleting annihilating, core and complementary elements. Then G• ⊂ G.
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Parity on based matrices

Definition 2.13. A tribe C ∈ C(T ) is called primitive if C ∩ G• �= ∅. Denote the
subset of primitive tribes in C(T ) by C(T )prim.

Note that by definition {s} ∈ C(T )prim.

Proposition 2.14. (1) The primitive tribes do not depend on the choice of the
primitive based matrix T•, that is if C is primitive with respect to a primitive
based matrix T• = (G•, s, b•) and T ′• = (G′•, s, b′•) is another primitive based
matrix such that G′• ⊂ G then C ∩ G′• �= ∅.

(2) Let T ′ = (G′, s, b′) be obtained from T by an operation M1, M2 or M3. Then
there is a bijection between the primitive tribes in C(T ) and C(T ′) : a tribe
C′ ∈ C(T ′)prim if and only if the tribe C′ ∩ G ∈ C(T )prim.

(3) The support of the element b̂(s) ∈ H [C(T )] includes only primitive tribes : b̂(s) =∑
C∈C(T )prim

b(s, χC) · C.

Proof. (1) Let T
f1→ T1

f2→ · · · fn→ T• and T
f ′
1→ T ′

1

f ′
2→ · · · f ′

n′→ T ′• be sequences of
operations M−1

k , k = 1, 2, 3, that reduce T to the primitive based matrices. We prove
the first statement of the proposition by induction on d = |G|− |G•|. Note that this
number does not depend on the choice of primitive matrix because all homologous
primitive matrix are isomorphic and have the same number of elements.

If d = 0 then T• = T = T ′
•, and the statement is trivial.

Assume the statement holds for all k < d. Consider the operations f1 and f ′
1.

If f1 = f ′
1 consider the based matrix T ′′ = f1(T ), T ′′ = (G′′, s, b′′). Then G• ⊂ G′′

and G′
• ⊂ G′′. If C ∈ C(T ) then C ∩ G• �= ∅. Hence, (C ∩ G′′) ∩ G• �= ∅, i.e. the

tribe C′′ = C ∩ G′′ is primitive in C(T ′′) = C(T ) ∩ G′′. By induction C′′ ∩ G′
• �= ∅.

Then C ∩ G′
• �= ∅.

Let f1 �= f ′
1 commute. Let T1 = f1(T ), T ′

1 = f ′
1(T ) and T ′′ = f ′

1(T1) = f1(T ′
1).

Then G• ⊂ G1 and G′• ⊂ G′
1. By operations M−1

k , k = 1, 2, 3, the based matrix
T ′′ can be reduced to a primitive-based matrix T ′′• = (G′′• , s, b′′•). Then G′′• ⊂ G′′ =
G1 ∩ G′

1.
Let C ∈ C(T ) be primitive, i.e. C ∩ G• �= ∅. Let C1 = C ∩ G1 ∈ C(T1) and

C′
1 = C ∩ G′

1 ∈ C(T ′
1). By induction, C1 ∩ G• = C ∩ G• �= ∅ implies C1 ∩ G′′

• �= ∅.
But C1 ∩ G′′

• = C ∩ G′′
• = C′

1 ∩ G′′
• . Then C′

1 ∩ G′′
• �= ∅. Hence, by induction

C ∩ G′
• = C′

1 ∩ G′
• �= ∅.

Let f1 �= f ′
1 not commute. If one of the operations (say, f1) is of type M−1

3 and
the other (say, f ′

1) is of type M−1
1 or M−1

2 then f1 removes a pair of complementary
core and annihilating elements. Then f1 = f ′′ ◦ f ′

1 for some operation f ′′ of type
M−1

1 or M−1
2 , and we can treat this case like the case f1 = f ′

1 by considering the
based matrix T ′′ = f ′

1(T ).
The other option is when f1 and f ′

1 are of type M−1
3 . Denote T1 = f1(T ) and

T ′
1 = f ′

1(T ). The sets G\G1 = {g0, g
′
1} and G\G′

1 = {g0, g1} are intersecting pairs
of complementary elements. Then b(g, g1) = b(g, g′1) for all g ∈ G, and the map
h : G1 → G′

1, which replaces the element g1 ∈ G1 with the element g′1 ∈ G′
1, is an
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I. Nikonov

isomorphism of the based matrices T1 and T ′
1. Hence, the based matrix T ′′

• = h(T•)
is a primitive submatrix of T ′

1 which is homologous to T ′
1.

Let C ∈ C(T ) be primitive, i.e. C ∩ G• �= ∅. If there exists g′′ �= g1 such that
g′′ ∈ C ∩ G• then g′′ ∈ C ∩ G′′• = C′

1 ∩ G′′• where C′
1 = C ∩ G′

1. Then by induction
C ∩ G′• = C′

1 ∩ G′• �= ∅.
Assume that C ∩ G• = {g1}. Since g0 and g1 as well as g0 and g′1 are comple-

mentary in T , they all belong to one tribe, i.e. g0, g1, g
′
1 ∈ C. Then g′1 ∈ C ∩G′′

• , so
C′

1 ∩ G′′
• �= ∅ where C′

1 = C ∩ G′
1. Then by induction C ∩ G′

• = C′
1 ∩ G′

• �= ∅.
(2) Let T• = (G•, s, b•) be a primitive based matrix obtained from T by opera-

tions M−1
i , i = 1, 2, 3. Then G• ⊂ G. Then we have the equivalences

C′ ∈ (T ′)prim ⇔ C′ ∩ G• = (C′ ∩ G) ∩ G• �= ∅ ⇔ (C′ ∩ G) ∈ (T )prim.

(3) By the proof of Lemma 2.9, for any reducing operation f : T → T ′ of type
M−1

i , i = 1, 2, 3, and any tribe C ∈ C(T ) we have b(s, χC∩G′) = b(s, χC) where
T = (G, s, b) and T ′ = (G′, s, b|G′). If C ∈ C(T ) is not primitive then it reduces to an
empty tribe on the way to a primitive based matrix. Then b(s, χC) = b(s, χ∅) = 0.
Thus,

b̂(s) =
∑

C∈C(T )

b(s, χC) · C =
∑

C∈C(T )prim

b(s, χC) · C.

Thus, for any based matrix T a distinguished set C(T )prim of the primitive tribes
is defined, and any transformation f : T → T ′ to a homologous based matrix T ′

identifies the sets C(T )prim and C(T ′)prim.
Let us consider another distinguished tribe in C(T ).

Proposition 2.15. Let T1 = (G1, s, b1) and T2 = (G2, s, b2) be homologous to T

and gi ∈ Gi ∩ G, i = 1, 2 be an element which is annihilating or core in Gi. Then
g1 and g2 belong to one tribe in C(T ).

Proof. Let fi : Ti → T be the sequence of operations that transform Ti to T . Add
to T , T1, T2 and all the intermediate diagrams an element g′ which is annihilating
for all the diagrams T̃ , T̃1, T̃2 and the intermediate ones. Then gi and g′ belong
to one tribe in C(Ti), i = 1, 2. Hence, they belong to one tribe in C(T ). Then by
transitivities g1 and g2 belong to one tribe in C(T ).

Let C0(T ) ∈ C(T ) be the tribe which contains all core and annihilating elements.
We call it the zero tribe.

The zero tribe C0(T ) can be empty. On the other hand, C0(T ) can be primitive
since it may include other elements besides the core and annihilating ones.

Corollary 2.16. Let T ′ = (G′, s, b′) be obtained from T by an operation M1, M2

or M3 and C0 = C0(T ) and C′
0 = C0(T ′) be the zero tribes in C(T ) and C(T ′)

correspondingly. Then C0 = C′
0 ∩ G.
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Parity on based matrices

Corollary 2.16 means the zero tribe is equivariant, that any transformation
f : T → T ′ from T to a homologous based matrix T ′ maps elements of the zero
tribes (T )prim to the zero tribe (T ′)prim.

Consider a based matrix T = (G, s, b). Denote

C(T )∗prim = C(T )prim\{C0(T )}.
Let ÃC(T ) = H [C(T )∗prim]/〈b̃(s)〉 where

b̃(s) =
∑

C∈C(T )∗prim

b(s, χC) · C. (2.6)

Define the maps P̃C
T : G → ÃC(T ) by the formula

P̃C
T (g) =

∑
C∈C(T )∗prim

(
b(g, χC) −

⌊ |C|
2

⌋
· b(g, s)

)
· C, (2.7)

where �·� is the floor function.
For an operation f : T → T ′, T = (G, s, b), T ′ = (G′, s, b′), of type M1, M2 or

M3 we define a homomorphism ÃC(f) : ÃC(T ) → ÃC(T ′) by the formula

ÃC(f)

⎛
⎝ ∑

C∈C(T )∗prim

λC · C
⎞
⎠ =

∑
C∈C(T )∗prim

λC · f(C), (2.8)

where f(C) ∈ C(T ′)prim is the unique primitive tribe such that f(C) ∩ G = C.

Theorem 2.17. The maps P̃C
T define a parity functor on based matrices.

The parity functor P̃C
T is called the reduced parity functor associated with the

tribal system C.

Proof. Since P̃C
T factors through P̂C

T , the conditions (P1),(P2) and (P3) are valid.
Let us check the property (P0). Let T = (G, s, b) be a based matrix and T ′ =

f(T ) where f is of type Mi, i = 1, 2, 3. Let T ′ = (G′, s, b′).
First we show that ÃC(f) is a well-defined isomorphism. By Proposition 2.14

the map f establishes a bijection f : C(T )prim → C(T ′)prim. By Corollary 2.16
f(C0(T )) = C0(T ′) if C0(T ) ∈ C(T )prim. Then f defines an isomorphism
f : H [C(T )∗prim] → H [C(T ′)∗prim].

For any tribe C′ ∈ C(T ′) we have b′(s, χC) = b(s, χC′∩G). Then f(b̃(s)) = b̃(s).
Hence, the isomorphism f induces an isomorphism ÃC(T ) → ÃC(T ′) that coincides
with ÃC(f).

Let us check the equality P̃C
T ′ |G = ÃC(f) ◦ P̃C

T . It is enough to verify that the
terms in the left and the right part of the equality which correspond to some tribe
C ∈ C(T )∗prim, are equal.

Let C′ ∈ C(T ′)∗prim and C = C′ ∩ G. If C′ �⊃ G′\G then C′ = C, hence,

� |C|
2 � = � |C′|

2 � and b(g, χC) = b′(g, χC′) for any g ∈ G. Thus, the correspondent
terms of the tribes C and C′ in P̃C

T (g) and P̃C
T ′(g) are equal.
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Let C′ ⊃ G′\G. Since C′ �= C0(T ′), the operation f is of type M3. Then
|C′| = |C| + 2 and for any g ∈ G b′(g, χC′) = b(g, χC) + b(g, s). Hence, for any
g ∈ G

b′(g, χC′) −
⌊ |C′|

2

⌋
· b′(g, s) = b(g, χC) + b(g, s) −

⌊ |C|
2

⌋
· b(g, s) − b(g, s)

= b(g, χC) −
⌊ |C|

2

⌋
· b(g, s).

Thus, the correspondent terms of the tribes C and C′ in P̃C
T (g) and P̃C

T ′(g) are
equal.

Definition 2.18. The reduced parity functor P̃ st = P̃C∞ associated with the
stable tribal system C∞ is called the reduced stable parity functor.

Example 2.19. Consider the based matrix T with coefficients in Z2 from
Example 2.12. One of the primitive-based matrices homologous to T is T• =
({s, 5, 8}, s, b•) where b• is defined by the matrix B•:

B• =

s 5 8⎛
⎝

⎞
⎠0 0 0

0 0 1
0 1 0

.

Thus, the primitive tribes in C∞(T ) are {s}, C1 = {5, 6, 7} and C2 = {8}. The
zero tribe C0 = {3, 4} is not primitive. The element b̃(s) is 0. Then the coefficient
group Ãst(T ) of the reduced stable parity functor is isomorphic to Z2 ⊕ Z2 ⊕ Z2

(the first summand is for {s}). The parity values correspond to the elements in the
first and the last two columns of the matrix B3. We extract those columns to the
matrix B̃3.

B̃3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 1

0 0 1

0 0 1
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the parities of the elements are

P̃ st(1) = P̃ st(2) = P̃ st(3) = P̃ st(4) = (0, 0, 0),

P̃ st(5) = P̃ st(6) = P̃ st(7) = (0, 0, 1), P̃ st(8) = (0, 1, 0).
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Parity on based matrices

Remark 2.20. Although the coefficient groups ÃC(T ) of the reduced parity func-
tor P̃C are all isomorphic we cannot state that the parity functor defines a parity
with coefficients in ÃC(T ) for some fixed T .

Consider the following example. Let T = (s, x, y, s, b) be a based matrix with
coefficients in Z2 where b is determined to be the matrix

B(T ) =

s x y⎛
⎝

⎞
⎠0 0 0

0 0 1
0 1 0

.

The based matrix T is primitive and has two primitive stable tribes {x}, {y} ∈
C∞(T )prim.

Replace the element x with an element u by applying operations M3 and M−1
3

as shown below. Thus, we get a based matrix T ′ = ({s, u, y}, s, b′).

s x y⎛
⎝

⎞
⎠0 0 0

0 0 1

0 1 0

⇒

s x p u y⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

0 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 1 1 1 0

⇒

s u y⎛
⎝

⎞
⎠0 0 0

0 0 1

0 1 0

.

Analogously, replace y with v. Then we get a sequence of transformations
f1 : T → T1 = ({s, u, v}, s, b1). The primitive stable tribes of T1 are {u} and {v}.
The transformation f1 identifies x with u and y with v.

On the other hand, we can replace x with v and y with u and get a based matrix
T2 = ({s, u, v}, s, b2). The transformation f2 from T to T2 identifies the primitive
tribes x with v and y with u.

But the based matrices T1 and T2 coincide because they have the same under-
lying set {s, u, v} and b1 = b2. Thus, there is no canonical way to identify primitive
tribes of homologous based matrices. The reason is we have a nontrivial automor-
phism of the based matrix T . In general case we can assign a monodromy, i.e. a
sequence of transformations from a based matrix to itself, which interchanges the
primitive tribes according to any given automorphism of the based matrix. On the
other hand, any monodromy of a primitive-based matrix induces an automorphism
of the based matrix [11].

Thus, we need to factorize by isomorphisms if we want to get an invariant
coefficient group for a parity.

2.2. Reduced parity

Let T0 = (G0, s0, b0) be a based matrix with coefficients in H and let C be a tribal
system defined on the based matrices T = (G, s, b) homologous to T0.
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Choose a primitive based matrix T• = (G•, s, b•) homologous to T0. The tribes in
G• correspond to the primitive tribes of any based matrix T = (G, s, b) homologous
to T•. Let Aut(T•) be the automorphism group of the based matrix T•. Note that
the group Aut(T•) considered up to isomorphism does not depend on the choice of
a primitive-based matrix in the homology class.

Let us define C̄(T•) to be the finest partition such that C(T•) 	 C̄(T•) and
φ(C(T•)) = C̄(T•) for any φ ∈ Aut(T•). Note that {s} ∈ C̄(T•). The partition C̄(T•)
defines a partition on the set C(T•)prim = C(T•). By Proposition 2.14 this partition
can be lifted to some partition of the set C̄(T )prim for any based matrix T homolo-
gous to T•, and the partition does not depend on the sequence of transformations
connecting T and T•.

For a based matrix T = (G, s, b) denote C̄(T )∗prim = C̄(T )prim\{C̄0(T )} where
C̄0(T ) is the element of the partition C̄(T )prim which includes the zero tribe
C0(T ) if it is primitive, and C̄0(T ) = ∅ if C0(T ) is not primitive. Let ĀC(T ) =
H [C̄(T )∗prim]/〈b̄(s)〉, where

b̄(s) =
∑

C̄∈C̄(T )∗prim

b(s, χC̄) · C̄. (2.9)

Define the maps P̄C
T : G → ĀC(T ) by the formula

P̄C
T (g) =

∑
C̄∈C̄(T )∗prim

(
b(g, χC̄) −

⌊ |C̄|
2

⌋
· b(g, s)

)
· C̄. (2.10)

For an operation f : T → T ′, T = (G, s, b), T ′ = (G′, s, b′), of type M1, M2 or
M3 we define a homomorphism ĀC(f) : ĀC(T ) → ĀC(T ′) by the formula

ĀC(f)

⎛
⎝ ∑

C̄∈C̄(T )∗prim

λC̄ · C̄
⎞
⎠ =

∑
C̄∈C̄(T )∗prim

λC̄ · f(C̄), (2.11)

where f(C̄) ∈ C̄(T ′)∗prim is the unique class such that f(C̄) ∩ G = C̄.

Theorem 2.21. (1) Let T = (G, s, b) be a based matrix homologous to T• and
f : T → T• be a transformation chain connecting these based matrices. Then
the map ĀC(f) : ĀC(T ) → ĀC(T•) is an isomorphism which does not depend on
the choice of the transformation f .

(2) The family of maps p̄C
T = ĀC(f) ◦ P̄C

T : G → ĀC(T•) is a parity with coefficients
in ĀC(T•).

The parity p̄C is called the reduced parity associated with the tribal system C.

Proof. (1) We can prove that ĀC(f) using the arguments of Theorem 2.17. Let
fi : T → T• be two sequences connecting T and T•. Then φ = f2 ◦f−1

1 is a sequence
of transformations of T• to itself. Since T• is primitive, φ is an automorphism of T•.
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Parity on based matrices

Hence, φ acts trivially on C̄(T•)∗prim. Therefore φ induces the identity automorphism
of ĀC(T•), i.e. ĀC(f2 ◦ f−1

1 ) = id. Hence, ĀC(f) = ĀC(f2 ◦ f−1
1 ) · ĀC(f1) = ĀC(f1).

(2) Following the arguments of Theorem 2.17 we can show that P̄C is a parity
functor. We need only to check the equality p̄C

T ′ |G = p̄C
T for any based matrices

T = (G, s, b) and T ′ = (G′, s, b′) connected by an operation f : T → T ′ of type Mi,
i = 1, 2, 3.

Let f ′ : T ′ → T• be a sequence of transformations M±1
i , i = 1, 2, 3 from T ′ to

T•. By definition

p̄C
T ′ |G = ĀC(f ′) ◦ P̄C

T ′ |G = ĀC(f ′) ◦ ĀC(f) ◦ P̄C
T = ĀC(f ′ ◦ f) ◦ P̄C

T = p̄C
T

where the second equality is the parity functor property.

Definition 2.22. The reduced parity p̄st = p̄C∞ associated with the stable tribal
system C∞ is called the reduced stable parity.

Example 2.23. Consider the based matrix T = ({s, 1, 2, 3, 4, 5, 6, 7, 8}, s, b) from
Example 2.12. A primitive based matrix T• = ({s, 5, 8}, s, b•) is given in Exam-
ple 2.19. It has three primitive stable tribes {s}, {5} and {8}. The automorphism
group of T• is Aut(T•) = Z2, it interchanges the primitive tribes 5 and 8. Then the
partition C̄∞(T•)prim consists of the element {5, 8} and {s}. The coefficient group
Āst is equal to Z2 ⊕ Z2 since the zero tribe is not primitive and b̄(s) = 0.

The induced partition for T will be C̄∞(T )prim = {{s}, {5, 6, 7, 8}}. It corre-
sponds to the matrix B̄3 which is obtained from B̃3 by taking the sum of the last
two columns.

B̄3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0

0 0
0 0

0 0
0 1

0 1

0 1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the reduced stable parity on T is equal to

p̄st(1) = p̄st(2) = p̄st(3) = p̄st(4) = (0, 0),

p̄st(5) = p̄st(6) = p̄st(7) = p̄st(8) = (0, 1).

2.3. Reduced stable parity for virtual and flat knot

Let K be a virtual or flat knot. Then we can define reduced stable parity on the
diagrams of the knot K as follows. Let D be a diagram of K. Consider the based
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Fig. 11. Flat knot diagram and the corresponding based matrix.

matrix T (D) of the diagram D and a primitive based matrix T•(D) homologous to
T (D). Denote the group Āst(T•(D)) by Āst(K).

Proposition 2.24. The family of the maps p̄st
T (D) : V(D) → Āst(K) is a parity on

diagrams of the knot K with coefficients in the group Āst(K).

Proposition 2.24 follows from Lemma 1.8 and Theorem 2.21.

Definition 2.25. The parity p̄st from Proposition 2.24 is called the reduced stable
parity on virtual (flat) knots.

Example 2.26. Consider the flat knot diagram D in Fig. 11. Then T (D) =
({s, 1, 2, 3}, s, b) where b is defined by the matrix B with coefficients in Z2.

The based matrix T (D) is primitive. Its stable tribes are

C∞ = {{s}, {1}, {2}, {3}}.
Since the automorphism group Aut(T (D) is trivial and the zero tribe is empty,
the partition C̄∞(T (D))prim coincides with C∞. Thus, we have four reduced stable
classes. The element b̄(s) = (0, 1, 1, 0) ∈ Z2[C∞]. Hence, Āst = Z2[C∞]/〈b̄(s)〉 � Z

3
2

where the isomorphism is induced by the map

λs · s + λ1 · 1 + λ2 · 2 + λ3 · 3 �→ (λs, λ1 + λ2, λ3).

The parity values are

p̄st(1) =
(

1,

(
0 −

⌊
1
2

⌋
1
)

+
(

0 −
⌊

1
2

⌋
1
)

, 0 −
⌊

1
2

⌋
1
)

= (1, 0, 0),

p̄st(2) =
(

1,

(
0 −

⌊
1
2

⌋
1
)

+
(

0 −
⌊

1
2

⌋
1
)

, 1 −
⌊

1
2

⌋
1
)

= (1, 0, 1),

p̄st(3) =
(

0,

(
0 −

⌊
1
2

⌋
0
)

+
(

1 −
⌊

1
2

⌋
0
)

, 0 −
⌊

1
2

⌋
0
)

= (0, 1, 0).

Appendix A. Reduced Stable Parity of Knots of Complexity ≤ 4

Using a Mathematica program, we calculated the reduced stable parity for the
diagrams of Green’s table [3] with the number of crossings less or equal 4.
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Parity on based matrices

It turns out that the based matrices of all these diagrams are either primitive
or reduce to the trivial matrix (0).

In the last case there are no primitive tribes and the reduced stable parity p̄st

coincides with the index parity ip. This situation occurs for the knots

2.1, 3.2, 3.5, 3.6, 3.7, 4.3, 4.6, 4.12, 4.25, 4.27, 4.36, 4.37, 4.40,

4.41, 4.43, 4.44, 4.46, 4.53, 4.54, 4.61, 4.64, 4.65, 4.68, 4.73,

4.74, 4.75, 4.82, 4.84, 4.86, 4.91, 4.92, 4.94, 4.95, 4.96, 4.99,

4.100, 4.101, 4.102, 4.104, 4.105, 4.106, 4.108.

The knots 3.1, 3.3, 3.4 have three primitive nonzero tribes corresponding to the
crossings and the coefficient group Āst is isomorphic to Z

3.
For the knots

4.2, 4.5, 4.7, 4.10, 4.11, 4.14, 4.15, 4.17, 4.19, 4.20, 4.21, 4.22, 4.23, 4.24,

4.26, 4.28, 4.29, 4.30, 4.32, 4.34, 4.35, 4.38, 4.39, 4.42, 4.45, 4.47, 4.48,

4.49, 4.50, 4.56, 4.57, 4.59, 4.62, 4.63, 4.66, 4.67, 4.70, 4.71, 4.76, 4.78,

4.79, 4.80, 4.81, 4.83, 4.87, 4.88, 4.93, 4.97, 4.103,

each of four crossings determines a primitive nonzero tribe, and the coefficient group
Āst of the reduced stable parity is isomorphic to Z

4.
The knots 4.9, 4.16, 4.33, 4.52, 4.58, 4.72 have 3 primitive tribes, and Āst = Z

4

for them.
For example, the based matrix of the knot 4.9 is equal to⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 −1
−1 0 −1 −1 0

0 1 0 −1 −1

0 1 1 0 −1

1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The crossings 1 and 4 belongs to one tribe because the corresponding rows (or
columns) are proportional. Note that 1 and 4 are not complementary. The parity
matrix is given as follows. ⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
−1 1 −1 −1

0 0 0 −1

0 0 1 0

1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The first column corresponds to s (and the index parity), the other columns corre-
spond to nonzero primitive tribes. The first row presents the vector b̄(s), the other
rows present the parity values of the crossings.

The knots 4.85, 4.89, 4.90, 4.98, 4.107 have four primitive tribes, and Āst = Z
4 ⊕

Z2 for them.
For example, the knot 4.85 has the based matrix⎛

⎜⎜⎜⎜⎜⎜⎝

0 2 −2 −2 2
−2 0 −2 −1 0

2 2 0 0 3

2 1 0 0 2

−2 0 −3 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which coincides with the parity matrix. Each vertex defines a primitive tribe. The
vector b̄(s) = (0, 2,−2,−2, 2) is divisible by 2. Hence, the coefficient group is equal
to

Āst = Z[C̄∞(T (D))prim]/〈b̄(s)〉 = Z
5/〈(0, 2,−2,−2, 2)〉 = Z

4 ⊕ Z2.

The knots 4.13, 4.18, 4.31, 4.51, 4.60, 4.69 have three primitive tribes, the symme-
try group Aut(T•) = Z2 which acts trivially on the primitive tribes, and Āst = Z

3.
For example, the knot 4.13 has the based matrix⎛

⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 1
1 0 1 1 1

0 −1 0 0 0

0 −1 0 0 0

−1 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The primitive tribes are {1}, {2, 3} and {4} (the rows the second and third crossings
coincide). The symmetry group acts by transposition of the second and the third
crossings, and induces trivial action on the primitive tribes. The parity matrix is⎛

⎜⎜⎜⎜⎜⎜⎝

0 −1 0 1
1 0 1 1

0 −1 0 0

0 −1 0 0

−1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since the vector b̄(s) �= 0, the coefficient group is Āst = Z
4/Z = Z

3.
Finally, the knots 4.1, 4.4, 4.8, 4.55, 4.77 have four primitive tribes and the sym-

metry group Aut(T•) = Z2 which interchange pairs of crossings. The coefficient
group is equal to Āst = Z

2 ⊕ Z2.
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Parity on based matrices

For example, the knot 4.1 has the based matrix⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 −1 1 −1
−1 0 −1 0 0

1 1 0 0 0

−1 0 0 0 −1

1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Each crossing defines a primitive tribe. There is a unique nontrivial symmetry
(13)(24) of the based matrix. Hence, C̄(T )prim = {{1, 3}, {2, 4}}. The parity matrix
looks like ⎛

⎜⎜⎜⎜⎜⎜⎝

0 2 −2
−1 1 0

1 0 −1

−1 1 0

1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The coefficient groups equal Āst = Z
3/〈(0, 2,−2)〉 = Z

2 ⊕ Z2.
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