A precise definition of an inference (by the example of natural deduction systems for logics l.,.)

Abstract. In the paper, we reconsider a precise definition of a natural deduction inference given
by V. Smirnov. In refining the definition, we argue that all the other indirect rules of inference in a
system can be considered as special cases of the implication introduction rule in a sense that if one of
those rules can be applied then the implication introduction rule can be applied, either, but not vice
versa. As an example, we use logics l,p,, @, B € {0, 1, 2, 3,... ®}, such that |q is propositional classical
logic, presented by V. Popov. He uses these logics, in particular, a Hilbert-style calculus Hl,p,, o, B € {0,
1, 2, 3,... o}, for each logic in question, in order to construct examples of effects of Glivenko theorem’s
generalization. Here we, first, propose a subordinated natural deduction system Nlg,, o, B € {0, 1, 2,
3,.. o}, for each logic in question, with a precise definition of a Nl.g.-inference. Moreover, we,
comparatively, analyze precise and traditional definitions. Second, we prove that, for each a, B € {0, 1,
2, 3,... ®}, a Hilbert-style calculus Hl.,p> and a natural deduction system Nl . are equipollent, that is, a
formula A is provable in Hl.,p iff A is provable in Nlg..

ABCTpaKT. B cTaTbe Mbl BHOBb 06pallaemcs K TOYHOMY ONpeaesieHUI0 HaTypasibHOro BbiBOAA,
KoTopoe gan B.A. CmupHOoB. lMpU YyTOYHEHMU OMNPEAENEeHMA Mbl YTBEPKAAEM, UYTO BCE OCTa/ibHble
Henpsamble NpaBwua BbIBOAA B CUCTEME MOTYT PacCMaTPUBATbLCA KaK YacTHble ClyYyau NnpaBuna BBeAeHuUsA
UMMNANKALUUKM B TOM CMbICNE, YTO €C/IM MPUMEHMMO OAHO W3 3TUX NPABMA, TO TAKXKe MPUMEHUMO U
NpaBWaO BBEAEHWNA UMM/MKALIMKM, HO HE HA060POT. B KauecTBe Npumepa Mbl UCMOb3YEM NOTUKK | p5,
a, B €1{0,1,2,3,.. o} Takne, 4TO |0, - ITO KNACCMYECKAA IOTUKA BbICKA3bIBaHUI, KOTOPbIE NPEeAIOKNA
B.M. Monos. OH ncnonb3yeT AaHHbIe JIOTUKK, B 4aCTHOCTH, ucuncneHne Mnbbepra Hlgps, o, B € {0, 1,
2, 3,.. ®}, ONA KaxAoN YKasaHHOM JIOTMKM, A8 TOro, 4YToObl MOCTPOUTL NPUMEPbl AEeNCTBUA
0606ueHHO Teopembl [nMBeHKO. 34ecb Mbl, BO-MEPBbIX, Npednaraem cuctemy cybopamHaTHOro
HaTypanbHoro BbiBoAa Nlgs, @, B € {0, 1, 2, 3,... @}, ANA KaXKAO0N yKa3aHHOMN NIOTVKKM, U AaemM TOYHoe
onpegeneHne Nl p.-BbiBOAA. bonee TOro, Mbl NPOBOAVMM CPaBHWUTENbHLIA aHanAW3 TOYHOTO W
TPaAULUMOHHOIO onpeaeneHun. Bo-BTopbiX, Mbl MOKasbiBaem, Aas Kaxgbix o, B € {0, 1, 2, 3,.. ®},
3KBUMONEHTHOCTb Mcumcnenna M'mabbepta Hlg, g, M cuctembl HaTypanbHoro BbiBoaa Nl p,, TO €cTb, uTo
dopmyna A pokasyema B Hl, g, T.T.T. A noKasyema B Nl p.
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Introduction
In [9], V. Popov presents logics |.,g> and Hilbert-style calculi Hl, g5, @, B € {0, 1, 2, 3,... o}, for these
logics, such that lp. is propositional classical logic. He uses them in order to construct examples of
effects of a generalization of Glivenko theorem. So, the purpose of the present paper is to present,
within the framework of [7-8], a subordinated natural deduction (abbreviated passim as ‘ND’) calculus
Nl p>, for each logic in question, with the precise definition of an Nl g.-inference, following the works
of V. Smirnov [11, 13]. We, also, show the equipollentness between a Hilbert-style calculus Hl., g, and a
ND system Nl for each a, B € {0, 1, 2, 3,... ®}, that is, a formula A is provable in Hlgp, iff A is
provable in Nl gs.

Following [9], we fix a standard propositional language L over an alphabet {p, p1, p2,..., (, ), & V,
D, —}. A notion of a formula of language L is defined as usual. (Passim by ‘a formula’ we mean ‘a formula
of language L’.) A formula is said to be quasi-elemental iff no logical connective &, v, > occurs in it ([9]).
A length of a formula A is said to be the number of all occurrences of the logical connectives in L in A.
Letters A, B, C, D, E with lower indexes run over arbitrary formulae. Letters I, A with upper and lower
indexes run over arbitrary finite sets of formulae. Letters a and B run over {0, 1, 2, 3,... ®} passim.



In [9], V. Popov presents a Hilbert-style calculus Hl,p.. The language of the calculus is the
language L mentioned above. We follow (and, for more details, refer the reader to) [9] in describing a
Hilbert-style calculus Hl,g.. A formula is an axiom of Hlg, iff it is one of the following forms: (I)
(ADB)>((BoC)(ADC)), (I1) Ao(AvB), (111) Bo(AvB), (IV) (ADC)>((BoC)>((AvB)2C)), (V) (A&B)DA, (VI)
(A&B)>oB, (VII) (CoA)D((CoB)(Co(A&B))), (VI (AD(BDC))((A&B)C), (IX) ((A&B)>C)(AD(BDC)), (X)
(((A>B)>A)>A), (Xl,a) —=D>(D>A), where D is a formula which is not a quasi-elemental formula of a
length less than o, (XII,B) (Eo—(ADA))>—E, where E is a formula which is not a quasi-elemental formula
of a length less than 3. Modus ponens is the only inference rule of the calculus.

Definitions of an inference in Hl., . (abbreviated as Hl.,g,-inference) and a proof in Hl.,, are
given in the standard way for a Hilbert-style calculus. Notions of the length of an inference and the
length of a proof as well as the notion of a theorem are defined as usual.

In [9], the following fact is particularly highlighted: 1.0, is propositional classical logic, where
lcoo- is the set of formulae provable in Hlygp.. This fact implies both schemata A>(Bo>A) and
(A>(B2C))>((ADB)>(ADC)) are theorems of Hlye, and, therefore, of each Hilbert-style calculus Hl,ps,
o, B €{0,1, 2, 3,.. w}. So, we, non-constructively, point out the standard deduction theorem holds for
each calculus in question.

The paper is organized as follows. Section 1 presents a ND system Nl g, with both precise and
traditional definitions of an Nl g.-inference. In Section 2, the Hilbert-style calculus Nl., g, and the ND
system Nl g, are shown to be equipollent. The final section concludes the work and outlines the future
research.

1. NDsystems Nl
Let us set up a subordinated ND system Nl g, and give a precise definition of a Nl,--inference. The
language of the system is, again, the language L mentioned above. There are two kinds of rules in the
system. Here is the list of the rules of the first kind (sometimes called direct). The rules of the second
kind (sometimes called indirect) are defined with the precise definition of an inference below.
The direct Nl p>-rules:

A&B A&B A, B
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-------- —in1(o)» Where D is a formula which is not a quasi-elemental formula of a length less than a.
A

The necessity of a precise definition of Nl g.-inference is illustrated with V. Smirnov’s thesis: “...
By natural deduction systems we shall refer to logistic systems with a special notion of an inference. In
these systems, an inference is more complex object than just a sequence of formulae or a tree-like of
formulae. Due to this property of natural deduction systems, a definite object entitled a formal
inference corresponds to both direct and indirect ways of argument” [11, p. 96, both the translation and
the italics are ours].

In defining both a Nl g.-inference u its length, we, with modifications, follow V. Smirnov [11, p.
116-118], [13, p. 245]. Letters n n 1 with indexes denote Nl g.-inferences, a letter y with indexes
denotes parts of Nl g.-inferences, and a letter h denotes the length of an inference.!

An precise definition of Nl g,-inference and a definition a height of Nl g.-inference
1. Ais an inference 1 of A from a set of premises {A}, and h(1) = 1.

In every case, the precise definition specifies which part of a Nl g.-inference is under consideration. The reason
we introduce a special letter to run over parts of inference is that, in general, as we will see, a part of an inference
is not an inference.



2. If n is an inference from ' and A is a formula, then j: is an inference 1 of A from {A}Ur, and h(1) =
h(n)+1.
3. If n is an inference from T, 1 contains Ay, ..., Ac (k =1, 2) and B is inferred from A, ..., A, via one

of the rules &1, &ei2) &iny Vin1, Vina, Del aNd —iny(q), then g

4, If n is an inference of B from {A}Ur and n is ,/1' where v, is a part of n, starting from the last

"y
¥

is an inference 1 of B from T, and h(1) = h(n)+1.

premise A in 1 until B itself > then |v1 is aninference 1 of ASB from I, and h(1) = h(n)+1.

A=B
5. If n is an inference of B from {A}uUrl and 1 is ,/1' where B is C, A is CoD, vy, is a part of n, starting
from the last premise CoD in 1 until C itself, then |y1 is an inference 1 of C from I, and h(1) = h(n)+1.
C
6. If n is an inference of B from {A}Url and 1 is ,/1’ where B is =(ADA), A is E, where E is a formula

which is not a quasi-elemental formula of a length less than 3 and y;, is a part of 7, starting from the last

premise E in 1 until =(A>A) itself, then |1 is an inference 1 of —E from I, and h(1) = h(n)+1.
—E
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7. If n is an inference of B from {D;}u{D,}Url and 1 is v1, where B is C and y contains D;vD,, y; is a
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v

part of n, starting from the last premise D; in n until C, v, is a part of n, is a part of n, starting from the

last premise D, in 1 until C itself, then |“.-'1 is an inference 1 of C from I, and h(1) = h(n)+1.?

|v2

C

The core of modifications is as follows. An essential modification deals with V. Smirnov’s

suggestion that any discarded part of a Nl g.-inference is a Nl p--inference. (A discarded part of an
inference is marked with a horizontal line from the left.) This is not the case if a part of a Nlg.-
inference contains a formula that is not a premise and is inferred from the formulae which this part of a
Nl p>-inference does not contain. For example, in the clause 4, a part y; may contain a formula that is

inferred from some formula contained in a part y (and y may be an inference, itself). So, y; is not an

LT

inference while f'l is. Sometimes, V. Smirnov applies a notion of an auxiliary inference (or a

subderivation) to such sequences of formulae as y;. The name of this notion obviously reflects the idea
that such an inference plays a secondary role, and can be considered only with respect to the ‘key’
inference. However, we can’t find it satisfactory that an auxiliary inference is shown not to be a kind of
an inference. At last, minor modifications deal with evaluating a height of Nl ,g.-inference in ¢ and v
rules as well as with evaluating the height of a NI, g.-inference that now cannot be equal to 0.

Clause 4 (5, 6, and 7, respectfully) of the above definition is a formulation of an indirect rule of
Din (D, —in2(p), @and Ve, respectfully). We pay attention (and exemplify it below) to the fact that clauses 5-
7 are special cases of clause 4. (In case of clause 7, the situation is a little bit more complex than in the
other cases because it allows simultaneously discarding two parts of an inference, not one part. It is the
reason why we choose clause 7 in the example below.) By the fact that a rule, say, oy, is a special case of
a rule o, we mean that if one can apply o, in the inference then one can apply o, either, but not vice
versa. To be sure, we don’t mean D, is derivable via ;.

%It is the last occurrence of B in 1M that is under consideration. In what follows, we will omit this specification
everywhere, except clause 7.

* Clause 7 may have alternative formulations: 1) y; occurs between vy, and y,; 2) y; reorders with y,; 3) D;vD, occurs
below a part y; etc. This analysis goes beyond the scope of the paper.



There different notation formats for a subordinated inference in ND systems [11, p. 119-126].
We will use so called Jaskowski-Quine notation in [2].*

Let us consider the following sequence of formulae:
ADC — premise.
BoC — premise.
AvB — premise.
A — premise.
C—o:1,4
B — premise.
C—Da:2,6

In accordance to clause 4, we have an inference of C from premises AoC, BoC, AvB, A, and B.
Thus, we are legitimate to proceed with an inference of BoC from premises AoC, BoC, AvB, and A:

1. AoC-premise.

2. B>C-—premise.

3. AvVB-premise.

4. A-—premise.

5. C—-oa: 1,4

|6. B—premise.

|7. C—>: 2,6

8. BoC—o,: 7

On the other hand, in accordance to clause 7, an inference of C from premises ASC, BoC, AvB,
A, and B contains a part, starting from the last premise A until C (steps 4-5), and a part, starting from the
last premise B until C (steps 6-7), as well as it contains AvB which contains in no parts mentioned above.
Thus, we are legitimate to proceed with an inference of C from premises AoC, BoC, and AvB:

1. AoC-premise.

2. B>C-—premise.

3. AvB-—premise.

|4. A - premise.

[5. C—D: 1,4

|6. B — premise.

|7. C—Dg: 2,6

8 C-vi:3,5,7

As a result, we see the complexity of a notion of an inference in ND systems leads to the fact
that a sequence of formulae turns out to be different inferences of the same formula from different set of
premises. Discussing this fact (which is impossible for the other conventional proof systems like Hilbert-
style calculus, sequent-style calculus and tree-like ND system) and its consequences is not a topic of the
paper. We are fully aware, however, that the fact that a precise definition of an inference leads to some
ambivalence seems to be absurd. But we strongly believe that the reason of this fact is caused by the
nature of indirect argument, itself, which have been being under suspicion in the development of logic.”

On the other hand, the difference between direct and indirect rules has become more evident.
A direct rule is applicable provided an inference contains formula (formulae) which is (are) above the
line in a formulation of this rule. One can apply a direct rule to any formula; it is not necessary for the
formula to be the last one in this inference. For example, in applying &.; or some other direct rule, A&B
(the one that is above the line) is not necessary the last formula of the inference, i.e., it is not necessary
that this inference is an inference of A&B from (possibly, empty) .

The situation is not the same in case of indirect rules. An indirect rule is applicable, too, provided
there is an inference of the formula which is above the line in the formulation of this rule. The crucial
difference is that it applies to the last formula in an inference only. (Note, at any moment, there is only

Nou,krwnNe

*In the literature, a subordinated inference is sometimes called a linear-type ND or a Fitch-style ND [10]. A
subordinated inference differs from a tree-like inference presented by G. Gentzen [5], where, roughly, no formula
is used more than once in the inference as a premise.

> It is well-known that intuitionists have been criticizing the reductio ad absurdum, a type of indirect argument.



one formula that is the last one in an inference.) For example, in applying o;,, a formula B (the one that
is above the line) is, necessarily, the last one in an inference, i.e., it is a must that there is an inference of
B from a non-empty set of premises I, where A is a member of I'. In the example above, we see that one
has different options in applying indirect rules in the same way one has different options in applying
direct rules. However, it is impossible for a sequence of formulae to be an inference of two formulae:
such a possibility is allowed by so called traditional formulation of some indirect rules (in the next
subsection it holds for the traditional formulation of v¢). Sometimes negation introduction rule is
formulated, roughly, as follows: if there is an inference of both formulae A and —A from the last premise
C then there is an inference of a formula —C [1, p. 140], or ‘to be applied, an indirect rule —;, requires
two auxiliary inferences I, A |[-Band I, A |- =B’ [12, p. 66]. In general, one can’t determine another
inference (‘auxiliary inference’) ‘inside’ a given inference. Let us, again, say that discussing it goes
beyond the scope of this paper.

In the end of this section, let us present so called the traditional formulations of both indirect
rules and of an inference.® In the rules below, a formula A (ASB or E) is the /ast premise. In —inp), a
formula E is, additionally, a formula which is not a quasi-elemental formula of a length less than B. In
this subsection, by ‘inference’ we mean ‘Nl g.-inference’.
[A] B [ADB] A [E] —(B>B)
"""" =in I En—T V] ($)]

An inference is said to be a non-empty finite linearly ordered sequence of formulae Cy, C,, ..., G,

satisfying the following conditions:’

e Each C;is either a premise or is inferred from the previous formulae via a rule;

e In applying Do, each formula, starting from the last premise A until ADB, the result of this
application, exclusively, is discarded from an inference;

e In applying op, each formula, starting from the last premise ASB until A, the result of this
application, exclusively, is discarded from an inference;

e In applying —inyp),€ach formula, starting from the last premise E until —E, the result of this
application, exclusively, is discarded from an inference.

Given an inference Cy, C,, ..., C with A;, A,, ..., A, being non-discarded premises and with the last
formula C, being graphically identical to B, we say this is an inference of B from premises A;, A,, ..., A,. If
a set of formulae I contains A;, A,, ..., A, and there is an inference of B from premises A4, A,, ..., A, then
we say there is an inference of B from a set of formulae I [2, p. 129-130].

2. Metatheory of a ND system

We proof the following Theorem: T |—ycop- A < T |—nicop> A, foreach a, B € {0, 1, 2, 3,... o}.

Proof =. Proof is by the method of complete induction on a height s of an arbitrary Hl.p-
inference of A from I'.2

The scheme of complete induction is as follows: (P(1) & Vx(Vy((y < x) D P(y)) © P(x))) © VxP(x).

Let P(s) denote a sentence “if there is a Hl, g,-inference of a height s of A from I then there is a
Nl g>-inference of A from I'”.

Then the scheme looks as follows: ((if there is a Hl,g.-inference of a height 1 of A from I then
there is a Nl p--inference of A from I') & Vs(Vt((t < s) D (if there is a Hl., p--inference of a height t of A
from I then there is a Nl g.-inference of A from T)) o (if there is a Hl,g.-inference of a height s of A

® For the sake of simplicity and without loss of generality, we don’t present a traditional formulation of v and
refer the reader to, for example, [6]. Note, sometimes, the traditional formulation of the indirect rules includes the
derivability symbol ‘|- [1].

" Here is (of course, incomplete) list of (text)books reproducing the traditional formulation one way or another: [1-
4, 6, 14-15]. On the other hand, we are fully aware that textbooks’ authors are, mostly, driven by pedagogy trying
to ‘not go deep into theoretical subtleties of all kinds’ and following the principle ‘to tell the truth and only the
truth, but not all the truth’ [2, p. 11, 12].

® We recall the standard definition of a length of an inference in a Hilbert-style calculus.



from I then there is a Nl g.-inference of A from I))) © Vs(if there is a Hl., g--inference of a height s of A
from I then there is a Nl g--inference of A from ).

The base case is trivial according to the definitions of inferences in both Hl, g, and Nl .

We prove the inductive step: Vs(Vt((t <'s) D (if there is a Hl., g--inference of a height t of A from
I then there is a Nl g--inference of A from T)) o (if there is a Hl., g--inference of a height s of A from I
then there is a Nl g--inference of A fromT)).

For modus ponens is an inference rule in both Hl, g, and Nlg,, it is enough to show that every
Hl.qp>-axiom is provable in Nl g.. We confine ourselves to proving two specific Hl.,p.-axioms: axiom
(Xl,a) =D>(D>A), where D is a formula which is not a quasi-elemental formula of a length less than a,
and axiom (XII,) (Eo—(A o A))>—E, where E is a formula which is not a quasi-elemental formula of a
length less than 3

| —Ni<a, > mD(DDA)

|1. —D — premise

||2. D — premise

| |3 A- in1(o)* 1, 2

|4. DDA —o,: 3

5. =D>(DDA) — i 4

| =ni<a,p> (ED—(A D A))o—E
|1. Eo—(A D A) — premise
||2. E — premise

[13. 21(ADA)—D: 1, 2

|4. —E —inyp): 3

5. (ED—~(ADA)>—E-Di: 4

Proof <. Proof is by the method of complete induction on a height n of an arbitrary Nl .-
inference of A from .

The scheme of complete induction is as follows: (Q(1) & Vx(Vy((y < x) 2 Q(y)) © Q(x))) D ¥xQ(x).

Let Q(n) denote a sentence “if there is a Nl g--inference of a height n of A from I then thereis a
Hl,g>-inference of A from I”.

Then the scheme looks as follows: ((if there is a Nl g.-inference of a height 1 of A from I then
there is a Hl., g--inference of A from I') & ¥n(Vq((q < n) o (if there is a Nl., g.-inference of a height g of A
from T then there is a Hl,p.-inference of A from T)) o (if there is a Nl g.-inference of a height n of A
from I then there is a Hl., g>-inference of A from I'))) © Vn(if there is a Nl g.-inference of a height n of A
from I then there is a Hl., g.-inference of A from ).

The base case: h(n) = 1.

According to clause 1 of the definition of a Nl g.-inference, a Nl g.-inference n of a height 1 of
A from a set 3a premises I looks as follows: A is an inference from {A}:

1. A-—premise.

This inference corresponds to the following Hl., g.-inference of A from a set 3a premises {A}:

1. A-—premise.

We prove the inductive step: ¥n(Vq((q < n) D (if there is a Nl g--inference of a height q of A
from T then there is a Hl,p--inference of A from T)) o (if there is a Nl g.-inference of a height n of A
from I then there is a Hl., g.-inference of A fromT)).

According to clauses 2-7 of the definition of a Nl g,-inference, a Nl g,-inference 1 of a height n
of A from a set 3a premises I' looks as one of the six following cases:

!
Case 1 (2™ clause of the definition of a Nl p--inference): 4 , Wwhere 1’ is an inference from a set

3a premises [ and Iis {A}UI.
I—l

n. A—premise.



For h(n)’) < h(n),gone can, by the inductive hypothesis, build up a Hlg.-inference from a set 3a
premises I". Then a Hl, g--inference of A from a set 3a premises I looks as follows:
rl

n’. A—premise.
!
Case 2 (3" clause of the definition of a Nl g->-inference): g , where " is an inference of C from a

set 3a premises I, " contains Ay, ..., Ag; Ais inferred from Ay, ..., Ac via one of the rules &1, &e2, &ins Vini,
Vin2) Dely and Tinl(a)*

Subcase 2.1.: 1’ contains —D and D; A is inferred from —D and D via —iny), Where j<n-1and m <
n-1.

n-1.C

N, A-—inye:j, M

Let n’" be an Nl g.-inference of C from I, ", be an Nl g.-inference of —D from I, and n’; be an
Nl p>-inference of D from I, where h(n’;) < h(n’) and h(n’;) < h(n’), by the definition. The fact that h(n’)
< h(n), implies that h(n’;) < h(n) and h(n’;) < h(n), and, by the inductive hypothesis, one can build up the
following Hl, g--inferences: a Hl, g.-inference of —D from T, a Hl., g,-inference of D from I, and a Hl, >~
inference of C from I'. Then a Hl, g,-inference of A from a set 3a premises I' looks as follows:

n’-1.C

n’. =D>(D>A) - Hlps-axiom (XI,a)

n’+1. A—modus ponens: j’, m’, n’ (two times)

Subcase 2.2.: ' contains A&B; A is inferred from A&B via &, where m < n-1.
r

m. A&B

n-1.C

n.A-&g:m

Let " be an Nl g.-inference of C from I and n’; be an Nl g--inference of A&B from I, where
h(n’1) < h(n’), by the definition. The fact that h(n’) < h(n), implies that h(n’;) < h(n) and, by the inductive
hypothesis, one can build up the following Hl, g.-inferences: a Hl., g.-inference of A&B from T, a Hlp-
inference of C from I'. Then a Hl, g,-inference of A from a set 3a premises I' looks as follows:

r
m’. A&B
n’-1.C

n’. (A&B)>A - Hl,ps-axiom (V)

P
° By the definition, h(E ) =h(n’)+1.



n’+1. A - modus ponens: m’, n’

Subcase 2.3., where 1’ contains B&A; A is inferred from B&A via &, is treated analogously to
subcase 2.2.

Subcase 2.4.: " contains B and D; A is B&D and is inferred from B and D via &;,, where f<m, j <
n-1, and m < n-1.

r

j.B

m. D

n-1.C

n. B&D - &;,: j, m

Let 0" be an Nl g.-inference of C from I, n’; be an Nl g--inference of B from I, and n’, be an
Nl p>-inference of D from I, where h(n’;) < h(n’) and h(n’;) < h(n’), by the definition. The fact that h(n’)
< h(n), implies that h(n)’;) < h(n) and h(n’;) < h(n), and, by the inductive hypothesis, one can build up the
following Hl.,g.-inferences: a Hlpg--inference of B from I, a Hl,g.-inference of D from I, and a Hl -

inference of C from I'. Then a Hl, g.-inference of B&D from I looks as follows:
r

f’. A —any Hl,g--axiom
f'+1. BD(A;DB) - Hl, po-theorem
f'+2. DO(A,2D) - Hl, g>-theorem

j.B
j’+1. A;7oB - modus ponens: f'+1, '

m’.D
m’+1. A;oD - modus ponens: f'+2, m’

n’-1.C

n’. (A;2B)>((A;oD)>(A;2(B&D))) - Hlgy,p>-axiom (V)

n’+1. B&D - modus ponens: j+1’, m+1’, ', n’ (three times)

Subcase 2.5.: |’ contains B; A is BvD and is inferred from B via vi,;, where m < n-1.
r

m.B

n-1.C

n.BvD - Vvini:m

Let " be an Nl g.-inference of C from I and n’; be an NI, g.-inference of B from I, where h(n’,)
< h(n’), by the definition. The fact that h(n’) < h(n), implies that h(n’;) < h(n) and, by the inductive
hypothesis, one can build up the following Hlg.-inferences: a Hl, g.-inference of B from I, a Hlgps-

inference of C from I. Then a Hl, g,-inference of BvD from a set 3a premises I looks as follows:
r

m’.B

n’-1.C

n’. Bo(BvD) - Hl,p>-axiom (I1)

n’+1. BvD - modus ponens: m’, n’

Subcase 2.6., where 1’ contains D; A is BvD and is inferred from D via v, is treated analogously
to subcase 2.5.



Subcase 2.7.: ' contains BDA and B; A is inferred from BoA and B via o, where j<n-1,and m <
n-1.
r

j. BDA
m. B

n-1.C

n.A->Dg:j,m

Let " be an Nl 4 gs-inference of C from I, 1’y be an Nl g.-inference of BOA from I, and ', be an
Nl ps-inference of B from I, where h(n’;) < h(n’) and h(n’;) < h(n’), by the definition. The fact that h(n’)
< h(n), implies that h(n)’;) < h(n) and h(n)’;) < h(n), and, by the inductive hypothesis, one can build up the
following Hl,gs-inferences: a Hl,g.-inference of BoA from T, a Hl,ps-inference of B from I, and a

Hl. ps-inference of C from I'. Then a Hl., g.-inference of A from I looks as follows:
I

j’. BDA
m’. B

n’-1.C
n’. A - modus ponens: j, m’
Case 3 (4™ clause of the definition czf a Nl,p>-inference). A is BoC and a Nl p--inference n of a
vl , where f'l is a Nl p>-inference 1 of C from {B}UT, y; is a
B=C
part of 1, starting from the last premise B in 1 until C, itself, and m < n-1.
r

height n of BoC from I looks as follows:

|m. B — premise

[...

[n-1.C

n. BoC->oj:n-1

For h(1) < h(n), one can, by the inductive hypothesis,™ build up a Hl..p>-inference of C from
{B}Ur. Then a Hl,g--inference of BoOC from I looks as follows:

r

m’. B — premise

n’-1.C
n’. BoC — deduction theorem: m’, n’-1
Case 4 (5th clausenof the definition of a Nl g.-inference). A Nl g.-inference n of a height n of A

"y

from I looks as follows: |v1, where ,/'1 is @ Nl p>-inference 1 of A from {ADB}UIT, v, is a part of 1, starting
A

from the last premise ASB in 1 until A, itself, and m < n-1.
I

|m. ASB — premise

% Here and in the cases below, we stress the fact that we proceed from one inference to another inference, not
from a part of an inference to another inference. So, the inductive hypothesis of the theorem is applicable.



[...

[n-1. A

n.A->p:n-1

For h(1) < h(n), one can, by the inductive hypothesis, build up a Hl,g.-inference of A from
{ASB}UT. Then a Hl., g,-inference of A from I looks as follows:

r

m’. ADB — premise

n’-1. A

n’. (AoB)>A — deduction theorem: m’, n’-1

n’+1. ((ADB)>A)DA - Hl, gs-axiom (X)

n’+2. A—modus ponens: n’, n’+1

Case 5 (6™ clause of the definition of a Nl ps-inference). A is —E, where E is a formula which is
not a quasi-elemenﬁ’fal formula of a length less than 3, and a Nl g.-inference n of a height n of —E from I

LT

looks as follows: |71, where 7 is a Nl p>-inference 1 of —(ADA) from {E}UT, y, is a part of 1, starting
—E
from the last premise E in 1 until =(A>A), itself, and m < n-1.
r

|m. E — premise
[...
|n-1. =(ADA)

n. —E - —in2(B)- n-1

For h(1) < h(n), one can, by the inductive hypothesis, build up a Hl, g.-inference of —(ADA) from
{E}UT. Then a Hl, g.-inference of A from I looks as follows:

r

m’. E — premise

n’-1. =(ADA)

n’. Eo—(ADA) — deduction theorem: m’, n’-1

n'+1. (E5—(ADA))>—E - Hl g--axiom (XII,3)

n’+2. A—modus ponens: n’, n’+1

Case 6 (7" clause of the definition of a Nl g>-inference). a Nl , g,-inference n of a height n of A

from I looks as follows: | 71, where 71 is a Nl ps-inference 1 of A
|v2 v2
A
{D}U{B}UIT, y contains DvB, y; is a part of n, starting from a premise D in n until A, v, is a part of 7,
starting from the last premise B in nj until A, itself, and f< g, g <j, j<n-1."
r

f. DVB

|g. D — premise
[...

[j- A

|j+1. B— premise

[...
[n-1. A

1 On alternatives of this case see the footnote to the 7™ clause of the definition of an Nl p>-inference.



n.A-ve:f,j,n1
First, let us consider a Nl p--inference 1 of A from {D}U{B}UT.
r

f. DVB

g. D — premise

j. A

j+1. B —premise

n-1. A

By the construction, 1 contains the following Nl g.-inferences: 1, of DvB from T, 1, of A from
{D}UT, and 15 of A from {BhU{D}UI.

For h(y) < h(1),12 for each i from {1, 2, 3}, one can build up a Hl,g.-inference of DvB from I, a
Hl., g>-inference of A from {D}Ur, and a Hl,g.-inference of A from {B}_{D}Ur. Then a Hl,g.-inference

of A from {Dh_{B}UT looks as follows:
I

f' DvB

g D — premise
oA

j'+1. B— premise
.r;.'—l. A

So, a Hl,g>-inference of A from I looks as follows:
r

;‘.'.. DvB

é;. D — premise
i.a

j’+1. B — premise
;’.l.'-l. A

n’. BOA — deduction theorem: j’+1, n’-1
r

f’. DvB

g’. D — premise

iA

j”+1. DDA — deduction theorem: g”, j”

j”+2. (DDA)>((BDA)>((DVB)>A)) - Hlg,gs-axiom (1V)
j"43. A= 7, j”+1, j’+2 (three times)

2 Unlike the other cases, this case requires the inductive hypothesis hold true for a Nl g,-inference of any length
less than the length of 1, not only for a Nl g--inference of a length h(1)-1.



The Theorem implies a Corollary: for each a, B € {0, 1, 2, 3,... ®}, a Hilbert-style calculus Hl.p

and a ND system Nl g are equipollent, i.e., Ais a Hl., g,-theorem iff Ais a Nl g.-theorem.

Final remarks
In the paper, for each logic, l.q 55, 0, B € {0, 1, 2, 3,... ®}, such that |, is propositional classical logic [9],
we, continuing the series of works [7-8], present a subordinated ND system Nl .. Moreover, each ND
system has a precise definition of an inference which is a modification of V. Smirnov’s approach. Our
approach highlights a view on the implication introduction rule as the genus for the other indirect rules.
Using a Hilbert-style calculus Hl, >, for each logic in question, presented by V. Popov [9], we show that
a formula A is provable in Hl,g, iff it is provable in Nl.g.. In the future, we point out studying
consequences of the precise definition with an application to complexity problems. Last, not least, we
see forward to formulating proof searching procedures for these ND systems in the fashion of [3-4].

Corrections
The paper “Natural deduction in a paracomplete setting” by A. Bolotov and V. Shangin to have been
published in this Journal’s 20" volume needs two corrections. First, the 23™ entry in the references list
should be replaced with “Popov V. and Solotschenkov A. Semantics of propositional paracomplete
Nelson logic // Integrated scientific journal. V. 8. 2012. P. 31-32. (in Russian).”. Second, the truth-table
definitions for the connectives of logic PComp in the 2™ section must be added with the following
footnote: A. Avron had told V. Popov about these definitions at the World Congress on Paraconsistency
(Ghent, 1997) and then V. Popov told one of the paper’s authors about these definitions.

Acknowledgments
The author thanks the referees for commenting the previous draft of the paper.

References
1. Anisov A.M. Modern logic. Moscow, IFRAN Publishers, 2002 (in Russian).
2. Bocharov V.A. and Markin V.I. Introduction to logic. Moscow, 2011 (in Russian).

3. Bolotov A. and Shangin V. Natural Deduction System in Paraconsistent Setting: Proof Search for
PCont // Journal of Intelligent Systems. V. 21 (1). 2012. P. 1-24.
4, Bolotov A., Basukoski A., Grigoriev O., and Shangin V. Natural deduction calculus for linear-time

temporal logic // LNAL. V. 4160. 2006. P. 56-68.
5. Gentzen G. The collected papers (ed. M.E. Szabo). North-Holland Pub. Co., 1969.

6. Ivlev Yu.V. Logic. Moscow, Prospect Publishers, 2008 (in Russian).

7. Popov V. and Shangin V. Syntax and semantics of simple paracomplete logics // Logical
investigations. V. 19. 2013. P. 325-334,

8. Popov V. and Shangin V. Syntax and semantics of simple paranormal logics // Logical-philosophical

studies. V. 6. 2014. P. 290-297.

9. Popov V. On one generalization of Glivenko theorem // Logical investigations. V. 21(1). 2015. P.
100-121 (in Russian).

10. Quine W.V. On natural deduction // The Journal of Symbolic Logic. V. 15, No. 2, 1950. P. 93-102.
11. Smirnov V.A. Formal inference and logical calculi. Moscow, Nauka Publishers, 1972 (in Russian).
12.  Smirnov V.A,, Anisov A.M., Arutyunov G.P., Dmitriyev D.V., Melentyev A.S., and Mikhailov F.T.
Logic and clinical diagnostics. Theoretical foundations. Moscow, Nauka Publishers, 1994 (in Russian).

13.  Smirnov V.A., Markin V.I., Novodvorsky A.E., and Smirnov A.V. Proof and proof searching // Logic
and computer. Volume 3. Moscow, Nauka Publishers, 1996 (in Russian).

14. Tomova N.E., Shalack V.I. Introduction to logic for philosophy faculties’ students. Moscow, IFRAN
Publishers, 2014 (in Russian).

15. Voishvillo E.K. Concept as a form of thinking. Moscow, MSU Publishers, 1989 (in Russian).

LLaHrmH Bacunnin Onerosud, shangin@philos.msu.ru

K.dunnoc.H.

MTY um. M.B. JlomoHocoBa, dunocodckuin ¢-1, Kapeapa NOrMKM, aCCUCTEHT

TouyHoe onpeaeneHve HaTypasibHOrO BbIBOAA (Ha MpMmepe CUCTEM HATypasibHOroO BbIBOAA A/1A NOTMUK
l<a,p5)

Shangin Vasilyi, shangin@philos.msu.ru

Ph.D.


http://www.google.ru/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Gerhard+Gentzen%22
http://istina.msu.ru/publications/article/6316690/
http://istina.msu.ru/publications/article/6316690/
mailto:shangin@philos.msu.ru

Lomonosov MSU, Philosophy Faculty, Logic Department, Assistant Professor
An precise definition of a natural deduction inference (by the example of natural deduction systems for

logics l<qp5)



