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Introduction

* Algebraic semantics for FDE relatives
D. V. Zaitsev, ’FDE and its Relatives’
(plenary talk)

* Dunn-Belnap logic or simply FDE operates with well-known
four truth-values from the set 4 = {T, B, N, F}.

* We can use semilattices to provide a semantics for recently
discovered FDE relatives: Exactly True Logic (ETL) and
Non-Falsity Logic (NFL).



Introduction

We consider a family of logics over the same propositional language
Lang, which we define in the Backus-Naur form:

A=p|~A|AAA|AVA

We use Form to denote the set of all formulas of Lang, and Var
represents the set of all propositional variables of Lang.

rvfde = <{Ts Ba N7F}a {T’B}’ {f/\a fV’ f—'}>’ where ﬁ € {f/\’ fV’ f—'}

being an n-ary function if ¢; € {A, V, =} is also an n-ary connective.
e If we consider {T} as the set of designated values, then we obtain
(Vetl-

* If we consider {T, B, N} as the set of designated values, then we
obtain YV, fl-
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Any of these valuation systems might be equipped with an assignment
function a, that maps Var into {T, B, N, F}. One can extend this
function to all formulas, following conditions below:

Vp € Var, v(p) = a(p)

Vei € C, u(ci(Ay, ... Ap)) = fe;(U(AY), ..., u(Ay)), with C — a set of
logical connectives of Lang.
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Then, we can define three consequence relations:

* FDE-consequence:

I' Frge A ¢ for any valuation v, if v[I'] € {T, B}, then

h(A) € {T,B}.
e ETL-consequence:

I' |zer1 A © for any valuation v, if v[['] C {T}, then h(A) € {T}.
* NFL-consequence:

I' =np1 A & for any valuation v, if v[I'] € {T, B, N}, then

h(A) € {T,B,N}.

These relations could easily be reduced from expressions of the
set-formula type to expressions of the formula-formula type.



Some semantical facts

Logics Fallacies
A A -A [Erq4e B (absurdity)
First Degree Entailments: B pae AV A (triviality)

AN-A l#fde B Vv —B (safety)

A A ~A |=¢41 B (absurdity)
Exactly True Logic: A N ~A |=es BV ~B (safety)
B [Eer AV ~A (triviality)

B 1 AV ~A (triviality)
AN ~A |Epp1 BV ~B (safety)
AN ~A [Fnp1 B (absurdity)

Non Falsity Logic:



Some semantical facts.

Exactly True Logic:

AN~AFen C BA~B |Fen C
but
(AA~A)V (B A~B) [Eer C

Non Falsity Logic:

A [=pp1 (BV ~B) A [=pp (CV ~C)
but
Anf (BV ~B)A(CV ~C)



Some semantical facts.

Exactly True Logic:

AN~AEen B
but
~B |#etl ~(A A ~A)

Non Falsity Logic:
A Iznfl BV ~B
but

~(BV ~B) [Epf1 ~A
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* Exactly True Logic (ETL)
2013  Pietz, A., Rivieccio, U. ’Nothing but the Truth’
Journal of Philosophical Logic

* Non-Falsity Logic (NFL)
Shramko, Y., Zaitsev, D., Belikov, A. ’First Degree Entailment
and its Children’ (to appear in Studia Logica)
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Definition
Denote by PRy the sentential logic defined through the following set
of rules (and no axioms), where p, g, r € Var:

z zl‘j ®S) 2P (R6) Z)VV(Z)VVVV) (R7) (p’v’ ;)(Z(Ap’j S (R®)
) Ly wio RS
%(RIS) W(RM) 10



* Provide natural ’Hilbert-Style’ axiomatizations for ETL and
NFL
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* Provide natural ’Hilbert-Style’ axiomatizations for ETL and
NFL

* Clarify relationships between FDE and its relatives

11



First-degree entailments

A pair (Lang;+rqe) is called logical system FDE, where Lang —
propositional language defined above; and ¢, is reflexive relation
satisfying following principles and rules:

al.A/\Bl-fdeA a2.A/\kadeB a3.Al-fdeAVB
a4. B "fde AV B as5. A "fde ~~A ab. ~~A "fde A

al. AN(BV C)rrge (ANB)V(ANC)
as. ~(A A B) Ffde ~AV~B a9. ~AV ~B Frde ~(AA B)
alo. ~(A \% B) Ffde ~AAN~B all. ~AAN~B Ffde ~(A V B)

rl. Avsge B; Brrge C/ Atgge C
r2. Avfge B; Avgae C| Avrgge BAC
r3. A Frde C:; B Frde C/ AV B Frde ©
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Binary consequence proof system for ETL

A pair (Lang;+.;) is called logical system L,;;, where Lang —
propositional language defined above; and F.,; is reflexive relation
satisfying following principles and rules:

al. ANBbrey A a2. AANBtvrey B a3. Avreyy AV B
614. B "etl A \Y B a5. A "etl "”"A a6. "”"A "etl A

al. AN(BVC)tey (ANB)V(ANC)
a8. ~(AAB) ey ~AV ~B  a9. ~AV ~B ey ~(A A B)
al0. ~(AV B) besyy ~AAN~B  all. ~AA~Bbey ~(AV B) al2.
~AAN(AV B) tory B

rl. A"etl B,B"ellC/Al‘eﬂC
rzAFetlB,AFeth/AFetlB/\C
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Binary consequence proof system for ETL

A pair (Lang;+.;) is called logical system L,;;, where Lang —
propositional language defined above; and F.,; is reflexive relation
satisfying following principles and rules:

al. ANBbrey A a2. AANBtvrey B a3. Avreyy AV B
614. B "etl A \Y B a5. A "etl "”"A a6. "”"A "etl A

al. AN(BVC)tey (ANB)V(ANC)
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rl. A"etl B,B"ellC/Al‘eﬂC
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r3. Ater Cy ~C kopp ~A; B ey Cy ~C bopg ~B] AV B ko C 13



Binary consequence proof system for NFL

A pair (Lang;+,z) is called logical system L,,r;, where Lang —
propositional language defined above; and +,,¢; is reflexive relation
satisfying following principles and rules:

al.A/\BI—nflA a2.A/\BI—nﬂB a3.A|—nf]AVB
4. Brns AVB  a5. A vy ~~A a6, ~~Aryp A

al. AN(BV C)ruri (ANB)V(AAC)
a8. ~(A A B) Fnfi ~AV~B a9. ~AV ~B Fnfi ~(A A B)
al0. ~(AV B) bpsi ~AAN~B  all. ~AAN~Br,r ~(AV B)
al2. B v, AV (~A A B)

rl. A I—nﬂ B; B I—nﬂ C/ A I—nﬂ C
r3. A Fnfi C; B Fnfl C/ AV B Fnfi C
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Binary consequence proof system for NFL

A pair (Lang;+,z) is called logical system L,,r;, where Lang —
propositional language defined above; and +,,¢; is reflexive relation
satisfying following principles and rules:
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Contrapositive Filtration

* Why these rules? Prof. Yaroslav Shramko remarked that if we
replace standard disjunction elimination only with DS in ETL,
then how to infer theorems like this one: AV B +,;; BV A? The
dual question holds in NFL case, how to infer AA B+, B A A,
if we replace standard conjunction introduction rule with DDS?

» Usually, in FDE case, we use mentioned rules to infer
AVBrBVAand AA B+ B A A, butin ETL and NFL we
cannot use them. Nevertheless, it is obvious that
AV B ey BVAand AAB |=pp B A A.

15



Contrapositive Filtration

Exactly True Logic:

Alzet[B\/A B|=et[BVA
and
AVBl,g BVA

Non Falsity Logic:

AANB |:nfl B AAB |=,1f1 A
and
AAB |:nfl BAA

16



Contrapositive Filtration

¢ The idea is in that we could use these rules if it were not
semantical counterexamples for disjunction elimination (in ETL
semantics) and conjunction introduction (in NFL semantics).

* The following relations holds: |=r4e = |Fer7 and Frge = [Fnfi-

e Then, we need some enriched version of disjunction elimination
rule for ETL, and some enriched version of conjunction
introduction rule for NFL. Since, |=r4e = |=en and
I=fde = [Ens1, and the fact that contraposition rule is admissible
in FDE, i. e. for every A 74, B we have ~B +r4, ~A, we
formulate disjunction elimination and conjunction introduction
in the following (filtrated) form:

17



Contrapositive Filtration

’Filtration’ Rules:
r2. A "nfl B; ~B "nfl ~A; A "nfl C,~C "nfl ~A/ A I—nﬂ BAC
}’3. A "etl C, "‘C "etl "’A, B "etl C, "‘C "etl "’B/ A \/ B "etl C

 Figuratively speaking, these rules filtrate premisses, reducing
them to those whose contrapositive images are derivable in ETL
and NFL. Thus they black out bad premisses, for instance,
AAN~A+rB,~AAN(AVB)rB,and B+ AV ~A,
B+ AV (~A A B), whose contrapositive images are not
derivable!!!

18



Completeness

The following theorems are proved.

Theorem
ETL, Soundness and completeness: A veyp B & A |=er B

Theorem
NFL, Soundness and completeness: A v,51 B & A |=pp1 B



’KITE’, " BULAVA’, what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1),
pp-5-40.
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’KITE’, " BULAVA’, what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1),
pp-5-40.

Extentions of FDE:
FDE + (AA~A+ B)=Kj3
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’KITE’, " BULAVA’, what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1),
pp-5-40.

Extentions of FDE:

FDE+(AA~A+B)=Ks FDE+(BrAvV~A)=LP
FDE + (AA~A+ BV ~B) = RMgqge

FDE + (AA~A+rB)+(BF AV ~A) =TV

20



’KITE’, " BULAVA’, what else?

TV

K3 LP
RM¢ g,

FDE



A pair (Lang; rpE, ) is called logical system FDE, where Lang is a
propositional language based on conjunction, disjunction and
negation; and Fppg, is reflexive relation satisfying following
principles and rules:

al. ANBvypg, A a2. AABryppr, B a3. Atppg, AV B
a4d. B FFDE, AVB a5 A FFDE, ~~A  a6. ~~A FFDE, A
al. AN(BVC)rrpE; (AAB)V(ANAC)
a8. ~(AAB) type, ~AV ~B  a9. ~AV ~B typE; ~(A A B)
alo. ~(A \% B) "FDEf ~AAN~B all. ~AAN~B "FDEf ~(A \Y B)
rl. A "FDEf B; B "FDEf C/ A |'FDEf C

r2. A "FDEf B; ~B "FDEf ~A; A "FDEf C; ~C "FDEf ~A/ A "FDEf BAC

r3. A "FDEf C; ~C "FDEf NA; B "FDEf C; ~C "FDEf ~B/ AV B "FDEf C
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"BULAVA’

TV

ETL NFL

RMyq.

FDE;
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THANK YOU!
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