
FDE and its Relatives, Part II: Axiomatization

Alexander Belikov
Dmitry Zaitsev
June 16, 2017

Department of Logic, Faculty of Philosophy, Moscow State University

1

Introduction

• Algebraic semantics for FDE relatives
D. V. Zaitsev, ’FDE and its Relatives’
(plenary talk)

• Dunn-Belnap logic or simply FDE operates with well-known
four truth-values from the set 4 = {T,B,N,F}.

• We can use semilattices to provide a semantics for recently
discovered FDE relatives: Exactly True Logic (ETL) and
Non-Falsity Logic (NFL).

2

Introduction

We consider a family of logics over the same propositional language
Lang, which we define in the Backus-Naur form:

A B p | ∼A | A ∧ A | A ∨ A

We use Form to denote the set of all formulas of Lang, and Var
represents the set of all propositional variables of Lang.

Vf de = 〈{T,B,N,F}, {T,B}, { f∧, f∨, f¬}〉, where fi ∈ { f∧, f∨, f¬}
being an n-ary function if ci ∈ {∧,∨,¬} is also an n-ary connective.

• If we consider {T} as the set of designated values, then we obtain
Vetl.

• If we consider {T,B,N} as the set of designated values, then we
obtainVnf l.

3

Introduction

Any of these valuation systems might be equipped with an assignment
function a, that maps Var into {T,B,N,F}. One can extend this
function to all formulas, following conditions below:

∀p ∈ Var , υ(p) = a(p)

∀ci ∈ C, υ(ci(A1, ..., An)) = fci (υ(A1), ..., υ(An)), with C – a set of
logical connectives of Lang.

4

Introduction

Then, we can define three consequence relations:

• FDE-consequence:
Γ |= f de A⇔ for any valuation υ, if υ[Γ] ⊆ {T,B}, then
h(A) ∈ {T,B}.

• ETL-consequence:
Γ |=etl A⇔ for any valuation υ, if υ[Γ] ⊆ {T}, then h(A) ∈ {T}.

• NFL-consequence:
Γ |=nf l A⇔ for any valuation υ, if υ[Γ] ⊆ {T,B,N}, then
h(A) ∈ {T,B,N}.

These relations could easily be reduced from expressions of the
set-formula type to expressions of the formula-formula type.

5

Some semantical facts

Logics

First Degree Entailments:

Exactly True Logic:

Non Falsity Logic:

Fallacies
A ∧ ¬A 6 |= f de B (absurdity)
B 6 |= f de A ∨ ¬A (triviality)
A ∧ ¬A 6 |= f de B ∨ ¬B (safety)

A ∧ ∼A |=etl B (absurdity)
A ∧ ∼A |=etl B ∨ ∼B (safety)
B 6 |=etl A ∨ ∼A (triviality)

B |=nf l A ∨ ∼A (triviality)
A ∧ ∼A |=nf l B ∨ ∼B (safety)
A ∧ ∼A 6 |=nf l B (absurdity)

6

Some semantical facts. Counterexample

Exactly True Logic:

A ∧ ∼A |=etl C B ∧ ∼B |=etl C
but

(A ∧ ∼A) ∨ (B ∧ ∼B) 6|=etl C

Non Falsity Logic:

A |=nf l (B ∨ ∼B) A |=nf l (C ∨ ∼C)
but

A 6 |=nf l (B ∨ ∼B) ∧ (C ∨ ∼C)

7

Some semantical facts. Counterexample

Exactly True Logic:

A ∧ ∼A |=etl B
but

∼B 6 |=etl ∼(A ∧ ∼A)

Non Falsity Logic:

A |=nf l B ∨ ∼B
but

∼(B ∨ ∼B) 6|=nf l ∼A

8

Introduction

• Exactly True Logic (ETL)
2013 Pietz, A., Rivieccio, U. ’Nothing but the Truth’
Journal of Philosophical Logic

• Non-Falsity Logic (NFL)
Shramko, Y., Zaitsev, D., Belikov, A. ’First Degree Entailment
and its Children’ (to appear in Studia Logica)

9

Introduction

Definition
Denote by PRetl the sentential logic defined through the following set
of rules (and no axioms), where p, q, r ∈ Var:

p ∧ q
(R1)p

p ∧ q
(R2)q

p q
(R3)

p ∧ q

p
(R4)

p ∨ q

p ∨ q
(R5)

q ∨ p

p ∨ p
(R6)p

p ∨ (q ∨ r)
(R7)

(p ∨ q) ∨ r

p ∨ (q ∧ r)
(R8)

(p ∨ q) ∧ (p ∨ r)

(p ∨ q) ∧ (p ∨ r)
(R9)

p ∨ (q ∧ r)

p ∨ r
(R10)

∼∼p ∨ r

∼∼p ∨ r
(R11)

p ∨ r

∼(p ∨ q) ∨ r
(R12)

(∼p ∧ ∼q) ∨ r

(∼p ∧ ∼q) ∨ r
(R13)

∼(p ∨ q) ∨ r

∼(p ∧ q) ∨ r
(R14)

(∼p ∨ ∼q) ∨ r

(∼p ∨ ∼q) ∨ r
(R15)

∼(p ∧ q) ∨ r

p ∧ (∼p ∨ q)
(R16)q

10

Problems

• Provide natural ’Hilbert-Style’ axiomatizations for ETL and
NFL

• Clarify relationships between FDE and its relatives

11

Problems

• Provide natural ’Hilbert-Style’ axiomatizations for ETL and
NFL

• Clarify relationships between FDE and its relatives

11

First-degree entailments

A pair 〈Lang; ` f de〉 is called logical system FDE, where Lang –
propositional language defined above; and ` f de is reflexive relation
satisfying following principles and rules:

a1. A ∧ B ` f de A a2. A ∧ B ` f de B a3. A ` f de A ∨ B

a4. B ` f de A ∨ B a5. A ` f de ∼∼A a6. ∼∼A ` f de A

a7. A ∧ (B ∨ C) ` f de (A ∧ B) ∨ (A ∧ C)
a8. ∼ (A ∧ B) ` f de ∼A ∨ ∼B a9. ∼A ∨ ∼B ` f de ∼ (A ∧ B)

a10. ∼ (A ∨ B) ` f de ∼A ∧ ∼B a11. ∼A ∧ ∼B ` f de ∼ (A ∨ B)

r1. A ` f de B; B ` f de C / A ` f de C
r2. A ` f de B; A ` f de C / A ` f de B ∧ C
r3. A ` f de C; B ` f de C / A ∨ B ` f de C

12

Binary consequence proof system for ETL

A pair 〈Lang; `etl〉 is called logical system Letl, where Lang –
propositional language defined above; and `etl is reflexive relation
satisfying following principles and rules:

a1. A ∧ B `etl A a2. A ∧ B `etl B a3. A `etl A ∨ B

a4. B `etl A ∨ B a5. A `etl ∼∼A a6. ∼∼A `etl A

a7. A ∧ (B ∨ C) `etl (A ∧ B) ∨ (A ∧ C)
a8. ∼ (A ∧ B) `etl ∼A ∨ ∼B a9. ∼A ∨ ∼B `etl ∼ (A ∧ B)

a10. ∼ (A ∨ B) `etl ∼A ∧ ∼B a11. ∼A ∧ ∼B `etl ∼ (A ∨ B) a12.
∼A ∧ (A ∨ B) `etl B

r1. A `etl B; B `etl C / A `etl C
r2. A `etl B; A `etl C / A `etl B ∧ C

r3. A `etl C; ∼C `etl ∼A; B `etl C; ∼C `etl ∼B/ A ∨ B `etl C

13

Binary consequence proof system for ETL

A pair 〈Lang; `etl〉 is called logical system Letl, where Lang –
propositional language defined above; and `etl is reflexive relation
satisfying following principles and rules:

a1. A ∧ B `etl A a2. A ∧ B `etl B a3. A `etl A ∨ B

a4. B `etl A ∨ B a5. A `etl ∼∼A a6. ∼∼A `etl A

a7. A ∧ (B ∨ C) `etl (A ∧ B) ∨ (A ∧ C)
a8. ∼ (A ∧ B) `etl ∼A ∨ ∼B a9. ∼A ∨ ∼B `etl ∼ (A ∧ B)

a10. ∼ (A ∨ B) `etl ∼A ∧ ∼B a11. ∼A ∧ ∼B `etl ∼ (A ∨ B) a12.
∼A ∧ (A ∨ B) `etl B

r1. A `etl B; B `etl C / A `etl C
r2. A `etl B; A `etl C / A `etl B ∧ C

r3. A `etl C; ∼C `etl ∼A; B `etl C; ∼C `etl ∼B/ A ∨ B `etl C 13

Binary consequence proof system for NFL

A pair 〈Lang; `nf l〉 is called logical system Lnf l, where Lang –
propositional language defined above; and `nf l is reflexive relation
satisfying following principles and rules:

a1. A ∧ B `nf l A a2. A ∧ B `nf l B a3. A `nf l A ∨ B

a4. B `nf l A ∨ B a5. A `nf l ∼∼A a6. ∼∼A `nf l A

a7. A ∧ (B ∨ C) `nf l (A ∧ B) ∨ (A ∧ C)
a8. ∼ (A ∧ B) `nf l ∼A ∨ ∼B a9. ∼A ∨ ∼B `nf l ∼ (A ∧ B)

a10. ∼ (A ∨ B) `nf l ∼A ∧ ∼B a11. ∼A ∧ ∼B `nf l ∼ (A ∨ B)
a12. B `nf l A ∨ (∼A ∧ B)

r1. A `nf l B; B `nf l C / A `nf l C
r3. A `nf l C; B `nf l C / A ∨ B `nf l C

r2. A `nf l B; ∼B `nf l ∼A; A `nf l C;∼C `nf l ∼A / A `nf l B ∧ C

14

Binary consequence proof system for NFL

A pair 〈Lang; `nf l〉 is called logical system Lnf l, where Lang –
propositional language defined above; and `nf l is reflexive relation
satisfying following principles and rules:

a1. A ∧ B `nf l A a2. A ∧ B `nf l B a3. A `nf l A ∨ B

a4. B `nf l A ∨ B a5. A `nf l ∼∼A a6. ∼∼A `nf l A

a7. A ∧ (B ∨ C) `nf l (A ∧ B) ∨ (A ∧ C)
a8. ∼ (A ∧ B) `nf l ∼A ∨ ∼B a9. ∼A ∨ ∼B `nf l ∼ (A ∧ B)

a10. ∼ (A ∨ B) `nf l ∼A ∧ ∼B a11. ∼A ∧ ∼B `nf l ∼ (A ∨ B)
a12. B `nf l A ∨ (∼A ∧ B)

r1. A `nf l B; B `nf l C / A `nf l C
r3. A `nf l C; B `nf l C / A ∨ B `nf l C

r2. A `nf l B; ∼B `nf l ∼A; A `nf l C;∼C `nf l ∼A / A `nf l B ∧ C 14

Contrapositive Filtration

• Why these rules? Prof. Yaroslav Shramko remarked that if we
replace standard disjunction elimination only with DS in ETL,
then how to infer theorems like this one: A ∨ B `etl B ∨ A? The
dual question holds in NFL case, how to infer A ∧ B `nf l B ∧ A,
if we replace standard conjunction introduction rule with DDS?

• Usually, in FDE case, we use mentioned rules to infer
A ∨ B ` B ∨ A and A ∧ B ` B ∧ A, but in ETL and NFL we
cannot use them. Nevertheless, it is obvious that
A ∨ B |=etl B ∨ A and A ∧ B |=nf l B ∧ A.

15

Contrapositive Filtration

Exactly True Logic:

A |=etl B ∨ A B |=etl B ∨ A
and

A ∨ B |=etl B ∨ A

Non Falsity Logic:

A ∧ B |=nf l B A ∧ B |=nf l A
and

A ∧ B |=nf l B ∧ A

16

Contrapositive Filtration

• The idea is in that we could use these rules if it were not
semantical counterexamples for disjunction elimination (in ETL
semantics) and conjunction introduction (in NFL semantics).

• The following relations holds: |= f de ⇒ |=etl and |= f de ⇒ |=nf l.

• Then, we need some enriched version of disjunction elimination
rule for ETL, and some enriched version of conjunction
introduction rule for NFL. Since, |= f de ⇒ |=etl and
|= f de ⇒ |=nf l, and the fact that contraposition rule is admissible
in FDE, i. e. for every A ` f de B we have ∼B ` f de ∼A, we
formulate disjunction elimination and conjunction introduction
in the following (filtrated) form:

17

Contrapositive Filtration

’Filtration’ Rules:
r2. A `nf l B; ∼B `nf l ∼A; A `nf l C;∼C `nf l ∼A / A `nf l B ∧ C
r3. A `etl C; ∼C `etl ∼A; B `etl C; ∼C `etl ∼B/ A ∨ B `etl C

• Figuratively speaking, these rules filtrate premisses, reducing
them to those whose contrapositive images are derivable in ETL
and NFL. Thus they black out bad premisses, for instance,
A ∧ ∼A ` B, ∼A ∧ (A ∨ B) ` B, and B ` A ∨ ∼A,
B ` A ∨ (∼A ∧ B), whose contrapositive images are not
derivable!!!

18

Completeness

The following theorems are proved.

Theorem
ETL, Soundness and completeness: A `etl B⇔ A |=etl B

Theorem
NFL, Soundness and completeness: A `nf l B⇔ A |=nf l B

19

’KITE’, ’BULAVA’, what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1),
pp.5-40.

Extentions of FDE:

FDE + (A ∧ ∼A ` B) = K3 FDE + (B ` A ∨ ∼A) = LP

FDE + (A ∧ ∼A ` B ∨ ∼B) = RMfde

FDE + (A ∧ ∼A ` B) + (B ` A ∨ ∼A) = TV

20

’KITE’, ’BULAVA’, what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1),
pp.5-40.

Extentions of FDE:

FDE + (A ∧ ∼A ` B) = K3

FDE + (B ` A ∨ ∼A) = LP

FDE + (A ∧ ∼A ` B ∨ ∼B) = RMfde

FDE + (A ∧ ∼A ` B) + (B ` A ∨ ∼A) = TV

20

’KITE’, ’BULAVA’, what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1),
pp.5-40.

Extentions of FDE:

FDE + (A ∧ ∼A ` B) = K3 FDE + (B ` A ∨ ∼A) = LP

FDE + (A ∧ ∼A ` B ∨ ∼B) = RMfde

FDE + (A ∧ ∼A ` B) + (B ` A ∨ ∼A) = TV

20

’KITE’, ’BULAVA’, what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1),
pp.5-40.

Extentions of FDE:

FDE + (A ∧ ∼A ` B) = K3 FDE + (B ` A ∨ ∼A) = LP

FDE + (A ∧ ∼A ` B ∨ ∼B) = RMfde

FDE + (A ∧ ∼A ` B) + (B ` A ∨ ∼A) = TV

20

’KITE’, ’BULAVA’, what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1),
pp.5-40.

Extentions of FDE:

FDE + (A ∧ ∼A ` B) = K3 FDE + (B ` A ∨ ∼A) = LP

FDE + (A ∧ ∼A ` B ∨ ∼B) = RMfde

FDE + (A ∧ ∼A ` B) + (B ` A ∨ ∼A) = TV

20

’KITE’, ’BULAVA’, what else?

FDE
t
RM f de

t@@@
@@

TVt

�
�
�
��

t
LP

�
�
�
��

@
@
@

@@

t
K3

21

A pair 〈Lang; `FDE f 〉 is called logical system FDE f , where Lang is a
propositional language based on conjunction, disjunction and
negation; and `FDE f is reflexive relation satisfying following
principles and rules:

a1. A ∧ B `FDE f A a2. A ∧ B `FDE f B a3. A `FDE f A ∨ B
a4. B `FDE f A ∨ B a5. A `FDE f ∼∼A a6. ∼∼A `FDE f A

a7. A ∧ (B ∨ C) `FDE f (A ∧ B) ∨ (A ∧ C)
a8. ∼ (A ∧ B) `FDE f ∼A ∨ ∼B a9. ∼A ∨ ∼B `FDE f ∼ (A ∧ B)

a10. ∼ (A ∨ B) `FDE f ∼A ∧ ∼B a11. ∼A ∧ ∼B `FDE f ∼ (A ∨ B)

r1. A `FDE f B; B `FDE f C / A `FDE f C

r2. A `FDE f B; ∼B `FDE f ∼A; A `FDE f C;∼C `FDE f ∼A / A `FDE f B ∧ C

r3. A `FDE f C; ∼C `FDE f ∼A; B `FDE f C; ∼C `FDE f ∼B/ A ∨ B `FDE f C

22

’BULAVA’

FDE f

t
RM f de

t@@@
@@

TVt

�
�
�
��

t
NFL

�
�
�
��

@
@
@

@@

t
ETL

23

THANK YOU!

24

