FDE and its Relatives, Part II: Axiomatization

Alexander Belikov
Dmitry Zaitsev
June 16, 2017
Department of Logic, Faculty of Philosophy, Moscow State University

- Algebraic semantics for FDE relatives D. V. Zaitsev, 'FDE and its Relatives' (plenary talk)
- Dunn-Belnap logic or simply FDE operates with well-known four truth-values from the set $\mathbf{4}=\{\mathbf{T}, \mathbf{B}, \mathbf{N}, \mathbf{F}\}$.
- We can use semilattices to provide a semantics for recently discovered FDE relatives: Exactly True Logic (ETL) and Non-Falsity Logic (NFL).

Introduction

We consider a family of logics over the same propositional language Lang, which we define in the Backus-Naur form:

$$
A:=p|\sim A| A \wedge A \mid A \vee A
$$

We use Form to denote the set of all formulas of Lang, and Var represents the set of all propositional variables of Lang.
$\mathcal{V}_{f d e}=\left\langle\{\mathbf{T}, \mathbf{B}, \mathbf{N}, \mathbf{F}\},\{\mathbf{T}, \mathbf{B}\},\left\{f_{\wedge}, f_{\vee}, f_{\neg}\right\}\right\rangle$, where $f_{i} \in\left\{f_{\wedge}, f_{\vee}, f_{\neg}\right\}$ being an n-ary function if $c_{i} \in\{\wedge, \vee, \neg\}$ is also an n-ary connective.

- If we consider $\{\mathbf{T}\}$ as the set of designated values, then we obtain $V_{e t l}$.
- If we consider $\{\mathbf{T}, \mathbf{B}, \mathbf{N}\}$ as the set of designated values, then we obtain $V_{n f l}$.

Introduction

Any of these valuation systems might be equipped with an assignment function a, that maps Var into $\{\mathbf{T}, \mathbf{B}, \mathbf{N}, \mathbf{F}\}$. One can extend this function to all formulas, following conditions below:
$\forall p \in \operatorname{Var}, v(p)=a(p)$
$\forall c_{i} \in C, v\left(c_{i}\left(A_{1}, \ldots, A_{n}\right)\right)=f_{c_{i}}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)$, with C - a set of logical connectives of Lang.

Introduction

Then, we can define three consequence relations:

- FDE-consequence:
$\Gamma \mid={ }_{\text {fde }} A \Leftrightarrow$ for any valuation v, if $v[\Gamma] \subseteq\{\mathbf{T}, \mathbf{B}\}$, then $h(A) \in\{\mathbf{T}, \mathbf{B}\}$.
- ETL-consequence:
$\Gamma \mid=_{e t l} A \Leftrightarrow$ for any valuation v, if $v[\Gamma] \subseteq\{\mathbf{T}\}$, then $h(A) \in\{\mathbf{T}\}$.
- NFL-consequence:
$\Gamma \mid={ }_{n f l} A \Leftrightarrow$ for any valuation v, if $v[\Gamma] \subseteq\{\mathbf{T}, \mathbf{B}, \mathbf{N}\}$, then $h(A) \in\{\mathbf{T}, \mathbf{B}, \mathbf{N}\}$.

These relations could easily be reduced from expressions of the set-formula type to expressions of the formula-formula type.

Some semantical facts

Logics

First Degree Entailments:

Exactly True Logic:

Non Falsity Logic:

Fallacies

$$
\begin{aligned}
& A \wedge \neg A \not \vDash_{f d e} B \text { (absurdity) } \\
& B \not \models_{f d e} A \vee \neg A \text { (triviality) } \\
& A \wedge \neg A \not \vDash_{f d e} B \vee \neg B \text { (safety) } \\
& A \wedge \sim A \models_{\text {etl }} B \text { (absurdity) } \\
& A \wedge \sim A \models_{\text {etl }} B \vee \sim B \text { (safety) } \\
& B \not \models_{\text {etl }} A \vee \sim A \text { (triviality) } \\
& B \not \models_{n f l} A \vee \sim A \text { (triviality) } \\
& A \wedge \sim A \models_{n f l} B \vee \sim B \text { (safety) } \\
& A \wedge \sim A \nvdash_{n f l} B \text { (absurdity) }
\end{aligned}
$$

Exactly True Logic:

$$
\begin{gathered}
A \wedge \sim A\left|=_{e t l} C \quad B \wedge \sim B\right|={ }_{e t l} C \\
\quad \text { but } \\
(A \wedge \sim A) \vee(B \wedge \sim B) \not \vDash_{e t l} C
\end{gathered}
$$

Non Falsity Logic:

$$
\begin{gathered}
A\left|=_{n f l}(B \vee \sim B) \quad A\right|={ }_{n f l}(C \vee \sim C) \\
\text { but } \\
A \not \vDash_{n f l}(B \vee \sim B) \wedge(C \vee \sim C)
\end{gathered}
$$

Exactly True Logic:

$$
\begin{gathered}
A \wedge \sim A \nmid_{e t l} B \\
\text { but } \\
\sim B \not \vDash_{e t l} \sim(A \wedge \sim A)
\end{gathered}
$$

Non Falsity Logic:

$$
\begin{gathered}
A \mid=_{n f l} B \vee \sim B \\
\text { but } \\
\sim(B \vee \sim B) \mid \not \vDash_{n f l} \sim A
\end{gathered}
$$

- Exactly True Logic (ETL) 2013 Pietz, A., Rivieccio, U. 'Nothing but the Truth' Journal of Philosophical Logic
- Non-Falsity Logic (NFL)

Shramko, Y., Zaitsev, D., Belikov, A. 'First Degree Entailment and its Children' (to appear in Studia Logica)

Introduction

Definition

Denote by $\mathbf{P R}_{\text {etl }}$ the sentential logic defined through the following set of rules (and no axioms), where $p, q, r \in \operatorname{Var}$:

$$
\begin{gathered}
\frac{p \wedge q}{p}(R 1) \quad \frac{p \wedge q}{q}(R 2) \quad \frac{p q}{p \wedge q}(R 3) \quad \frac{p}{p \vee q}(R 4) \\
\frac{p \vee q}{q \vee p}(R 5) \quad \frac{p \vee p}{p}(R 6) \quad \frac{p \vee(q \vee r)}{(p \vee q) \vee r}(R 7) \quad \frac{p \vee(q \wedge r)}{(p \vee q) \wedge(p \vee r)}(R 8) \\
\frac{(p \vee q) \wedge(p \vee r)}{p \vee(q \wedge r)}(R 9) \quad \frac{p \vee r}{\sim \sim p \vee r}(R 10) \quad \frac{\sim \sim p \vee r}{p \vee r}(R 11) \\
\frac{\sim(p \vee q) \vee r}{(\sim p \wedge \sim q) \vee r}(R 12) \quad \frac{(\sim p \wedge \sim q) \vee r}{\sim(p \vee q) \vee r}(R 13) \quad \frac{\sim(p \wedge q) \vee r}{(\sim p \vee \sim q) \vee r}(R 14) \\
\frac{(\sim p \vee \sim q) \vee r}{\sim(p \wedge q) \vee r}(R 15) \quad \frac{p \wedge(\sim p \vee q)}{q}(R 16)
\end{gathered}
$$

- Provide natural 'Hilbert-Style' axiomatizations for ETL and NFL

Problems

- Provide natural 'Hilbert-Style' axiomatizations for ETL and NFL
- Clarify relationships between FDE and its relatives

First-degree entailments

A pair $\left\langle\right.$ Lang $\left.; \vdash_{f d e}\right\rangle$ is called logical system FDE, where Lang propositional language defined above; and $\vdash_{f d e}$ is reflexive relation satisfying following principles and rules:

$$
\begin{gathered}
\text { a1. } A \wedge B \vdash_{f d e} A \quad a 2 . A \wedge B \vdash_{f d e} B \quad a 3 . A \vdash_{f d e} A \vee B \\
a 4 . B \vdash_{f d e} A \vee B \quad a 5 . A \vdash_{f d e} \sim \sim A \quad a 6 . \sim \sim A \vdash_{f d e} A \\
a 7 . A \wedge(B \vee C) \vdash_{f d e}(A \wedge B) \vee(A \wedge C) \\
a 8 . \sim(A \wedge B) \vdash_{f d e} \sim A \vee \sim B \quad a 9 . \sim A \vee \sim B \vdash_{f d e} \sim(A \wedge B) \\
a 10 . \sim(A \vee B) \vdash_{f d e} \sim A \wedge \sim B \quad a 11 . \sim A \wedge \sim B \vdash_{f d e} \sim(A \vee B) \\
r 1 . A \vdash_{f d e} B ; B \vdash_{f d e} C / A \vdash_{f d e} C \\
r 2 . A \vdash_{f d e} B ; A \vdash_{f d e} C / A \vdash_{f d e} B \wedge C \\
r 3 . A \vdash_{f d e} C ; B \vdash_{f d e} C / A \vee B \vdash_{f d e} C
\end{gathered}
$$

Binary consequence proof system for ETL

A pair $\left\langle\right.$ Lang $\left.; \vdash_{e t l}\right\rangle$ is called logical system $\mathbf{L}_{\text {etl }}$, where Lang propositional language defined above; and $\vdash_{e t l}$ is reflexive relation satisfying following principles and rules:

$$
\begin{gathered}
a 1 . A \wedge B \vdash_{e t l} A \quad a 2 . A \wedge B \vdash_{e t l} B \quad a 3 . A \vdash_{e t l} A \vee B \\
a 4 . B \vdash_{e t l} A \vee B \quad a 5 . A \vdash_{e t l} \sim \sim A \quad a 6 . \sim \sim A \vdash_{e t l} A \\
a 7 . A \wedge(B \vee C) \vdash_{e t l}(A \wedge B) \vee(A \wedge C) \\
a 8 . \sim(A \wedge B) \vdash_{e t l} \sim A \vee \sim B \quad a 9 . \sim A \vee \sim B \vdash_{e t l} \sim(A \wedge B) \\
a 10 . \sim(A \vee B) \vdash_{e t l} \sim A \wedge \sim B \quad a 11 . \sim A \wedge \sim B \vdash_{e t l} \sim(A \vee B) \quad a 12 . \\
\sim A \wedge(A \vee B) \vdash_{e t l} B \\
r 1 . A \vdash_{e t l} B ; B \vdash_{e t l} C / A \vdash_{e t l} C \\
r 2 . A \vdash_{e t l} B ; A \vdash_{e t l} C / A \vdash_{e t l} B \wedge C
\end{gathered}
$$

Binary consequence proof system for ETL

A pair $\left\langle\right.$ Lang; $\left.\vdash_{e t l}\right\rangle$ is called logical system $\mathbf{L}_{\text {etl }}$, where Lang propositional language defined above; and $\vdash_{e t l}$ is reflexive relation satisfying following principles and rules:

$$
\begin{gathered}
\text { a1. } A \wedge B \vdash_{e t l} A \quad a 2 . A \wedge B \vdash_{e t l} B \quad a 3 . A \vdash_{e t l} A \vee B \\
a 4 . B \vdash_{e t l} A \vee B \quad a 5 . A \vdash_{e t l} \sim \sim A \quad a 6 . \sim \sim A \vdash_{e t l} A \\
a 7 . A \wedge(B \vee C) \vdash_{e t l}(A \wedge B) \vee(A \wedge C) \\
a 8 . \sim(A \wedge B) \vdash_{e t l} \sim A \vee \sim B \quad a 9 . \sim A \vee \sim B \vdash_{e t l} \sim(A \wedge B) \\
a 10 . \sim(A \vee B) \vdash_{e t l} \sim A \wedge \sim B \quad a 11 . \sim A \wedge \sim B \vdash_{e t l} \sim(A \vee B) \quad a 12 . \\
\sim A \wedge(A \vee B) \vdash_{e t l} B \\
r 1 . A \vdash_{e t l} B ; B \vdash_{e t l} C / A \vdash_{e t l} C \\
r 2 . A \vdash_{e t l} B ; A \vdash_{e t l} C / A \vdash_{e t l} B \wedge C \\
r 3 . A \vdash_{e t l} C ; \sim C \vdash_{e t l} \sim A ; B \vdash_{e t l} C ; \sim C \vdash_{e t l} \sim B / A \vee B \vdash_{e t l} C
\end{gathered}
$$

Binary consequence proof system for NFL

A pair $\left\langle L a n g ; \vdash_{n f l}\right\rangle$ is called logical system $\mathbf{L}_{n f l}$, where Lang propositional language defined above; and $\vdash_{n f l}$ is reflexive relation satisfying following principles and rules:

$$
\begin{gathered}
\text { a1. } A \wedge B \vdash_{n f l} A \quad a 2 . A \wedge B \vdash_{n f l} B \quad a 3 . A \vdash_{n f l} A \vee B \\
a 4 . B \vdash_{n f l} A \vee B \quad a 5 . A \vdash_{n f l} \sim \sim A \quad a 6 . \sim \sim A \vdash_{n f l} A \\
a 7 . A \wedge(B \vee C) \vdash_{n f l}(A \wedge B) \vee(A \wedge C) \\
a 8 . \sim(A \wedge B) \vdash_{n f l} \sim A \vee \sim B \quad a 9 . \sim A \vee \sim B \vdash_{n f l} \sim(A \wedge B) \\
a 10 . \sim(A \vee B) \vdash_{n f l} \sim A \wedge \sim B \quad a 11 . \sim A \wedge \sim B \vdash_{n f l} \sim(A \vee B) \\
a 12 . B \vdash_{n f l} A \vee(\sim A \wedge B) \\
r 1 . A \vdash_{n f l} B ; B \vdash_{n f l} C / A \vdash_{n f l} C \\
r 3 . A \vdash_{n f l} C ; B \vdash_{n f l} C / A \vee B \vdash_{n f l} C
\end{gathered}
$$

Binary consequence proof system for NFL

A pair $\left\langle L a n g ; \vdash_{n f l}\right\rangle$ is called logical system $\mathbf{L}_{n f l}$, where Lang propositional language defined above; and $\vdash_{n f l}$ is reflexive relation satisfying following principles and rules:

$$
\begin{gathered}
\text { a1. } A \wedge B \vdash_{n f l} A \quad a 2 . A \wedge B \vdash_{n f l} B \quad a 3 . A \vdash_{n f l} A \vee B \\
a 4 . B \vdash_{n f l} A \vee B \quad a 5 . A \vdash_{n f l} \sim \sim A \quad a 6 . \sim \sim A \vdash_{n f l} A \\
a 7 . A \wedge(B \vee C) \vdash_{n f l}(A \wedge B) \vee(A \wedge C) \\
a 8 . \sim(A \wedge B) \vdash_{n f l} \sim A \vee \sim B \quad a 9 . \sim A \vee \sim B \vdash_{n f l} \sim(A \wedge B) \\
a 10 . \sim(A \vee B) \vdash_{n f l} \sim A \wedge \sim B \quad a 11 . \sim A \wedge \sim B \vdash_{n f l} \sim(A \vee B) \\
a 12 . B \vdash_{n f l} A \vee(\sim A \wedge B) \\
r 1 . A \vdash_{n f l} B ; B \vdash_{n f l} C / A \vdash_{n f l} C \\
r 3 . A \vdash_{n f l} C ; B \vdash_{n f l} C / A \vee B \vdash_{n f l} C \\
r 2 . A \vdash_{n f l} B ; \sim B \vdash_{n f l} \sim A ; A \vdash_{n f l} C ; \sim C \vdash_{n f l} \sim A / A \vdash_{n f l} B \wedge C
\end{gathered}
$$

Contrapositive Filtration

- Why these rules? Prof. Yaroslav Shramko remarked that if we replace standard disjunction elimination only with DS in ETL, then how to infer theorems like this one: $A \vee B \vdash_{\text {etl }} B \vee A$? The dual question holds in NFL case, how to infer $A \wedge B \vdash_{n f l} B \wedge A$, if we replace standard conjunction introduction rule with DDS?
- Usually, in FDE case, we use mentioned rules to infer $A \vee B \vdash B \vee A$ and $A \wedge B \vdash B \wedge A$, but in ETL and NFL we cannot use them. Nevertheless, it is obvious that $A \vee B \mid=e t l B \vee A$ and $A \wedge B \mid={ }_{n f l} B \wedge A$.

Contrapositive Filtration

Exactly True Logic:

$$
\begin{gathered}
A=_{e t l} B \vee A \quad B \mid=_{e t l} B \vee A \\
\text { and } \\
\left.A \vee B\right|_{e t l} B \vee A
\end{gathered}
$$

Non Falsity Logic:

$$
\begin{gathered}
A \wedge B\left|={ }_{n f l} B \quad A \wedge B\right|={ }_{n f l} A \\
\text { and } \\
A \wedge B=_{n f l} B \wedge A
\end{gathered}
$$

Contrapositive Filtration

- The idea is in that we could use these rules if it were not semantical counterexamples for disjunction elimination (in ETL semantics) and conjunction introduction (in NFL semantics).
- The following relations holds: $\left.\right|_{f d e} \Rightarrow \vDash_{e t l}$ and $\left.\right|_{f d e} \Rightarrow \vDash_{n f l}$.
- Then, we need some enriched version of disjunction elimination rule for ETL, and some enriched version of conjunction introduction rule for NFL. Since, $\left.\right|_{f d e} \Rightarrow| |_{e t l}$ and $\left.\right|_{f d e} \Rightarrow \mid={ }_{n f l}$, and the fact that contraposition rule is admissible in FDE, i. e. for every $A \vdash_{f d e} B$ we have $\sim B \vdash_{f d e} \sim A$, we formulate disjunction elimination and conjunction introduction in the following (filtrated) form:

Contrapositive Filtration

'Filtration' Rules:

$$
\begin{gathered}
r 2 . A \vdash_{n f l} B ; \sim B \vdash_{n f l} \sim A ; A \vdash_{n f l} C ; \sim C \vdash_{n f l} \sim A / A \vdash_{n f l} B \wedge C \\
r 3 . A \vdash_{e t l} C ; \sim C \vdash_{e t l} \sim A ; B \vdash_{e t l} C ; \sim C \vdash_{e t l} \sim B / A \vee B \vdash_{e t l} C
\end{gathered}
$$

- Figuratively speaking, these rules filtrate premisses, reducing them to those whose contrapositive images are derivable in ETL and NFL. Thus they black out bad premisses, for instance, $A \wedge \sim A \vdash B, \sim A \wedge(A \vee B) \vdash B$, and $B \vdash A \vee \sim A$, $B \vdash A \vee(\sim A \wedge B)$, whose contrapositive images are not derivable!!!

Completeness

The following theorems are proved.

Theorem

ETL, Soundness and completeness: $A \vdash_{\text {etl }} B \Leftrightarrow A \models_{\text {etl }} B$

Theorem

NFL, Soundness and completeness: $A \vdash_{n f l} B \Leftrightarrow A \models_{n f l} B$

'KITE', 'BULAVA', what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1), pp.5-40.

'KITE', 'BULAVA', what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1), pp.5-40.

Extentions of FDE:
$\mathbf{F D E}+(A \wedge \sim A \vdash B)=\mathbf{K}_{\mathbf{3}}$

'KITE', 'BULAVA', what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1), pp.5-40.

Extentions of FDE:
$\mathbf{F D E}+(A \wedge \sim A \vdash B)=\mathbf{K}_{\mathbf{3}} \quad \mathbf{F D E}+(B \vdash A \vee \sim A)=\mathbf{L P}$

'KITE', 'BULAVA', what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1), pp.5-40.

Extentions of FDE:
$\mathbf{F D E}+(A \wedge \sim A \vdash B)=\mathbf{K}_{3} \quad \mathbf{F D E}+(B \vdash A \vee \sim A)=\mathbf{L P}$
$\mathbf{F D E}+(A \wedge \sim A \vdash B \vee \sim B)=\mathbf{R M}_{\mathbf{f d e}}$

'KITE', 'BULAVA', what else?

[5] Dunn, J. M., (2000) «Partiality and its dual». Studia Logica 66(1), pp.5-40.

Extentions of FDE:
$\mathbf{F D E}+(A \wedge \sim A \vdash B)=\mathbf{K}_{3} \quad \mathbf{F D E}+(B \vdash A \vee \sim A)=\mathbf{L P}$
$\mathbf{F D E}+(A \wedge \sim A \vdash B \vee \sim B)=\mathbf{R M}_{\mathbf{f d e}}$
$\mathbf{F D E}+(A \wedge \sim A \vdash B)+(B \vdash A \vee \sim A)=\mathbf{T V}$

A pair $\left\langle\right.$ Lang $\left.; \vdash_{\mathbf{F D E}_{f}}\right\rangle$ is called logical system $\mathbf{F D E}_{f}$, where Lang is a propositional language based on conjunction, disjunction and negation; and $\vdash_{\mathrm{FDE}_{f}}$ is reflexive relation satisfying following principles and rules:

$$
\begin{gathered}
\text { a1. } A \wedge B \vdash_{\mathrm{FDE}_{f}} A \quad a 2 . A \wedge B \vdash_{\mathrm{FDE}_{f}} B \quad a 3 . A \vdash_{\mathrm{FDE}_{f}} A \vee B \\
\text { a4. } B \vdash_{\mathrm{FDE}_{f}} A \vee B \quad a 5 . A \vdash_{\mathbf{F D E}_{f}} \sim \sim A \quad a 6 . \sim \sim A \vdash_{\mathrm{FDE}_{f}} A \\
a 7 . A \wedge(B \vee C) \vdash_{\mathbf{F D E}_{f}}(A \wedge B) \vee(A \wedge C) \\
\text { a8. } \sim(A \wedge B) \vdash_{\mathrm{FDE}_{f}} \sim A \vee \sim B \quad a 9 . \sim A \vee \sim B \vdash_{\mathbf{F D E}_{f}} \sim(A \wedge B) \\
a 10 . \sim(A \vee B) \vdash_{\mathbf{F D E}_{f}} \sim A \wedge \sim B \quad a 11 . \sim A \wedge \sim B \vdash_{\mathbf{F D E}_{f}} \sim(A \vee B)
\end{gathered}
$$

$$
r 1 . A \vdash_{\mathrm{FDE}_{f}} B ; B \vdash_{\mathrm{FDE}_{f}} C / A \vdash_{\mathrm{FDE}_{f}} C
$$

$r 2 . A \vdash_{\mathrm{FDE}_{f}} B ; \sim B \vdash_{\mathrm{FDE}_{f}} \sim A ; A \vdash_{\mathrm{FDE}_{f}} C ; \sim C \vdash_{\mathrm{FDE}_{f}} \sim A / A \vdash_{\mathrm{FDE}_{f}} B \wedge C$
3. $A \vdash_{\mathrm{FDE}_{f}} C ; \sim C \vdash_{\mathrm{FDE}_{f}} \sim A ; B \vdash_{\mathrm{FDE}_{f}} C ; \sim C \vdash_{\mathrm{FDE}_{f}} \sim B / A \vee B \vdash_{\mathrm{FDE}_{f}} C$

'BULAVA'

THANK YOU!

