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Abstract A series of such metric spaces is constructed (subgeometric sequences of real
numbers), for which the multiplication of the metric by any positive number
not equal to one, gives a space at an infinite Gromov–Hausdorff distance from
the original space.
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1. INTRODUCTION

The work is devoted to the geometry of the Gromov–Hausdorff distance [1,
2, 3, 4] defined on the class of all non-empty metric spaces and is closely related
to the works [7, 9], the concepts and results of which we use without detailed
explanation.

M. Gromov in his “Metric structures for Riemannian and non-Riemannian
spaces” [3] made a short remark: “One can also make a moduli space of isom-
etry classes of non-compact spaces X lying within a finite Hausdorff distance
from a given X0, e.g. X0 = Rn. Such moduli spaces are also complete and
contractible.”

This observation was not proved in [3] because it probably seemed obvious.
In [7, Theorem 4] the completeness of moduli spaces (clouds) is proved and it
is stated, that a natural attempt to prove the contractibility of a cloud poses
the problem of describing the stabilizer and the center of the cloud. Let us
give the basic definitions.

Let (X, ϱ) be an arbitrary metric space and 0 < r ≤ ∞ be a real number.
As is customary in metric geometry, instead of ϱ(x, y) we write |xy| as a rule.
If A and B are non-empty subsets of X, then we put

|AB| = |BA| = inf
{
|ab| : a ∈ A, b ∈ B

}
.

Next, we define the closed r-neighborhood of the set A by setting
Br(A) =

{
x ∈ X : |xA| ≤ r

}
.

Finally, the Hausdorff distance between A and B is the value
dH(A,B) = inf

{
r : A ⊂ Br(B), B ⊂ Br(A)

}
.
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The Hausdorff distance is a generalized pseudometric. The word “general-
ized” means that the distance may take infinite value, as in the case of the
straight line R and any of its points. The prefix “pseudo” means that the
distance may take zero value between different subsets, as in the case of a set
and its dense subset. It is obvious that the Hausdorff distance satisfies all
the axioms of generalized pseudometrics: it is non-negative, symmetric and
satisfies the triangle inequality. Nevertheless, on the set consisting of all non-
empty bounded closed subsets of a metric space X, the Hausdorff distance is
a metric.

The Gromov–Hausdorff distance between non-empty metric spaces X and
Y is the value

dGH(X,Y ) = inf
{
dH(X

′, Y ′) : X ′, Y ′ ⊂ Z, X ′ ≈ X, Y ′ ≈ Y
}
,

where for the metric spaces X and X ′ the expression X ≈ X ′ means that these
spaces are isometric. The Gromov–Hausdorff distance is a generalized pseu-
dometric vanishing on each pair of isometric spaces [4]. There are a countable
discrete complete bounded metric space X and a countable locally compact
complete bounded metric space with exactly one non-isolated point Y such
that dGH(X,Y ) = 0.

Compact metric spaces form the set GHc, on which the Gromov–Hausdorff
distance is a metric. The class GHb of all bounded metric spaces no longer
forms a set. But within the framework of von Neumann–Bernays–Gödel set
theory we can say that the Gromov–Hausdorff distance is a pseudometric on
GHb. We will denote the class of all metric spaces by GH, and the class of all
metric spaces located at a finite distance from of a given metric space X will
be called the cloud of the space X and denoted by [X]. By ∆1 we denote a
one-point metric space. It is clear that [∆1] = GHb. For a metric space (X, ϱ)
and a positive number λ > 0, λX means the “similar space” (X,λϱ), i.e. the
set X, the distances on which are multiplied by λ.

The transformation Hλ : GH → GH, Hλ : X 7→ λX for λ > 0 we call
similarity with the coefficient λ.

The diameter of a metric space is defined as

diamX = sup{|xy| : x, y ∈ X}.

Theorem 1.1 ([4]). For any metric spaces X and Y ,
(1) 2dGH(∆1, X) = diamX;
(2) 2dGH(X,Y ) ≤ max{diamX,diamY };
(3) if the diameter of X or Y is finite, then

∣∣diamX−diamY
∣∣ ≤ 2dGH(X,Y ).

(4) if the diameter of X is finite, then for any λ > 0 and µ > 0 we have
dGH(λX, µX) = 1

2 |λ−µ| diamX, whence it immediately follows that the curve
γ(t) := tX is shortest between any of its points, and the length of such a
segment of the curve is equal to the distance between its ends.
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(5) for any λ > 0, we have dGH(λX, λY ) = λ dGH(X,Y ).

Property (5) implies that similarities are well defined on the classes GHc, GHb,
and GH.

Returning to the contractibility of the cloud, we note that formulas (4) and
(5) illustrate the existence of a canonical contraction of the Gromov–Hausdorff
space of all compact metric spaces to the one-point space ∆1. It is also possible
to give a strict meaning to the statement that similarity carries out contraction
of the cloud of all bounded metric spaces to the one-point space ∆1.

Formula (5) means that the similarity is continuous in space, but formula
(4) in all other clouds does not guarantee continuity with respect to the con-
traction parameter λ.

There are constructed [5, Corollary 5.9], [10] examples of spaces X such that
the spaces X and λX lie in the same cloud if and only if λ = 1. This means
that, in the general case, the similarity cannot contract the cloud by itself.
Therefore, the author believes that the statement about the contractibility
of any cloud (even in the case of cloud [Rn], mentioned by Gromov) is cur-
rently a hypothesis. Recently the author proved that the cloud of any space
“with large metric gaps” (the spaces considered in this work are as follows) is
contractible [11, Theorem 1.2].

Since for an unbounded metric space (X, ϱ) the “similar” space
λX = (X,λϱ) can be at infinite Gromov–Hausdorff distance from the
original space X [5, 6, 7, 8, 9, 10], then the cloud stabilizer becomes important:

St[X] =
{
λ ∈ R+ : dGH(X,λX) <∞

}
=
{
λ ∈ R+ : [λX] = [X]

}
.

The cloud stabilizer does not depend on the representative X taken from
the cloud and is a subgroup in the multiplicative group of positive numbers
(R+,×).

In this plan, already subsets of the half-line (of non-negative numbers with
the standard metric of the modulus of the difference) give many interesting
and varied examples.

For example, in [5] it is shown that in the case of a countable subsetX whose
points go to infinity very quickly (for example, for geometric hyperprogression
X =

{
pn

α}∞
n=1

, p > 1, α > 1) and the standard line metric, St[X] = {1}.
In [10] a similar result is proved for an arbitrary normalized metric on a geo-
metric hyperprogression, i.e. for a metric for which only distances to the zero
point are induced from the straight line.

In [5, 6, 8] it is shown that for a geometric progression Xp =
{
pn
}∞
n=1

,

p > 1, and the standard line metric, St[Xp] = Gp =
{
pn
}∞
n=−∞. In [9] it is

shown that for an arbitrary normalized metric on a geometric progression any
subgroup of the group Gp can be the stabilizer. One could get the feeling that
the value α = 1 is some kind of watershed in the nature of the stabilizer.
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In this work, we show that for a geometric subprogression X =
{
pn

α}∞
n=1

,
p > 1, 0 < α < 1, and an arbitrary normalized metric, the equality
St[X] = {1} holds. Thus, we can say that for α = 1 there is not a “wa-
ter divide”, but “an archipelago of islands in a sea of trivial stabilizer”.

The normed vector spaces form the “Himalayas” with maximum stabilizer
– the whole multiplicative group of positive numbers. We especially note that
for every nontrivial proper subgroup H ⊂ (R+,×), one of the following is
valid:

a) H is closed - in which case, H = Gp for some p > 1;
b) H is not closed - in which case, H is everywhere dense.

There are exactly 2c = 22
ℵ0 of proper dense subgroups, but the author does

not know of any example of a cloud with such a stabilizer.

2. BASIC CONCEPTS

Let X and Y be arbitrary sets. A multi-valued mapping R : X → Y is
uniquely determined by its graph, for which we keep the notation

R =
{
(x, y) : y ∈ R(x)

}
.

It is clear that the graphs of set-valued mappings are exactly subsets of
R ⊂ X×Y such that for any point x ∈ X there exists a point y ∈ Y such that
(x, y) ∈ R. Such a set R ⊂ X × Y will also be called a complete relation. To
simplify the notation for a point from R(x), we will also use the notation yx.
In metric geometry, a surjective set-valued mapping is called a correspondence.
For a R correspondence, the R−1 inverse plot is a subset of the product Y ×X,
so we will denote it by R∗. The set of all correspondences X in Y is denoted
by R(X,Y ). To avoid confusion, we always denote the points of the second
space as y even though it is also denoted by X.

For a correspondence R ⊂ X × Y of metric spaces (X, ϱX) and (Y, ϱY ),
define its distortion as

disR = sup
{∣∣ϱX(x, x′)− ϱY (y, y

′)
∣∣ : (x, y), (x′, y′) ∈ R

}
. (1)

It is convenient to estimate the Gromov–Hausdorff distance in terms of
distortion of correspondences [4]

Theorem 2.1. For any metric spaces X and Y the following equality holds:

dGH(X,Y ) =
1

2
inf
{
disR : R ∈ R(X,Y )

}
.

In what follows, we will assume that X,Y ⊂ [0,∞) and 0 ∈ X, 0 ∈ Y . The
point 0 in the set X will be denoted by 0X . Since we will consider different
metrics on these sets, then, if necessary, we will use the notation disϱX ,ϱY R.
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We are interested in normalized metrics, i.e. such metrics ϱ on the set X
that

ϱ(x, 0X) = x for any point x ∈ X. (2)

It follows from the triangle inequality that for any two points x, x′ ∈ X we
have:

x− x′ = ϱ(x, 0X)− ϱ(x′, 0X) ≤ ϱ(x, x′) ≤ ϱ(x, 0X) + ϱ(0X , x
′) = x+ x′. (3)

Both extreme cases provide interesting examples. The case of left equality
(for all x > x′) corresponds to the fact that the metric is taken from the line
on the set X. The case of right equality (for all x ̸= x′) corresponds to the

discrete hedgehog X̂ [7]. Intermediate “linear” metrics also provide important
examples. For any −1 ≤ α ≤ 1 we define on the set of non-negative numbers,
and hence on any set X we consider, the metric

ϱα(x, x
′) = x+ αx′ =

1− α

2
|x− x′|+ 1 + α

2
(x+ x′) when x′ < x. (4)

It is clear that the formula (4) defines a metric on the set of non-negative
real numbers. The inequalities (3) can be formulated as the assertion that for
any normalized metric ϱ the inequalities ϱ−1 ≤ ϱ ≤ ϱ1 are valid.

Let φ : {0} ∪ N → [0,∞), φ(0) = 0, be a strictly increasing function. Con-
sider on the number line the subset

Xφ =
{
xn = φ(n) : n ∈ {0} ∪ N} ⊂ [0,∞)

}
. (5)

The set of all normalized metrics on Xφ denoted by Mφ or M for a fixed
function φ.

The function φ will be called sparse, if the difference

∆φ(n) = φ(n)− φ(n− 1), n ≥ 1,

monotonically (from some rank n0) increases to infinity, i.e.

∆φ(n+ 1) ≥ ∆φ(n) for n ≥ n0 and ∆φ(n)
n→∞−→ ∞. (6)

Sparse functions are remarkable in that their correspondences with finite
distortion have a simple structure.

Theorem 2.2. Let φ and ψ be sparse functions and R ∈ R(Xφ,ϱ, Xψ,ρ) is a
correspondence such that disR < M . Then for some n0 and an integer k for
all n ≥ n0 the equality R(xn) = {yn+k} holds.

This is where our main result comes from.
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Theorem 2.3. For numbers p > 1, 0 < α < 1 and any normalized metric
ϱ ∈ Mφ on a sparse set Xφ, where φ(n) = pn

α
, we have the equality

St
[
(Xφ, ϱ)

]
= {1}.

On the one hand, the theorem 2.2 gives a strong necessary condition for
the correspondence of a finite distortion. On the other hand, this necessary
condition is based only on comparing the distances to the zero point, therefore,
it cannot be sufficient for the finiteness of the distortion of this correspondence.
Sufficiency holds for metrics with some condition of “translation invariance”.
For a geometric progression, invariant normalized metrics are important. In
our case, the analog is the class of the following metrics. Let’s say that the
metric ϱ ∈ Mφ is invariant (ϱ ∈ IMφ), if there exists a function α : N → [−1, 1]
such that

ϱ(xm, xn) = xm + α(m− n)xn for n < m. (7)

In [9, Proposition 3.5], there is a description of such functions α that define
a metric on Xφ by the formula (7). The following result [9, Theorem 2.14]
contains all linear metrics of (4).

Theorem 2.4. Any function α : N → [a, b], where −1 ≤ a ≤ b ≤ 1 and
b ≤ 1 + 2a, by the formula (7) defines an invariant normalized metric
ϱα ∈ IMφ.

Theorem 2.5. Let φ and ψ be strictly increasing functions such that
|ψ(n + k) − φ(n)| < K for some fixed k ∈ Z, K > 0 and all sufficiently
large n (n ≥ n0). Then

dGH
(
(Xφ, ϱα), (Xψ, ϱα)

)
<∞

for any function α from theorem 2.4.

Corollary 2.1. Let φ and ψ be sparse functions, and α and β be the functions
from theorem 2.4. Then the following conditions are equivalent:

1) dGH
(
(Xφ, ϱα), (Xψ, ϱβ)

)
<∞;

2) α = β and dGH
(
(Xφ, ϱ−1), (Xψ, ϱ−1)

)
<∞;

3) α = β and |ψ(n + k) − φ(n)| < K for some fixed k ∈ Z, K > 0 and all
sufficiently large n (n ≥ n0).

Example 2.1. For any strictly increasing functions φ and ψ the implications
3) =⇒ 1), 2) are valid for any number −1 ≤ α ≤ 1. For the functions

φ(n) = 3

[
n+1
2

]
+(−1)n and ψ(n) = 3n condition 2) is satisfied, but for α > −1

conditions 1) and 3) are not true.
However, the reason lies not so much in the non-sparseness of the functions

φ and ψ, but in the fact that that the case α = −1 is exceptional and different
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from the general function α : N → [−1+ ε, 1], whose values are separated from
the number −1.

3. PROOFS

In [9, Proposition 1.1] the assertion is proved, which we present in full for
the convenience of the reader.

Proposition 3.1. If for the complete relation R of the spaces XϱX and YϱY
the inequality disR < M is true, then for every point x ∈ X and every point
yx ∈ R(x) the inequality |x− yx| < K is true, where K =M + y0.

For any sparse function φ, for any number M > 0, there exists a number
n > 1, such that

φ(n)− φ(n− 1) ≥M.

We denote the smallest such number by nφ(M).

Proposition 3.2. If for a sparse function ψ : N → R+ and a complete relation
R of the spaces XϱX and Xψ,ρ the inequality disR < M is true, then for
any point x ∈ X from y ∈ R(x) and y ≥ ynψ(M) = ψ(nψ(M)) the equality

R(x) = {y} follows.

Proof. Let y′ ∈ R(x). Then

|y′ − y| ≤ ρ(y′, y) = ρ(y′, y)− ϱ(x, x) ≤ disR < M.

The condition y ≥ ψ(nψ(M)) and the definition of the number nψ(M) imply
the equality y′ = y.

Proposition 3.3. If for a sparse function φ : N → R+ and a complete relation
R of the spaces Xφ,ϱX and Xρ the inequality disR < M is true, then for any
point x ∈ X from x ≥ xnφ(M) = φ(nφ(M)) and R(x) ∩ R(x′) ̸= ∅ follows
x = x′.

Proof. Let y ∈ R(x) ∩R(x′). Then

|x′ − x| ≤ ϱ(x′, x) = ϱ(x′, x)− ρ(y, y) ≤ disR < M.

The condition x ≥ φ(nφ(M)) and the definition of the number nφ(M) imply
the equality x′ = x.

Proof of the theorem 2.2. Since the metric spaces Xφ,ϱ and Xψ,ρ are un-
bounded, then there are numbers n0 ≥ nφ(2M + 2y0) ≥ nφ(M) and
m0 ≥ nψ(2M + 2x0) ≥ nψ(M) such that ym0 ∈ R(xn0). Here y0 ∈ R(0)
and x0 ∈ R∗(0), i.e. 0 ∈ R(x0).
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Since m0 ≥ nψ(M), then according to the proposition 3.2 R(xn0) = {ym0};
from n0 ≥ nφ(M) according to the proposition 3.3 it follows R∗(ym0) = {xn0}.

According to Proposition 3.1 |xn0 − ym0 | < M + y0, so ym0 < xn0 +M + y0.
Similarly |xn0+1 − yxn0+1 | < M + y0, so xn0+1 −M − y0 < yxn0+1 .

It follows from the inequality n0 ≥ n(2M + 2y0) that

xn0+1 − xn0 > xn0 − xn0−1 ≥ 2M + 2y0.

So yxn0+1 > xn0+1 −M − y0 > xn0 +M + y0. Therefore, yxn0+1 > ym0 = yxn0 .
Thus, we have proved that yxn2 > yxn1 ≥ ym0 follows from n2 > n1 ≥ n0.
A similar property is also true for the inverse (symmetric) correspondence

R∗. m2 > m1 ≥ m0 implies xym2
> xym1

≥ xn0 .
If yxn0+1 > ym0+1, then for the point xym0+1 from the proven monotonicity

property the inequality xn0 < xym0+1 < xn0+1.
The resulting contradiction shows that yxn0+1 = ym0+1. We prove by in-

duction that yxn0+i = ym0+i for every i ≥ 1. It is clear that k = m0 − n0 is
the desired one. □

Proposition 3.4. For p > 1 and 0 < α < 1, the following properties hold for
the function φ(x) = px

α
:

1) The function φ(n) is sparse.

2) For any integer k the equality limx→∞
φ(x+k)
φ(x) = 1 is true.

Proof. Consider the function φ(x) = px
α
, x > 0. It is easy to calculate that

φ′(x) = αxα−1φ(x) ln p = α ln p px
α

x1−α > 0.

1) Therefore, the sequence
{
φ(n) = pn

α}
is strictly increasing. An increase

of the sequence ∆φ(n) is equivalent to the convexity of the sequence
{
φ(n)

}
,

i.e. to the condition

φ(n+ 1) ≤ φ(n+ 2) + φ(n)

2
for each n. (8)

It is easy to calculate that φ′′(x) = αxα−2
(
αxα ln p + α − 1

)
φ(x) ln p. For

sufficiently large x the second derivative is positive φ′′(x) > 0, therefore the
inequality (8) is true for all sufficiently large n.

Let us show that φ′(x) → ∞ as x → ∞. This will be done via L’Hopital’s
rule applied to the related exponent, by means of the substitution xα = t:

lim
x→∞

px
α

x1−α
= lim

t→∞

pt

t
1−α
α

= lim
t→∞

α ln p

1− α
· pt

t
1−2α
α

= . . . =

= lim
t→∞

αk ln p

Πki=1(1− iα)
· pt

t
1−(k+1)α

α

= ∞,
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where k is a number such that 1−kα > 0 and 1− (k+1)α ≤ 0. By Lagrange’s

theorem, ∆φ(n+1) = φ(n+1)−φ(n) = φ′(n+θn)
n→∞−−−→ ∞, where 0 < θn < 1.

2) Consider the function f(x) = xα. It is easy to calculate that f ′(x) =

αxα−1 = α
x1−α

x→∞−−−→ 0. By Lagrange’s theorem,

∆f (n+ k) = f(n+ k)− f(n) = f ′(n+ kθn)k
n→∞−−−→ 0,

where 0 < θn < 1.

Hence limn→∞
φ(n+k)
φ(n) = limn→∞ p(n+k)

α−nα = plimn→∞ ∆f (n+k) = p0 = 1.

Proof of Theorem 2.3. The sparseness of the φ function is proved in the
Proposition 3.4.

Let ϱ ∈ MXφ and λ ∈ St
[
(Xφ, ϱ)

]
. According to [9, Proposition 1.4], the

λϱ metric on Xφ can be identified with the normalized metric on the sparse set
Xλφ given by the function λφ. Let R be a correspondence between setsXφ and
Xλφ such that disR < ∞. According to the theorem 2.2 there exist natural
n0 and integer k such that that R(xn) = {yn+k} for all n ≥ n0. According to
the proposition 3.1 there exists a number K > 0, that |yn+k − xn| < K for all
n ≥ n0. The latter means that

|λp(n+k)α − pn
α | < K for all n ≥ n0.

The inequality can be written as

|λ− pn
α−(n+k)α | < K

p(n+k)α
for all n ≥ n0.

The left and right sides of the last inequality have limits as n→ ∞. Obviously,
the limit of the right-hand side is the number 0. According to the proposi-
tion 3.4 the limit of the left side is equal to |λ− 1|. From the limit inequality
|λ−1| ≤ 0 the required equality λ = 1 follows. □

Proof of Theorem 2.5. The correspondence R ∈ R(Xφ, Xψ) is given by the
formula R(xn) = {yn+k} for n ≥ n0 and R(xn) = {0Y , y1, . . . , yn+k−1} for
n < n0. Let us estimate disR.

For numbers m > n ≥ n0, the following estimate is true∣∣|xmxn|−|ym+kyn+k|
∣∣ = ∣∣xm+α(m−n)xn−ym+k−α(m+k−n−k)yn+k

∣∣ ≤ ∣∣xm−ym+k

∣∣+∣∣α(m−n)(xn−yn+k)
∣∣ ≤ 2K.

For numbers m ≥ n0 > n, the estimate is true
∣∣|xmxn| − |ym+kyn+k|

∣∣ =∣∣xm + anxn − ym+k − an+kyn+k
∣∣ ≤ ∣∣xm − ym+k

∣∣ + xn + yn+k ≤ K + φ(n0 −
1) + φ(n0 + k − 1), where an, an+k are some numbers between −1 and 1.

For numbers n0 > m,n, the estimate is true
∣∣|xmxn| − |ym+kyn+k|

∣∣ ≤ xm +
xn+ym+k+yn+k ≤ 2φ(n0−1)+2φ(n0+k−1). □
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Proof of the theorem 2.1. 1) =⇒ 3). Let R ∈ R(Xφ, Xψ) be a correspondence
such that disR < M . According to the theorem 2.2 for some n0 and an
integer k for all n ≥ n0 R(xn) = {yn+k}. According to the proposition 3.1
there are integers n0 and K > 0 such that for every n ≥ n0 the inequality
|xn − yn+k| < K is true.

Let r be an arbitrary natural number. For every n ≥ 1, the following
inequality holds: |β(r)−α(r)|xn ≤ |β(r)−α(r)|xn+K−|β(r)||yn+k−xn|+K−
|yn+r+k−xn+r| ≤ 2K+

∣∣(β(r)−α(r))xn+β(r)(yn+k−xn)+(yn+r+k−xn+r)
∣∣ =

2K +
∣∣(yn+r+k + β(r)yn+k)− (xn+r + α(r))xn)

∣∣ ≤ 3K. Since the numbers xn
tend to infinity, it follows from the above inequality that |β(r) − α(r)| = 1.
The latter means that α and β functions coincide.

The implications 3) =⇒ 1), 2) are contained in Theorem 2.5.
The implication 2) =⇒ 3) is contained in Theorem 2.2. □
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