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1 Introduction

Given the base mapping Φ : IRn → IRn and the constraints mappings h :
IRn → IRl and g : IRn → IRm, consider the variational problem

x ∈ D, 〈Φ(x), ξ〉 ≥ 0 ∀ ξ ∈ TD(x), (1)

where
D = {x ∈ IRn | h(x) = 0, g(x) ≤ 0},

and TD(x) is the usual tangent (contingent) cone to D at x ∈ D. This problem
setting is fairly general. In particular, it contains optimality conditions: for a
given smooth function f : IRn → IR, any local solution of the optimization
problem

minimize f(x)
subject to h(x) = 0, g(x) ≤ 0,

(2)

necessarily satisfies (1) with the base mapping defined by

Φ(x) = f ′(x), x ∈ IRn. (3)

Assuming that the constraints mappings h and g are smooth, for any local
solution x̄ of problem (1) under the appropriate constraint qualifications there
exists a multiplier (λ, µ) ∈ IRl × IRm satisfying the Karush–Kuhn–Tucker
(KKT) system

Φ(x) + (h′(x))Tλ + (g′(x))Tµ = 0,
h(x) = 0, µ ≥ 0, g(x) ≤ 0, 〈µ, g(x)〉 = 0 (4)

for x = x̄. In particular, if (3) holds then (4) is the KKT system of optimization
problem (2). Let M(x̄) stand for the set of such multipliers associated with x̄.

Define the mapping Ψ : IRn × IRl × IRm → IRn by

Ψ(x, λ, µ) = Φ(x) + (h′(x))Tλ + (g′(x))Tµ. (5)

Let

A = A(x̄) = {i = 1, . . . , m | gi(x̄) = 0}, N = N(x̄) = {1, . . . , m} \A

be the sets of indices of active and inactive constraints at x̄ and, for (λ̄, µ̄) ∈
M(x̄), let

A+ = A+(x̄, µ̄) = {i ∈ A | µ̄i > 0}, A0 = A0(x̄, µ̄) = A \A+

be the sets of indices of strongly active and weakly active constraints, respec-
tively. If Φ is differentiable at x̄, and h and g are twice differentiable at x̄, then
from the results and discussions in [8,7,9,17] the following three properties
are known to be equivalent.

Property 1 (Upper Lipschitz stability of the solutions of KKT
system under canonical perturbations). There exist a neighborhood U
of (x̄, λ̄, µ̄) and ` > 0 such that for any σ = (a, b, c) ∈ IRn × IRl × IRm close
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enough to (0, 0, 0), any solution (x(σ), λ(σ), µ(σ)) ∈ U of the perturbed KKT
system

Ψ(x, λ, µ) = a, h(x) = b, µ ≥ 0, g(x) ≤ c, 〈µ, g(x)− c〉 = 0 (6)

satisfies the estimate

‖x(σ)− x̄‖+ dist((λ(σ), µ(σ)), M(x̄)) ≤ `‖σ‖. (7)

Property 2 (Error bound for KKT system). There exist a neigh-
borhood U of (x̄, λ̄, µ̄) and ` > 0 such that for all (x, λ, µ) ∈ U it holds
that

‖x− x̄‖+ dist((λ, µ), M(x̄)) ≤ `

∥∥∥∥∥∥




Ψ(x, λ, µ)
h(x)

min{µ, −g(x)}




∥∥∥∥∥∥
. (8)

Property 3 (The multiplier (λ̄, µ̄) is noncritical). There is no triple
(ξ, η, ζ) ∈ IRn × IRl × IRm, with ξ 6= 0, that satisfies the system

∂Ψ

∂x
(x̄, λ̄, µ̄)ξ + (h′(x̄))Tη + (g′(x̄))Tζ = 0, h′(x̄)ξ = 0, g′A+

(x̄)ξ = 0, (9)

ζA0 ≥ 0, g′A0
(x̄)ξ ≤ 0, ζi〈g′i(x̄), ξ〉 = 0, i ∈ A0, ζN = 0. (10)

The equivalence between Properties 1 and 2 is valid in the more general
context of mixed complementarity problems that contain KKT systems as a
special case and, as will be discussed in Section 2, this equivalence actually
does not require differentiability of Φ and twice differentiability of h and g.
Observe also that Property 1 (dealing with canonical perturbations) implies
the corresponding upper Lipschitz stability property for arbitrary parametric
perturbations satisfying the Lipschitz-continuity assumption specified in item
(b) of Theorem 1 below.

The notion of critical and noncritical multipliers had been discussed in [15,
16], and the equivalence of noncriticality to Properties 1 and 2 in [17]. Note
also that, as can be easily seen, when ∂Ψ

∂x (x̄, λ̄, µ̄) is a symmetric matrix (e.g.,
in optimization setting (3)), (9)–(10) is the KKT system for the quadratic
programming problem

minimizeξ
1
2

〈
∂Ψ

∂x
(x̄, λ̄, µ̄)ξ, ξ

〉

subject to ξ ∈ C(x̄),
(11)

where

C(x̄) = {ξ ∈ IRn | h′(x̄)ξ = 0, g′A(x̄)ξ ≤ 0, 〈Φ(x̄), ξ〉 ≤ 0}
= {ξ ∈ IRn | h′(x̄)ξ = 0, g′A+

(x̄)ξ = 0, g′A0
(x̄)ξ ≤ 0}

is the critical cone of the KKT system (4) at x̄. Therefore, in this case (λ̄, µ̄)
being noncritical is equivalent to saying that ξ = 0 is the unique stationary
point of problem (11). Using the terminology of [4], the multiplier (λ̄, µ̄) being
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noncritical also means that the cone-matrix pair (C(x̄), ∂Ψ
∂x (x̄, λ̄, µ̄)) has the

so-called R0 property (see the discussion following (3.3.18) in [4]). Finally,
note that multiplying the first equality in (9) by ξ and using the other two
equalities in (9) and the relations in (10), it can be seen that a sufficient
condition for (λ̄, µ̄) to be noncritical is the following second-order sufficiency
condition (SOSC):

〈
∂Ψ

∂x
(x̄, λ̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C(x̄) \ {0}. (12)

In particular, SOSC (12) is sufficient for the equivalent Properties 1–3, but is
stronger in general.

Most error bounds for KKT systems would require at least some regularity-
type assumptions about the constraints; see [13] for a summary. The exception
is precisely the bound (8) first established under SOSC (12), which follows from
[8,7]; and which is actually equivalent to the weaker assumption of noncriti-
cality of the multiplier, as discussed above. Speaking about the predecessor of
these results, we first mention [27] where under the additional Mangasarian–
Fromovitz constraint qualification (MFCQ) it was proved that in optimization
setting (3), SOSC (12) for all (λ̄, µ̄) ∈ M(x̄) implies the stronger version of
Property 1, with U being a neighborhood of the entire set {x̄} ×M(x̄). In [2,
22], SOSC (12) was replaced by a condition close to noncriticality, but still for
all (λ̄, µ̄) ∈ M(x̄), and still under MFCQ. Note that the works cited above
deal with upper Lipschitzian stability of the primal solution only but, as will
be demonstrated in the proof of Theorem 1 below, the needed property of
dual solutions can then be easily derived by an application of Hoffman’s error
bound.

Furthermore, in [18,19,3] these results were extended to the case when the
functions in (2) may not be twice differentiable, but only possess Lipschitz-
continuous first derivatives. This problem setting with restricted smoothness
requirements has multiple applications: e.g., in stochastic programming and
optimal control (the so-called extended linear-quadratic problems [28,29,26]),
and in semi-infinite programming and in primal decomposition procedures (see
[21,25] and references therein). Once but not twice differentiable functions
arise also when reformulating complementarity constraints as in [12] or in the
lifting approach [30,11,10]. Other possible sources are subproblems in penalty
or augmented Lagrangian methods with lower-level constraints treated directly
and upper-level inequality constraints treated via quadratic penalization or via
augmented Lagrangian, which gives rise to certain terms that are not twice
differentiable in general; see, e.g., [1]. Theoretical difficulties concerned with
the lack of smoothness have already been highlighted in [31] where, among
other things, an example of an unconstrained optimization problem was pro-
vided showing that, unlike in the twice differentiable case, a point satisfying
the quadratic growth condition may not be an isolated stationary point, and
hence, may not be upper Lipschitz stable or satisfy the error bound (8).

We also mention the related work concerned with characterization of Lip-
schitz stability properties for generalized equations with possible nonsmooth
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base mappings by means of generalized differentiation [23]. However, the much
stronger pseudo-Lipschitzian property of the solution mapping is investigated
in that work.

Apart from theoretical significance, all this has implications for conver-
gence of numerical algorithms. For example, SOSC (12) was the only assump-
tion needed to prove local convergence of the stabilized sequential quadratic
programming method in [5] and of the augmented Lagrangian algorithm in
[6], with the error bound (8) playing a key role. When there are equality
constraints only, the error bound itself (equivalently, noncriticality of the mul-
tiplier) is enough in the case of stabilized sequential quadratic programming
[17]. The error bound (8) was also the key in active set identification [3] and
constructing local regularization methods for problems with degenerate con-
straints in [14,32]. For other roles and applications of error bounds, see, e.g.,
[24].

The goal of this note is to prove that under weaker smoothness assump-
tions Properties 1 and 2 are equivalent to the appropriately defined notion of
noncriticality, without any constraint qualifications. Not employing constraint
qualifications is crucial for the applications of error bounds discussed above.
Also, avoiding MFCQ is what makes the results presented below meaningful for
problems with pure equality constraints and nonunique multipliers associated
to a solution. Our smoothness hypotheses reduces to local Lipschitz-continuity
of the mapping Ψ , and in particular, the results presented below are new and
fully relevant in the case of a piecewise smooth Ψ .

Some words about our notation and terminology are in order. According to
[20, (6.6)], for a mapping F : IRp → IRr which is locally Lipschitz-continuous
at u ∈ IRp (that is, Lipschitz-continuous in some neighborhood of u), the
contingent derivative of F at u is the multifunction CF (u) from IRp to the
subsets of IRr, given by

CF (u)(v) = {w ∈ IRr | ∃ {tk} ⊂ IR+, {tk} → 0+ :
{(F (u + tkv)− F (u))/tk} → w}. (13)

In particular, if F is directionally differentiable at u in the direction v then
CF (u)(v) is single-valued and coincides with the directional derivative of F at
u in the direction v. The B-differential of F : IRp → IRr at u ∈ IRp is the set

∂BF (u) = {J ∈ IRr×p | ∃ {uk} ⊂ SF such that {uk} → u, {F ′(uk)} → J},

where SF is the set of points at which F is differentiable (this set is dense in
the contexts of our interest). Then the Clarke generalized Jacobian of F at u
is given by

∂F (u) = conv ∂BF (u),

where conv S stands for the convex hull of the set S. Observe that according
to [20, (6.5), (6.6), (6.16)],

∀w ∈ CF (u)(v) ∃J ∈ ∂F (u) such that w = Jv. (14)
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Moreover, if in addition F has the property

sup
J∈∂F (u+v)

‖F (u + v)− F (u)− Jv‖ = o(‖v‖), (15)

then for any v ∈ IRp and any sequence {tk} corresponding to a given w ∈
CF (u)(v) due to (13), it holds that

F (u + tkv)− F (u) = tkJkv + o(tk) (16)

for any choice of Jk ∈ ∂BF (u+ tkv). Since the multifunction corresponding to
the B-differential of a locally Lipschitz-continuous mapping is locally bounded
and upper semicontinuous, we may assume without loss of generality that {Jk}
converges to some J ∈ ∂BF (u). Then from (16) we derive the equality w = Jv.
It is thus proved that assuming (15), property (14) can be strengthened as
follows:

∀w ∈ CF (u)(v) ∃J ∈ ∂BF (u) such that w = Jv. (17)

Property (15) is one of the ingredients of the widely used notion of semis-
moothness of F at u (see [4, Section 7.4]). Specifically, semismoothness com-
bines local Lipschitz continuity of F at u and property (15) with directional
differentiability of F at u in any direction. The latter is not needed in our
development.

Furthermore, for a mapping F : IRp × IRq → IRr, the partial contingent
derivative (partial B-differential; partial Clarke generalized Jacobian) of F at
(u, v) ∈ IRp× IRq with respect to u is the contingent derivative (B-differential;
Clarke generalized Jacobian) of the mapping F (·, v) at u, which we denote by
CuF (u, v) (by (∂B)uΦ(u, v); by ∂uΦ(u, v)).

Finally, a mapping F : IRp → IRr is said to be locally Lipschitz-continuous
with respect to u ∈ IRp if there exist a neighborhood U of u and ` > 0 such
that

‖F (v)− F (u)‖ ≤ `‖v − u‖ ∀ v ∈ U.

2 Lipschitz-continuous KKT systems

The following is an extension of the notion of a noncritical multiplier to the
case when the mapping Ψ defined in (5) is locally Lipschitz-continuous at the
reference point but may not be differentiable.

Definition 1 Given a solution (x̄, λ̄, µ̄) of (4), we say that the multiplier
(λ̄, µ̄) is noncritical if there is no triple (ξ, η, ζ) ∈ IRn× IRl× IRm, with ξ 6= 0,
satisfying the system

d + (h′(x̄))Tη + (g′(x̄))Tζ = 0, h′(x̄)ξ = 0, g′A+
(x̄)ξ = 0, (18)

ζA0 ≥ 0, g′A0
(x̄)ξ ≤ 0, ζi〈g′i(x̄), ξ〉 = 0, i ∈ A0, ζN = 0. (19)

with some d ∈ CxΨ(x̄, λ̄, µ̄)(ξ). Otherwise (λ̄, µ̄) is critical.
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Observe that system (18)–(19) corresponds to system (35) in [19].

Remark 1 Employing (14) it is immediate that the multiplier (λ̄, µ̄) is neces-
sarily noncritical if there is no triple (ξ, η, ζ) ∈ IRn × IRl × IRm, with ξ 6= 0,
satisfying the system (18)–(19) with d = Hξ and some H ∈ ∂xΨ(x̄, λ̄, µ̄). Now
one can readily see that the second-order sufficiency condition

∀H ∈ ∂xΨ(x̄, λ̄, µ̄) 〈Hξ, ξ〉 > 0 ∀ ξ ∈ C(x̄) \ {0} (20)

implies that the multiplier (λ̄, µ̄) is necessarily noncritical. It was established
in [21] that in the optimization setting (3), condition (20) is indeed sufficient
for local optimality of x̄ in the problem (2).

Moreover, if in addition Ψ has the property

sup
H∈∂xΨ(x̄+ξ, λ̄, µ̄)

‖Ψ(x̄ + ξ, λ̄, µ̄)− Ψ(x̄, λ̄, µ̄)−Hξ‖ = o(‖ξ‖)

(in particular, if Ψ(·, λ̄, µ̄) is semismooth at x̄), then employing (17) it is
immediate that the multiplier (λ̄, µ̄) is necessarily noncritical if there is no
triple (ξ, η, ζ) ∈ IRn × IRl × IRm, with ξ 6= 0, satisfying the system (18)–(19)
with d = Hξ and some H ∈ (∂B)xΨ(x̄, λ̄, µ̄).

Consider now the following parametric version of the KKT system (4):

Φ(σ, x) +
(

∂h

∂x
(σ, x)

)T

λ +
(

∂g

∂x
(σ, x)

)T

µ = 0,

h(σ, x) = 0, µ ≥ 0, g(σ, x) ≤ 0, 〈µ, g(σ, x)〉 = 0,

(21)

where σ ∈ IRs is a (perturbation) parameter, and Φ : IRs × IRn → IRn,
h : IRs × IRn → IRl, g : IRs × IRn → IRm are the given mappings such that h
and g are differentiable with respect to x.

The following sensitivity result generalizes [9, Theorem 2.3] with respect
to its smoothness assumptions (see also the related result in [8]).

Theorem 1 Let (x̄, λ̄, µ̄) ∈ IRn × IRl × IRm be a solution of system (21) for
σ = σ̄, where Φ : IRs× IRn → IRn, h : IRs× IRn → IRl and g : IRs× IRn → IRm

are such that h and g are differentiable with respect to x near (σ̄, x̄). Let the
following assumptions be satisfied:

(a) Φ(σ̄, ·), ∂h
∂x (σ̄, ·) and ∂g

∂x (σ̄, ·) are locally Lipschitz-continuous at x̄.
(b) There exist a neighborhood U of σ̄ and ` > 0 such that for any fixed x close

enough to x̄ the mappings Φ(·, x), g(·, x), h(·, x), ∂h
∂x (·, x) and ∂g

∂x (·, x) are
Lipschitz-continuous with respect to σ̄ on U with the Lipschitz constant `.

If (λ̄, µ̄) is a noncritical multiplier associated with x̄ for the KKT sys-
tem (21) for σ = σ̄, then for each σ close enough to σ̄ and every solution
(x(σ), λ(σ), µ(σ)) of (21) close enough to (x̄, λ̄, µ̄), it holds that

‖x(σ)− x̄‖+ dist((λ(σ), µ(σ)), M(σ̄, x̄)) = O(‖σ − σ̄‖),
where M(σ̄, x̄) is the set of (λ, µ) ∈ IRl× IRm such that (x̄, λ, µ) is a solution
of (21) for σ = σ̄.
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Proof We first establish that

‖x(σ)− x̄‖ = O(‖σ − σ̄‖). (22)

Suppose that (22) does not hold, which means that there exist some sequences
{σk} ⊂ IRs and {(xk, λk, µk)} ⊂ IRn × IRl × IRm such that {σk} → σ̄,
{(xk, λk, µk)} → (x̄, λ̄, µ̄), for each k the point (xk, λk, µk) is a solution
of (21) for σ = σk, and ‖xk − x̄‖ > γk‖σk − σ̄‖ with some γk > 0 such that
γk →∞. It then holds that

‖σk − σ̄‖ = o(‖xk − x̄‖). (23)

Define the index sets

A = A(σ̄, x̄) = {i = 1, . . . , m | gi(σ̄, x̄) = 0},
N = N(σ̄, x̄) = {1, . . . , m} \A,
A+ = A+(σ̄, x̄, µ̄) = {i ∈ A | µ̄i > 0},
A0 = A0(σ̄, x̄, µ̄) = A \A+.

Since there is only a finite number of ways to decompose the index set A0 into
two non-intersecting subsets, without loss of generality we can assume that for
each k,

µk
i > 0 ∀ i ∈ I1, µk

i = 0 ∀ i ∈ I2, (24)

where I1 and I2 are some fixed index sets such that I1 ∪ I2 = A0, I1 ∩ I2 = ∅.
Furthermore, under the assumptions (a) and (b), g is continuous at (σ̄, x̄).
Therefore, by the complementarity condition in (21), and by convergence of
{(xk, λk, µk)} to (x̄, λ̄, µ̄), without loss of generality we can assume that for
all k

µk
i > 0 ∀ i ∈ A+, µk

i = 0 ∀ i ∈ N. (25)

Define the mapping Ψ : IRs × IRn × IRl × IRm → IRn by

Ψ(σ, x, λ, µ) = Φ(σ, x) +
(

∂h

∂x
(σ, x)

)T

λ +
(

∂g

∂x
(σ, x)

)T

µ.

Passing onto a subsequence if necessary, we can assume that {(xk − x̄)/‖xk −
x̄‖} converges to some ξ ∈ IRn, ‖ξ‖ = 1. Then, setting tk = ‖xk − x̄‖ and
passing to a further subsequence, if necessary, by (13) and by local Lipschitz
continuity of Ψ(σ̄, ·, λ̄, µ̄) at x̄ (implied by local Lipschitz continuity of Φ(σ̄, ·),
∂h
∂x (σ̄, ·) and ∂g

∂x (σ̄, ·) at x̄) we have that there exists d ∈ CxΨ(σ̄, x̄, λ̄, µ̄)(ξ)
such that

Ψ(σ̄, xk, λ̄, µ̄) = Ψ(σ̄, x̄ + tkξ, λ̄, µ̄)− Ψ(σ̄, x̄, λ̄, µ̄)
+Ψ(σ̄, xk, λ̄, µ̄)− Ψ(σ̄, x̄ + tkξ, λ̄, µ̄)

= tkd + o(tk) + O(‖xk − x̄− tkξ‖)

= tkd + o(tk) + O

(
tk

∥∥∥∥
xk − x̄

‖xk − x̄‖ − ξ

∥∥∥∥
)

= ‖xk − x̄‖d + o(‖xk − x̄‖). (26)
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The first line in (21) can be written in the form

Ψ(σ, x, λ, µ) = 0.

Therefore, using (24)–(26) and assumptions (a) and (b), as well as (23), we
obtain that

0 = Ψ(σk, xk, λk, µk)

= Ψ(σk, xk, λ̄, µ̄) +
(

∂h

∂x
(σk, xk)

)T

(λk − λ̄) +
(

∂g

∂x
(σk, xk)

)T

(µk − µ̄)

= Ψ(σ̄, xk, λ̄, µ̄) +
(

∂h

∂x
(σ̄, xk)

)T

(λk − λ̄) +
(

∂g

∂x
(σ̄, xk)

)T

(µk − µ̄)

+O(‖σk − σ̄‖)

= ‖xk − x̄‖d +
(

∂h

∂x
(σ̄, x̄)

)T

(λk − λ̄)

+
(

∂gA+∪I1

∂x
(σ̄, x̄)

)T

(µk
A+∪I1

− µ̄A+∪I1) + o(‖xk − x̄‖)

= ‖xk − x̄‖d +
(

∂h

∂x
(σ̄, x̄)

)T

(λk − λ̄)

+
(

∂gA+

∂x
(σ̄, x̄)

)T

(µk
A+

− µ̄A+) +
(

∂gI1

∂x
(σ̄, x̄)

)T

µk
I1

+ o(‖xk − x̄‖).

Hence,

− im
(

∂h

∂x
(σ̄, x̄)

)T

− im
(

∂gA+

∂x
(σ̄, x̄)

)T

−
(

∂gI1

∂x
(σ̄, x̄)

)T

IR|I1|
+

3 ‖xk − x̄‖d + o(‖xk − x̄‖), (27)

where the set in the left-hand side is a closed cone (as a sum of a linear
subspace and a polyhedral cone).

Using the second line in (21), and assumption (b), as well as (23), we obtain
that

0 = h(σk, xk)

=
∂h

∂x
(σ̄, x̄)(xk − x̄) + O(‖σk − σ̄‖) + o(‖xk − x̄‖)

=
∂h

∂x
(σ̄, x̄)(xk − x̄) + o(‖xk − x̄‖). (28)

Similarly, making use of (24), (25), we derive the estimates

0 = gA+∪I1(σ
k, xk) =

∂gA+∪I1

∂x
(σ̄, x̄)(xk − x̄) + o(‖xk − x̄‖), (29)

0 ≥ gI2(σ
k, xk) =

∂gI2

∂x
(σ̄, x̄)(xk − x̄) + o(‖xk − x̄‖). (30)
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Dividing (27)–(30) by ‖xk − x̄‖ and taking the limit as k →∞, we obtain
that

d ∈ − im
(

∂h

∂x
(σ̄, x̄)

)T

− im
(

∂gA+

∂x
(σ̄, x̄)

)T

−
(

∂gI1

∂x
(σ̄, x̄)

)T

IR|I1|
+ , (31)

∂h

∂x
(σ̄, x̄)ξ = 0,

∂gA+

∂x
(σ̄, x̄)ξ = 0, (32)

∂gI1

∂x
(σ̄, x̄)ξ = 0,

∂gI2

∂x
(σ̄, x̄)ξ ≤ 0. (33)

The inclusion (31) means that there exists (η, ζ) ∈ IRl × IRm satisfying

d +
(

∂h

∂x
(σ̄, x̄)

)T

η +
(

∂g

∂x
(σ̄, x̄)

)T

ζ = 0 (34)

and such that
ζI1 ≥ 0, ζI2∪N = 0.

Then, taking also into account (33), the triple (ξ, η, ζ) satisfies

ζA0 ≥ 0,
∂gA0

∂x
(σ̄, x̄)ξ ≤ 0, ζi

〈
∂gi

∂x
(σ̄, x̄), ξ

〉
= 0, i ∈ A0,

ζN = 0.
(35)

As ξ 6= 0, relations (32), (34), (35) contradict the assumption that the
multiplier (λ̄, µ̄) is noncritical. This proves (22).

Considering σ close enough to σ̄, and a solution (x(σ), λ(σ), µ(σ)) of sys-
tem (21) close enough to (x̄, λ̄, µ̄), we have that

Ψ(σ, x(σ), λ(σ), µ(σ)) = 0, µ(σ) ≥ 0, µN (σ) = 0,

where the last equality is by the continuity of g at (σ̄, x̄). Since M(σ̄, x̄) is
the solution set of the linear system

Ψ(σ̄, x̄, λ, µ) = 0, µA ≥ 0, µN = 0,

by Hoffman’s error bound (e.g., [4, Lemma 3.2.3]) we obtain that

dist((λ(σ), µ(σ)), M(σ̄, x̄)) = O

(
‖Ψ(σ̄, x̄, λ(σ), µ(σ))‖

+
∑

i∈A

min{0, µi(σ)}+ ‖µN (σ)‖
)

= O(‖Ψ(σ, x(σ), λ(σ), µ(σ))
−Ψ(σ̄, x̄, λ(σ), µ(σ))‖)

= O(‖σ − σ̄‖) + O(‖x(σ)− x̄‖),
where assumptions (a) and (b) were also used. Together with (22), this gives
the assertion of the theorem.
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In the optimization setting (3), and if MFCQ and noncriticality of all the
multipliers are assumed, Theorem 1 essentially recovers the sufficiency part of
Theorem 4 in [19] (see also [20, Theorem 8.24]). Regarding the necessity part,
the following comments are in order.

Remark 2 Being applied to the case of canonical perturbations, Theorem 1
reveals that noncriticality of the multiplier in question is sufficient for Prop-
erty 1 to hold. It turns out that it is necessary as well. In order to show this,
take any triple (ξ, η, ζ) ∈ IRn× IRl× IRm satisfying the system (18)–(19) with
some d ∈ CxΨ(x̄, λ̄, µ̄)(ξ), and fix a sequence {tk} corresponding to this d due
to (13). It then can be directly checked that for all k large enough the triple
(x̄ + tkξ, µ̄ + tkη, λ̄ + tkζ) satisfies (6) with some a = o(tk), b = o(tk) and
c = o(tk). Therefore, if ξ 6= 0, we would get a contradiction with (7).

Remark 3 The properties specified in Remark 1 are indeed strictly stronger
than noncriticality introduced in Definition 1, and hence, strictly stronger than
Property 1.

For example, let n = m = 1, l = 0, Φ(x) = max{0, x}, g(x) = −x. The
point (x̄, µ̄) = (0, 0) is the only solution of system (4). It can be easily checked
that the multiplier µ̄ is noncritical, and Property 1 is valid for the specified
(x̄, µ̄). Indeed, system (6) takes the form

max{0, x} − µ = a, µ ≥ 0, −x ≤ c, µ(x + c) = 0.

This implies that either µ = 0, in which case x satisfies at least one of the
relations x = a or −c ≤ x < 0; or µ > 0, in which case x = −c and µ equals to
at least one of −a or −a− c. Therefore, |x|+ |µ| ≤ |a|+ 2|c|, giving (7) with
U = IR × IR and an appropriate ` > 0 (depending on the choice of the norm
in the right-hand side of (7)). However, (∂B)xΨ(x̄, µ̄) = {0, 1} contains zero,
and any ξ ≥ 0 satisfies (18)–(19) with d = 0 and η = 0.

Note that the example above corresponds to the parametric optimization
problem

minimize
1
2
(max{0, x})2

subject to x ≥ 0.

Therefore, the conditions from Remark 1 are stronger than noncriticality and
not necessary for Property 1 to hold even for optimization problems. This is
different from the case when the problem data is twice differentiable.

Remark 4 As already mentioned in Section 1, Properties 1 an 2 are equiva-
lent under the only assumptions that Φ and the derivatives of h and g are
locally Lipschitz-continuous with respect to x̄. The fact that Property 2 im-
plies Property 1 is immediate. The converse implication was established in
[7, Theorem 2]. The essence of the argument is the following. For any triple
(x, λ, µ) ∈ IRn×IRl×IRm close enough to (x̄, λ̄, µ̄) one can construct µ̃ ∈ IRm

and σ = (a, b, c) ∈ IRn × IRl × IRm such that

Φ(x) + (h′(x))Tλ + (g′(x))Tµ̃ = a,
h(x) = b, µ̃ ≥ 0, g(x) ≤ c, 〈µ̃, g(x)− c〉 = 0
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(cf. (6)), and

‖µ̃− µ‖ = O(‖min{µ, −g(x)}‖), ‖σ‖ = O




∥∥∥∥∥∥




Ψ(x, λ, µ)
h(x)

min{µ, −g(x)}




∥∥∥∥∥∥


 .

In the case when there are no inequality constraints, the construction is ob-
vious, as one simply takes a = Φ(x) + (h′(x))Tλ and b = h(x). We refer the
reader to [7, Theorem 2] for details in the case when inequality constraints are
present.

Combining Remarks 2 and 4, we finally obtain the following result.

Corollary 1 Let (x̄, λ̄, µ̄) ∈ IRn×IRl×IRm be a solution of system (4), where
Φ : IRn → IRn, h : IRn → IRl and g : IRn → IRm are such that h and g are
differentiable near x̄, and Φ, h′ and g′ are locally Lipschitz-continuous at x̄.

Then the following three properties are equivalent:

1. Property 1 (Upper Lipschitz stability of the solutions of KKT system under
canonical perturbations).

2. Property 2 (Error bound for KKT system).
3. The multiplier (λ̄, µ̄) ∈M(x̄) is noncritical (in the sense of Definition 1).

We complete this note with another example illustrating the setting in
question and the results obtained. Note that the derivatives of the data of
the reformulated optimization problem in this example are locally Lipschitz-
continuous but not piecewise smooth.

Example 1 Consider the mathematical program with model complementarity
constraints

minimize
1
2
(x2

1 + x2
2)

subject to x1 ≥ 0, x2 ≥ 0, x1x2 = 0.

Employing the squared Fischer–Burmeister complementarity function, we can
reformulate the constraints of this problem as a single equality constraint with
locally Lipschitz-continuous derivative:

minimize
1
2
(x2

1 + x2
2)

subject to
1
2

(
x1 + x2 −

√
x2

1 + x2
2

)2

= 0.

The unique solution of this problem is x̄ = 0, and M(x̄) = IR. After some
manipulations, one can see that the only critical multipliers are −3± 2

√
2.

Take, e.g., the critical multiplier λ̄ = −3− 2
√

2, and consider x ∈ IR2 such
that x1 = x2 = t > 0. Then by direct computation we obtain that for this
problem data Ψ(x, λ̄) = 0, h(x) = (2−√2)2t2/2. Therefore, the error bound
(8) does not hold with λ = λ̄ for any ` > 0 provided t is small enough.

On the other hand, and as established above, it can be seen that the error
bound (8) holds around noncritical multipliers.
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