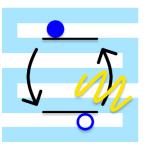


SnO₂, синтезированный пероксидным методом: морфология, свойства поверхности и процессы, формирующие сенсорный отклик при детектировании СО

<u>Добровольский А.А.,^{1,2}</u> Платонов В.Б.,¹ Михайлов А.А.,²

Румянцева М.Н.,¹ Приходченко П.В.²

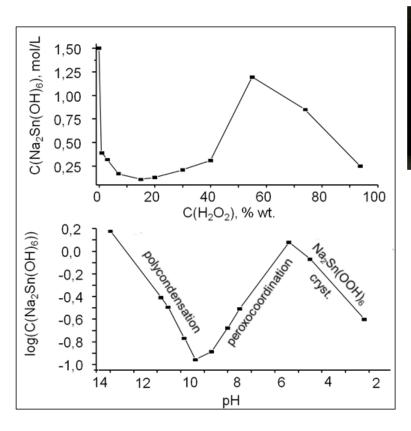

1 Лаборатория химии и физики полупроводниковых и сенсорных материалов,

Химический факультет, МГУ им. М.В. Ломоносова

² Лаборатория пероксидных соединений и материалов на их основе

ИОНХ РАН им. Н.С. Курнакова Москва, 2024

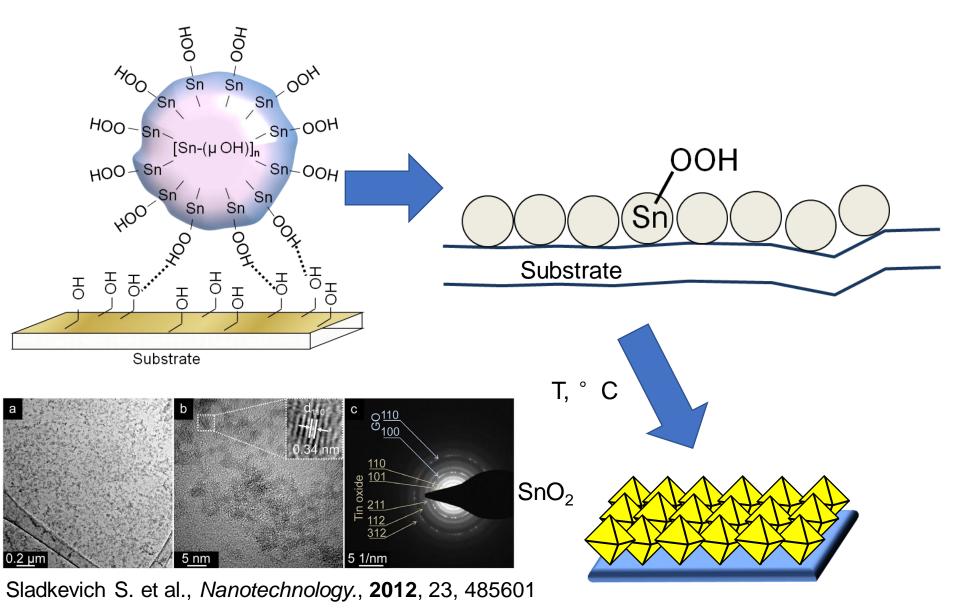
Пероксидный метод синтеза SnO₂

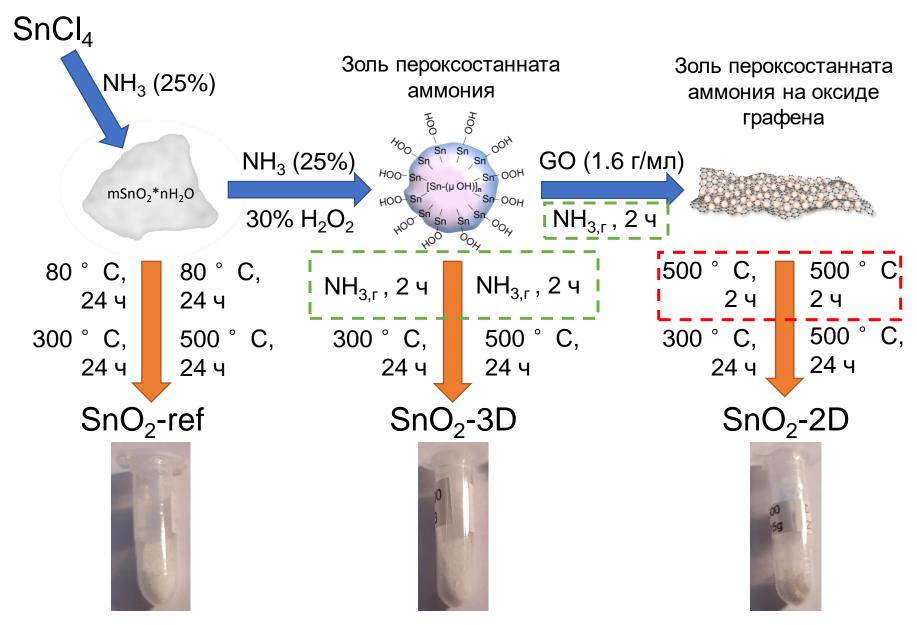

 H_2O_2 как кислота:

 $2[Sn(OH)_6]^{2-} + H_2O_2 \leftarrow (HO)_5Sn-(OH)-Sn(OH)_5]^{3-} + H_2O + OOH^{-}$

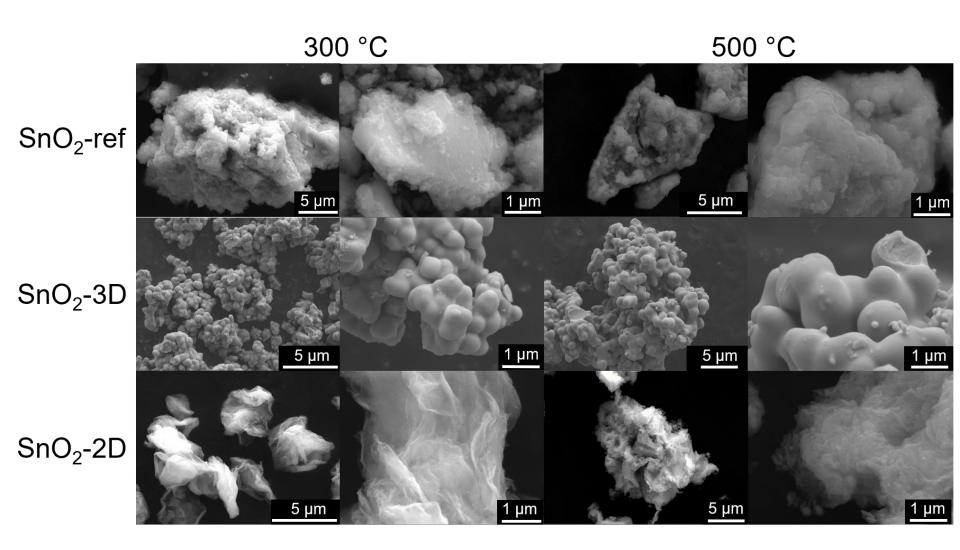
 H_2O_2 как лиганд:

 $[Sn(OH)_6]^{2-} + H_2O_2 \longrightarrow [Sn(OH)_5(OOH)]^{2-} + H_2O$



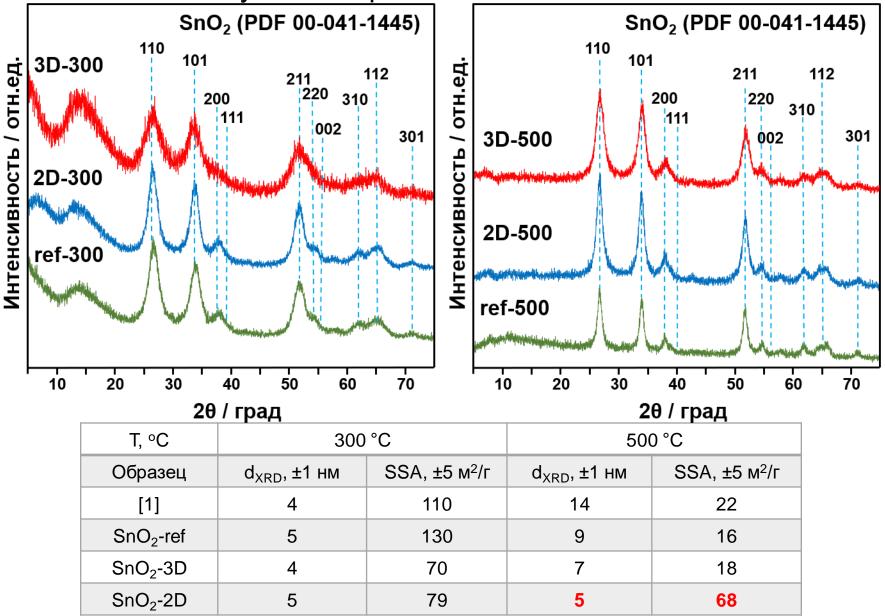

Mikhaylov A.A. et al., Dalt. Trans., 2017, 46, 16171-16179

Пероксидный метод синтеза SnO₂: темплатный вариант



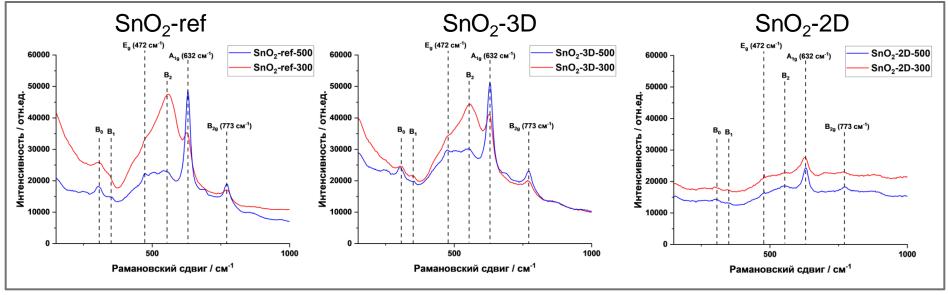
Sladkevich S. et al., *Inorg. Chem.*, **2010**, 49, 9110-9112

Схема синтеза

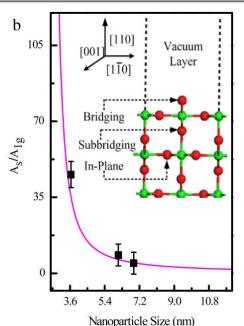


Морфология SnO₂, полученного различными способами

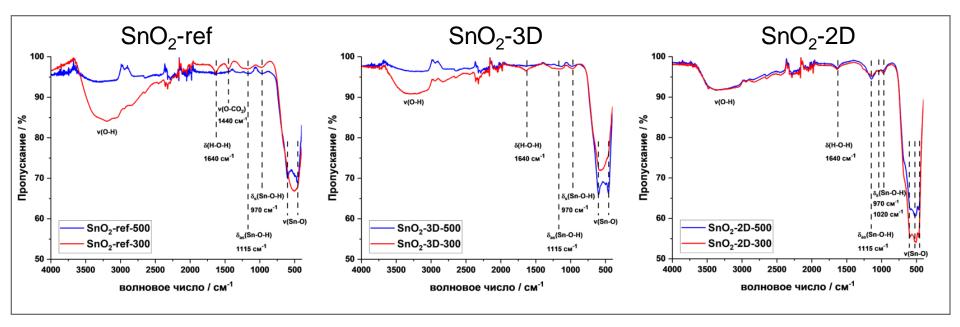
Изображения СЭМ образцов SnO₂


Фазовый состав и параметры микроструктуры SnO₂, полученного различными способами

[1] Rumyantseva M.N. et al., Thin Solid Films, 2009, 518, 1283-1288


Результаты исследований методом спектроскопии КР

Спектры КР исследованных образцов SnO₂

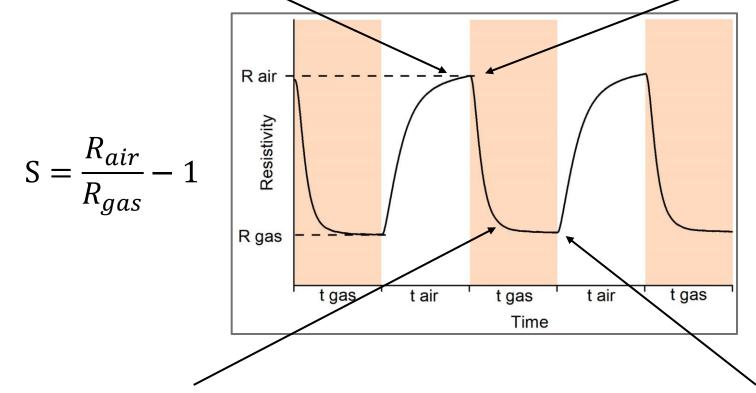

Отношение площадей суммы мод поверхностных фононов и фундаментальной (A_{1g}) рамановских мод

T, °C	300 °C	500 °C
Образец	B ₂ /A _{1g}	B ₂ /A _{1g}
SnO ₂ -ref	13.9	4.4
SnO ₂ -3D	11.9	6.1
SnO ₂ -2D	11.6	7.8

Liu et al., Solid State Commun. **2011**, 151, 811–814

Группы на поверхности SnO₂

ИК-НПВО спектры образцов SnO₂


Формирование сенсорного отклика к СО

Модель ионосорбции

 $O_{2(\mathrm{agc})} + e_{3\Pi}^{-} \leftrightarrow O_{2(\mathrm{agc})}^{-} + e_{3\Pi}^{-} \leftrightarrow 2O_{(\mathrm{agc})}^{-}$

Модель кислородных вакансий

$$2V_0^{\cdot} + O_{2(ras)} + 2e_{3\Pi}^{-} \leftrightarrow 2O_0^{\times}$$

Модель ионосорбции

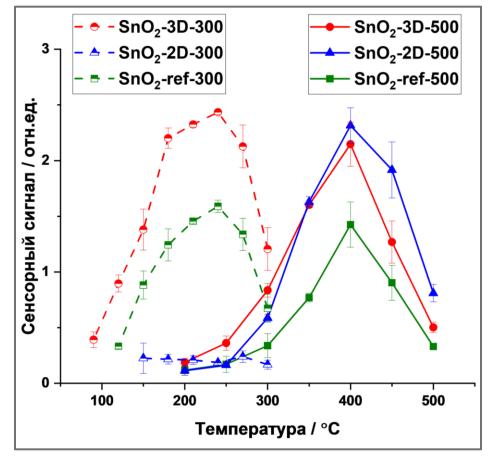
$$CO + \frac{1}{\beta}O_{\beta,\mathrm{agc}}^{\alpha-} \leftrightarrow CO_2 + \alpha e_{3\Pi}^{-}$$

Модель кислородных вакансий

$$CO + O_O^{\times} \leftrightarrow CO_2 + V_O^{\times}$$

$$V_O^{\times} \leftrightarrow V_O^{\cdot} + e_{3\Pi}^{-} \qquad V_O^{\cdot} \leftrightarrow V_O^{\cdot \cdot} + e_{3\Pi}^{-}$$

Сенсорные свойства по отношению к СО


Модель хемосорбированного кислорода

$$CO + \frac{1}{\beta}O_{\beta,\mathrm{agc}}^{\alpha-} = CO_2 + \alpha e_{3\Pi}^{-}$$

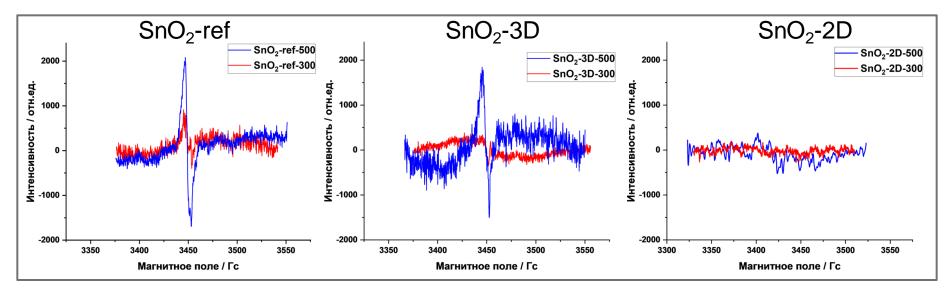
Модель кислородных вакансий

$$CO + O_O^{\times} = CO_2 + V_O^{\times}$$

$$V_O^{\times} \leftrightarrow V_O^{\cdot} + e_{3\Pi}^{-} \qquad V_O^{\cdot} \leftrightarrow V_O^{\cdot \cdot} + e_{3\Pi}^{-}$$

$$S = \frac{R_{air}}{R_{gas}} - 1$$

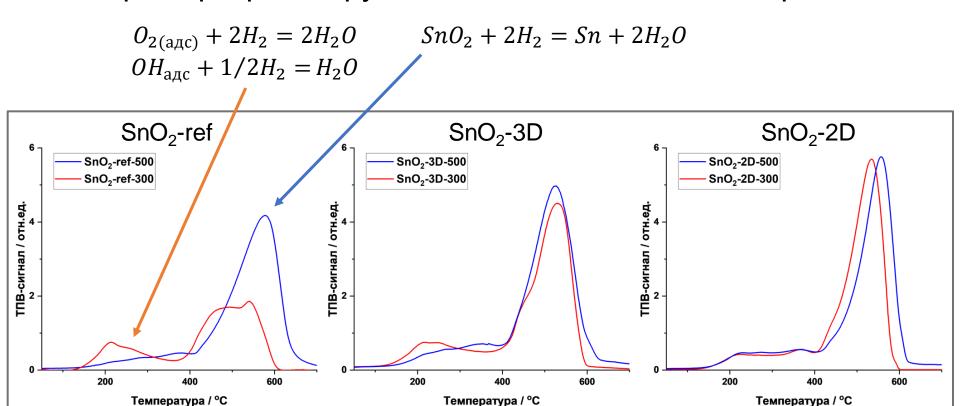
Температурные зависимости величины сенсорного отклика к СО для полученных образцов SnO₂


Выводы

- 1. Нанокристаллические материалы на основе SnO_2 , синтезируемые с использованием пероксидного метода, обладают морфологией и свойствами, отличными от свойств SnO_2 , получаемого прокаливанием гидроксида олова.
- 2. 3D SnO₂, синтезированный пероксидным методом с отжигом при 300°C, характеризуется высоким несовершенством структуры. Для 2D SnO₂ не наблюдается значительного числа дефектов, данный материал характеризуется высоким структурным совершенством.
- 3. Для материалов, характеризующихся высоким несовершенством поверхности, наблюдается максимум величины сенсорного отклика к СО при 240°С, по-видимому, связанный с окислением газа-аналита за счет хемосорбированного кислорода. Для образцов SnO₂ без выраженного дефицита кислорода максимум сенсорного отклика наблюдался при 400°С, что скорее всего связано с реализацией окисления СО кислородом кристаллической структуры SnO₂ и дальнейшей ионизацией образующихся при этом кислородных вакансий.

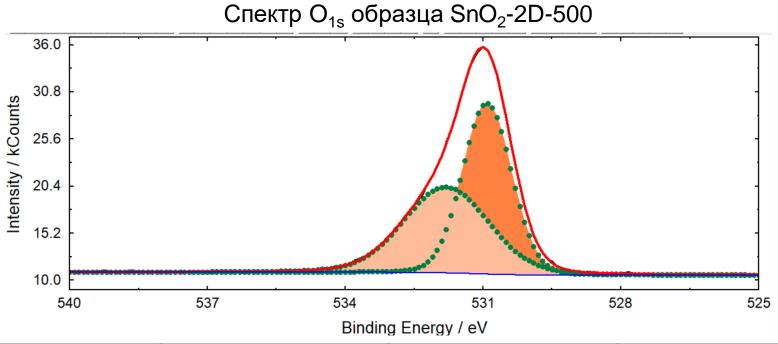
СПАСИБО ЗА ВНИМАНИЕ!

Результаты исследований методом ЭПР



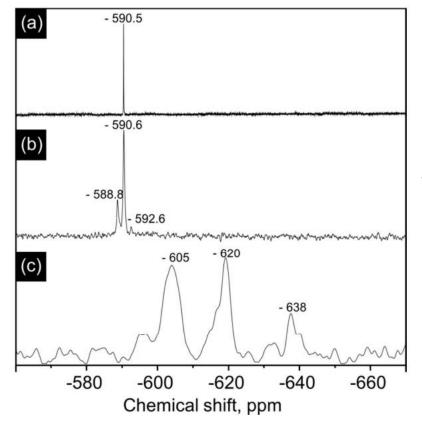
Спектры ЭПР синтезированных образцов SnO₂ Количество радикалов OH• в полученных образцах SnO₂

T, °C	300 °C	500 °C
Образец	Ед., 1/г	Ед., 1/г
SnO ₂ -ref	5*10 ¹⁵	3*10 ¹⁶
SnO ₂ -3D	3*10 ¹⁵	2*10 ¹⁶
SnO ₂ -2D	-	3*10 ¹⁵


Исследования методом ЭПР проведены д.ф.-м.н., проф. Е.А. Константиновой (физический факультет МГУ)

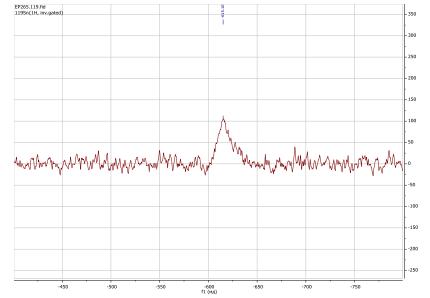
Термопрограммируемое восстановление водородом

Температур а отжига	300 °C		500 °C			
Образец	моль H ₂ / О _{хемосорб.}	моль H ₂ / О _{крист.струк.}	О _{хемосорб.} / О _{крист.струк.}	моль H ₂ / О _{хемосорб.}	моль H ₂ / О _{крист.струк.}	О _{хемосорб.} / О _{крист. струк.}
SnO ₂ -ref	0.39	1.12	0.35	0.32	2.14	0.15
SnO ₂ -3D	0.41	1.89	0.22	0.33	2.11	0.16
SnO ₂ -2D	0.35	2.06	0.19	0.34	2.02	0.17


Результаты исследований методом РФЭС

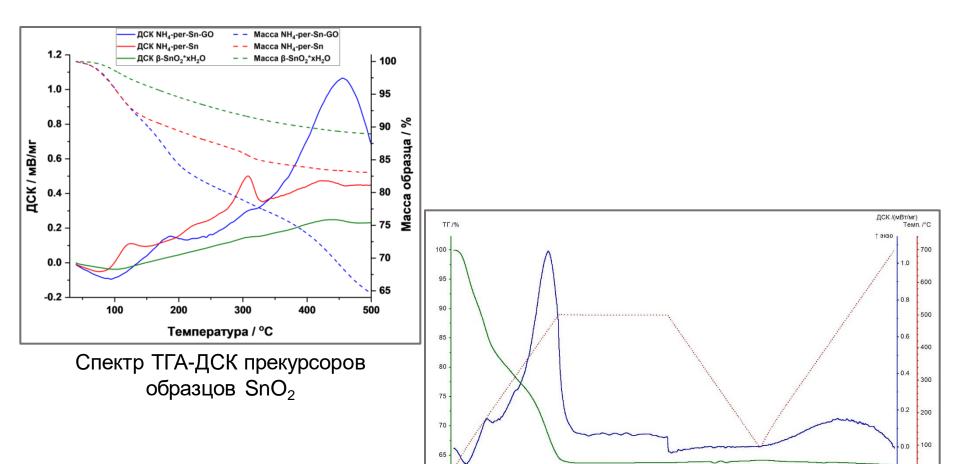
Sample	S ₁	S ₂	S ₂ /S ₁
SnO ₂ -ref-300	9758	16093	1.6492
SnO ₂ -ref-500	12653	6404	0.5061
SnO ₂ -3D-300	22118	27609	1.2483
SnO ₂ -3D-500	10045	5091	0.5068
SnO ₂ -2D-300	17854	16470	0.9225
SnO ₂ -2D-500	25760	23106	0.8970

Исследования методом РФЭС проведены к.х.н., н.с.. Ю.О. Графовым (ИФХЭ им. А.Н. Фрумкина РАН)


Исследования методом спектроскопии ЯМР

Спектры ЯМР $Na_2[Sn(OH)_6]$ в растворах с разной концентрацией H_2O_2

Anion	Calculated chemical shift [10a] ^a (ppm)	Observed chemical shift in this work (ppm)	Label in Fig. 7
[Sn(OH) ₆] ²⁻ *	-590.5	-590.5 ^b	a
$[Sn(OOH)(OH)_5]^{2-}$	-591.3	-588.5 ^b	b
trans- $[Sn(OOH)_2(OH)_4]^{2-}$	-592.0	-594.4 ^b	c
cis- $[Sn(OOH)_2(OH)_4]^{2-}$	-597.5		
mer - $[Sn(OOH)_3(OH)_3]^{2-}$	-603.8	-604.6°	d
fac - $[Sn(OOH)_3(OH)_3]^{2}$ -	-609.3		
trans- $[Sn(OOH)_4(OH)_2]^{2-}$	-615.5	-617.2°	e
cis-[Sn(OOH) ₄ (OH) ₂] ²⁻	-621.0	-621.0°	
$[Sn(OOH)_5(OH)]^{2-}$ *	-638.2	-638.2°	f
$[Sn(OOH)_6]^{2-}$ *	-660.9	-660.9°	g


Sladkevich S. et al., J Sol-Gel Sci Technol, 2009, 50, 229-240

Спектр ЯМР золя пероксостанната NH₄-per-Sn

Mikhaylov A.A. et al., Dalt. Trans., 2017, 46, 16171-16179

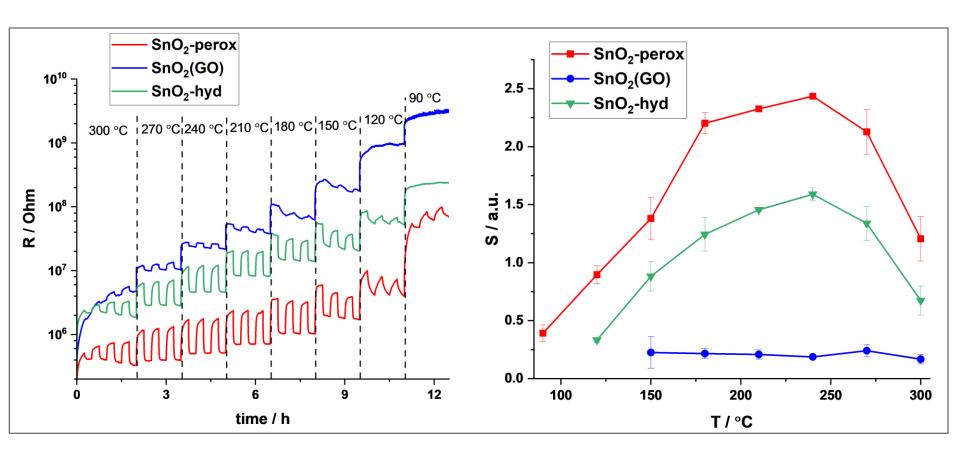
TГ анализ прекурсоров SnO₂

Спектр ТГА-ДСК прекурсора 2D SnO_2 , воспроизводящий условия предварительного отжига

300

350

400


Измерения ТГА-ДСК проведены к.х.н., доц. Т.Б. Шаталовой (химический факультет МГУ)

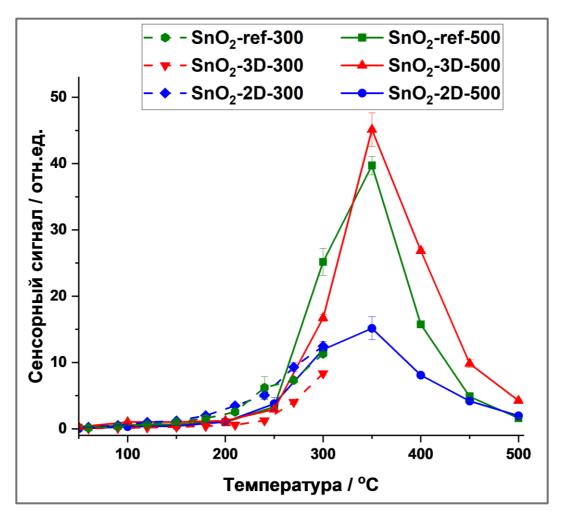
Исследование сенсорных свойств при детектировании СО (20 ppm) для образцов SnO₂-300

$$CO + \frac{1}{\beta}O_{\beta}^{\alpha -} = CO_2 + \alpha e^{-}$$


$$T_{max} = 240 \, ^{\circ}C$$

$$S_{max} = 2.43 \text{ (perox)}; 1.59 \text{ (hyd)}$$

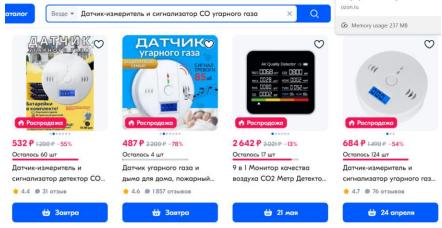
Сенсорные свойства по отношению к NH₃


$$2NH_3 + \frac{3}{\beta}O_{\beta}^{\alpha -} = 2N_2 + 3H_2O + 3\alpha e_{3\Pi}^{-}$$

Температурные зависимости величины сенсорного отклика к NH₃ для полученных образцов SnO₂

Сенсорные свойства по отношению к ацетону

$$CH_3C(O)CH_3 + \frac{8}{\beta}O_{\beta}^{\alpha-} \rightarrow 3CO_2 + 3H_2O + \alpha e_{3\Pi}^{-}$$



Температурные зависимости величины сенсорного отклика к ацетону для полученных образцов SnO₂

Области применения газовых сенсоров

Промышленная и бытовая безопасность

Мониторинг качества воздуха

Источник: пресс-служба ИОНХ РАН