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Multicomponent photorefractive cnoidal waves: Stability, localization, and soliton asymptotics

V. M. Petnikova, V. V. Shuvalov, and V. A. Vysloukh
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An algorithm of building up a different class of stable self-consistent multicomponent periodical solutions of
the nonlinear Schidinger equation—multicomponent cnoidal waves—has been formulated by the example of
a nonlinear wave propagating through a photorefractive crystal with a drift nonlinear response. Exact analytical
expressions, describing distribution of light field in the components, have been obtained for solutions, which
include up to three mutually incoherent components. It has been shown that such cnoidal waves are stable and
their spatial structure is robust to collisions with the same cnoidal waves and to stochastic perturbations of the
components’ intensity distributions in a sufficiently wide range of changing spatial period.
[S1063-651%99)03607-1

PACS numbg(s): 42.65.Tg, 42.65.Hw, 42.65.Jx, 42.65.Wi

[. INTRODUCTION solitons of any listed above types were predicted and experi-
mentally observed30].

One of the most exciting problems of modern laser phys- Recently, we presented a different class of multicompo-
ics is the investigation of self-organization in systems con/€nt screening solitons, which can stably propagate through
sisting of a nonlinear medium and a light field. After predic- PRC’S with a drift nonlinear respon$81,33. A particular
tions of the possibility of the existencel] and first ((WO-componentcase of such solitons was considered be-
demonstration 2] of stable self-consistent distributions of fore for Kerr-type nonlinear medig33]. Multicomponent

! ! : . : . ! solitons of this class consist of some mutually incoherent
light field (optical solitong in systems of such kind, the sim- i3t heams, coupled by cross-modulation interaction. In re-

plest case of a nonlinear medium with a spatially localizedation to the character of the light field distribution, their
(local) cubic nonlinear respongso-called “Kerr-type” non-  components look like some zero- and higher-order modes,
linearity [3]) has been studied in detail. The concept of oneconfined within the nonlinear waveguide written in PRC’s by
component{4] and two-component‘vector”) [5] solitons themselves. We formulated an analytical algorithm of con-
as stable self-consistent solutions of nonlinear problems hagiructing of such solitons and showed that they are robust to
solidly clamped many fields of modern physics. Fiber opticscollisions and appreciable stochastic perturbations.
and the optics of ultrashort laser pulg&s6], nonlinear op- The approach, used i{81,32, is based on three points
tics and laser spectroscop¥,8], physics of one-dimensional that have been discussed before. .
(1D) chains and two-dimensionéD) atomic planes in mo- (1) A long transient time of. the PRC nonllngar response
lecular systemg9], ferromagnetic§10], high-temperature enables one to neglect by interference of incoherent or
Yy g g p

, ; shifted in carrier frequency light field components
superconductoréiHTSC s [11], conjugated polymerg12], 31,32,34,3% The situation is fully analogous to the case of
etc., could be listed among these fields. From the mode

_ ) _ i ) o two-component soliton with cross-polarized components
point of view, results obtained in recent investigations of[33] while the maximal number of frequency-shifted com-
solitons, “multisolitons™ (high-order solitong and stable  onents is obviously limited by the photorefractive sensitiv-
soliton pairs in photorefractive crysta]lBRC’S, are of great ity bandwidth.

importance. The main specific feature of PRC's is a very = (2) If both components of the two-component solitone
strong optical nonlinearity. Perceptible nonlinear effects carparticular case of a multicomponent solifafo not interfere,

be observed here in laser beams with intensities of only #ght field distributions of its components are described by a
few mwi/cnf [13]. Starting from the pioneering papers of set of coupled nonlinear Schitimger equation$36].

[14] related to PRC's with a drifflocal) nonlinear response (3) To find steady-state solutions of a self-consistent prob-

[15], so-called photorefractive “bright”[16,17], “dark” lem, one may reduce it to a special auxiliary linear problem
[17,18, “gray” [19], vector[20] and “vortex” [21] soli-  [37-40.
tons, spatial shock wave®2], and multisolitons[23], as Notice, that it is the set of points that enables us to con-

well as some questions of such solitons propagation, interastruct a different class of multicomponent solitons by means
tion [24], spatial dimensionality25], and stability[26,27]  of eigenfunctions(mode$ of an auxiliary linear problem.
were intensively studied. It is known that in a Kerr-type non-This problem describes a beam propagating through the gra-
linear medium one can “write” a stable solitonlike wave- dient optical waveguide with a fixe@uxiliary) spatial pro-
guide by an intensive light beam and capture relatively wealkile, induced by all the components. A similar approach to a
(in intensity light beams. In PRC's, intensive light beams problem of such kind was independently described by the
can be captured in waveguides written by beams with loweauthors of{ 34]. Though they used a more realistic model of
intensity [23,28,29 when the wavelengths of the intensive PRC nonlinearity, taking into account saturation, a quite dif-
beams do not fall within the photorefractive sensitivity ferent iteration algorithm was here suggested. Self-consistent
range. Stable pairs of two incoherent spatial photorefractiveolutions, obtained by this way, should be an infinite series
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of light field components. Cutting off the series reduces the (@) In the first stage, we remove the $&j from the class
accuracy of the description of the self-consistent structuref self-consistent problems. We build up an auxiliary linear
and, therefore, leads to a limitation on the distance of theproblem, which describes a beam propagating in a periodical
stable propagation of such a soliton. gradient waveguide with fixeéauxiliary) profile of the re-
The main goal of this paper is to construct multicompo-fractive index. We describe this problem in terms of its ei-
nent photorefractive cnoidal waves, i.e., multicomponent pegenvalues and eigenfunctions: the modes.
riodical distributions of light field that can stably propagate (b) In the second stage, we reset the problem to the class
through PRC's with a drift nonlinear response. We describef self-consistent problems. That means we construct self-
here the physical model usé8ec. I), the algorithm of solv-  consistent solutions ofl) from the modes of the auxiliary
ing the self-consistent problef$ecs. IlI-\}, the analytical problem, found on the first stage. We determine the constants
solutions obtained, consisting of up to three mutually inco-of such solution decomposition on the modes, allowable spa-
herent componentsSec. V). An analysis of stability of the tial periods, etc.
solutions obtainedSec. VI is illustrated by examples of It seems a similar procedure, though not so clearly formu-
stochastic perturbations and collisions. Notice that, becaudated, was used by the authors[&7,38 to construct self-
to build up the auxiliary problem we use a number of one-consistent periodical solutions of the set of two coupled non-
and two-component cnoidal wave$9,11,37,38,41,42 linear Schrdinger equations. It enabled one to describe two
known in fiber-optics and condensed matter physics, theseross-polarized cnoidal waves propagating through a Kerr-
solutions are a particular case of presented class of multtype nonlinear medium. With respect [t87,38, we go for-

component cnoidal waves. ward and formulate an algorithm of constructing of cnoidal
waves composed of an arbitrary number of components.
1. MODEL There is a simple and universal way to build up an auxil-

iary linear problem. Actually, a definite profile of the refrac-
The basis of our model is a well-known set of materialtive index distribution corresponds to known one-component
equationg 15] for the internal electric fieldEg., formed in  self-consistent solutions of the sgt). Let us suppose that
PRC'’s due to a spatially nonuniform redistribution of chargethis profile shape is the same for a certain class of multicom-
carriers under illumination and a standard shortened wavponent self-consistent solutions df). In this case, one can
equation[3] in a paraxial approximation with no regard for build up a proper linear equatidthe auxiliary problemby
absorption. We consider the case of partial steady-statgeplacing=P_,p?(¢) with a kernel function in(1). It should
screenind43] of the external static electric fielfy, applied  be noticed that the auxiliary problem must give a possibility
to PRC’s in the transverse direction, by the internal fieldio scale the refractive index profile, i.e., to change its depth.
Esc<E, in experiments with so-called “slit” beamp44],  After this, the initial problen(1), looking like a set of equa-
which are widely used due to a large anisotropy of PRGions of motion for some coupled nonlinear oscillators,
nonlinearity. For exampleEq,~7 kV/cm in BTO crystals comes to the required auxiliary linear problem, i.e., to the
[24], but the E, value can be significantly reduced if one equation of motion for the only oscillator in a field of known
uses a more efficient photorefractive crystal such as SBMestoring force. One needs to find steady-state solutions
[13] with larger electro-optical constants. That means all(eigenfunctions and eigenvalyesf the built auxiliary prob-
types of photorefractive multicomponent solitons and cnoi{em. These eigenfunctionghe mode} can be used in the
dal waves considered here, can be referred to the class ekcond stage to construct self-consistent multicomponent so-
so-called 2D screening solitof$7,19. Without taking into  |utions of (1). Notice that one can build up some classes of
account the photovoltaic effect in PRC’s illuminated py multicomponent self-consistent solutions of the same prob-
mutually incoherent light field components, their spatial dis-lem (1) which differ in the choice of kernel function of the
tributions are described by a normalized set of coupled nonauxiliary problem[38,42.
linear Schrdinger equation$31,32 To build up multicomponent solitons 181,32, we used
the auxiliary problem based on a well-known equation for
) Legendre associated polynomi@#s]. To build up the aux-
pi(§)=0, i=1,...p. iliary problem for periodical self-consistent solutions(aj,
we will use the so-called Lame equatipf6]. The point is
(1) o=
that well-known [9] one-component periodical self-
Here p;(£) is the real dimensionless amplitude of th gor_lsistent_ solutions dfl) are proportiona_l to the Jacobi el-
component, the positive constar@sdefine the components’ lIPtic functions crig), dn(§), and siié). Their periods are de-
nonlinear phase shifts along th@xis asg;¢, ¢ and( are the  termined by an additional parameter: the modutugl =k
dimensionless transverse and longitudinal coordinates arg?) [46]- These functions form a fundamental set of solu-
the signs “+” and “ —" correspond to the cases of focusing tions of the first-order Lame equation and can be expressed
and defocusing nonlinearities. Further, we will consider thdn terms of each othe46:
former case, but both of them can be realized under a corre-
sponding choice of PRC arff, orientationg15]. drf(§)=1-k?srf(§)=1—k*+k*crf(£). @

p
El pX(6)— B,

d?pi(€)/dg?=2

According to the procedure described above, the kernel func-
tion of our auxiliary problem must be proportional te?¢#),

The order of our further consideration will be analogousdr?(£), or srf(¢). Notice that the first- and second-order
to the following[31,32. Lame equationgin so-called Weierstrass fopnhave been

Ill. AUXILIARY LINEAR PROBLEM
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TABLE I. A full set of the eigenfunctions\("(¢) and the eigenvalueB(™ (k) of the nth-order Lame
equation fom=1,2,3.

i A () B(" (k) B"(k—1)  B{(k-0)
n=1
3 dné) 2—k? 1 2
2 cnd 1 1 1
1 163) 1—k? 0 1
n=2
5 dré(&) + v 2(k2— 1)1y 4 6
4 cn(@dn(é) 5—k? 4 5
3 sn&dn(¢) 5—4k? 1 5
2 sngen(é) 2—k? 1 2
1 dr?(£) + 2(K2— 1)/ 0 2
n=3
7 dn(@)[dré(é) +¥4V] 5(2—K?) + 21— K2+ 4K* 9 12
6 en(@)[dr(&) + v 7—2k2+ 24— K2+ K? 9 11
5 sn(&)[dre(&) + v 7—5k2+ 24— 7KZ+ 4K* 4 11
4 sngen(gdn(é) 4(2—Kk?) 4 8
3 dn(@[dri(&)+ y§)] 5(2—k?) — 21— K*+ 4k* 1 8
2 en(@)[dri(&) + 5] 7—2k2—2J4—KZ+ K? 1 3
1 sn(&)[dre(&) + ] 7—5k2— 24— 7KZ+ 4K* 0 3

used before to find two-component cnoidal waves in Kerrsolitons, described ifi31,32, are the asymptotick(—1) of
type nonlinear mediurfi37,3§. Moreover, eigenfunctions of the multicomponent cnoidal waves presented here.

the Lame equation of the same orders appear almost in all Thenth-order Lame equation hasiiz 1) eigenfunctions
one- and two-component periodical self-consistent solution§46] and, in the second stag&ecs. IV-V), we will use
of the nonlinear Schudinger equation known today them to construchith-orderp-component cnoidal waves. For

[9,11,37,38,41,4R n=1-3, a full set of eigenfunctionsi(”)(g) and eigenvalues
We will use a form of the Lame equation with a kernel Bi(”)(k) of Eq. (3) is given in Table I.
function, expressed in terms of &), The following designations are used here:
(D)= (K2— 2= 1 _KZL KA
d?A{M(§)/dg?+[n(n+1)drP() — BV A (£)=0, ris(0 =2 VI ks,

yoa=(K2=37% Ja— K2+ k15,
Y= (2k2—3F J4—Tk?+ 4kH) /5,
Here A("(¢&) is theith eigenfunction of theth-order Lame

equation, corresponding to the eigenvaR(® . Changingn ¥)=(2k?— 45 1-K?+4k%)/5. &)
scales the profile of the nonlinear waveguide, written down \yhenk=1. we obtain three nexwith respect td31,32)

n=12,...,i=12,...(2n+1). 3

in PRC’s. , _ spatially localized solutions
The modulusk substantially affects solutions of the prob-
lem (3). Whenk—0 or 1, Jacobi elliptic functions asymp- A(ll)(g)=tanl"(§), A&Z)(§)=1/cosﬁ(§)—2/3,
totically go into trigonometric or hyperbolic ong46]:
AP (&) =tanh £)[ L/cosR(£)—2/5]. (6)
sn(§)—sin(), cn(§)—cog§), dn(§)—1  when k-0, All corresponding eigenvalues are equal to zero. In this case,
Eq. (3) goes into the equation for Legendre polynomials and
sn(§)—tani(§), cn(§)— 1/coské), modes of this type relate to the defocusing case. In contrast
to [31,32, the modeg6) do not decrease at infinity. The first
dn(é)—1/coslté) when k— 1. 4) one (h=1) is a well-known dark solitop17,1§. In the limit

of k=1, the remaining 8 eigenfunctions of Eq(3) go into
When k—0, the Lame equation goes into the equation ofthe fu_II set of solutic_)ns of Legendre-associated polynomial
harmonic oscillators. It means that there are no nonlineagduations that consists of doubly degenerated eigenfunc-
terms in the initial setl). With increasingk, the nonlinear tions.
terms “switch on” and gradually increase. Wh&n-1, the
Lame equation goes into the equation for Legendre-
associated polynomialf45], periods of elliptic functions
tend to infinity, and all periodical solutions asymptotically go  Let the components of any multicomponent self-
into spatially localized ones. That is why multicomponentconsistent solution of Eq.l) be proportional to eigenfunc-

IV. CONSTRUCTION OF NONDEGENERATE
SELF-CONSISTENT SOLUTIONS
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tions of thenth-order auxiliary problem(3) with unknown Not all self-consistent solutions, obtained by the described
. (n) . : : H n)q2 (n)
amplitudesA;" : algorithm, have physical meaning beca(i#é™]? and 3
must be positive. The first requirement decreases the number
p\M(&)=AMAM(f), i=1,...(2n+1). (7) of allowable mode combinations. For exampleif 1, mul-
ticomponent self-consistent solutions cannot be composed of
Here « is the scale factor, and=1,2, ... . Let usdefine a the only even[a{”(k)>0] or odd[a”(k)<0] nth-order

p-component solution of the problef) as the solutiort7),  modes because the last equation of E@§) cannot be sat-

in which only p=<(2n+1) amplitudesA(" are not equal to isfied. The second requirement follows from consideration of
zero for a fixed set of numbers. To check that the sought focusing nonlinearity and results in a narrowing of the allow-
self-consistent solution&’) form the kernel function of the able range ok.

Lame equatiorn3), we expanc[Ai(”)(ag)]2 in a power series Whenk— 1, the number of independent eigenfunctions of
of dré(a&) by means of Eq(2): Eqg. (3) falls ton. In this case, the only solution of the sé&
) and(10) can be written as
[AM(ad)P=2 & (kdr(ad), [AVP=2a%%(n=D)(n+D)!,  B"=(a?2B",
j=0
i=1,...n. (17
n=12,..., i=1,...,(2n+1). (8)
- ) ) o V. “DEGENERATE” MULTICOMPONENT
Here aij (k) can be eaS|Iy determined for fixadand n. SELF-CONSISTENT SOLUTIONS
Further, substituting Eq$7) and(8) into Eq. (1), comparing
the equations obtained with EB), and equating the coeffi- We described the algorithm of constructing of multicom-
cients at the same degrees of@n¢), we obtain the set of Ponent cnoidal waves with linearly independent components.
(3n+1) independent linear equations[iA{”]? and 8{" : However, one can construct self-consistent solutions in
which some components are proportional to the same eigen-
BV =(a%2)BM+ABM, function of Eq.(3): As previously, these components are
considered to be incoherent due to, for example, different
2n+1 carrier frequencies. Further, by analogy wi#2], such com-
ApM= [AM]2aD)(k), j=0, ponents and solutions will be called “Manakov” ongs.
=1 Such solutions are degenerate becaysd=pg}=-
=B andA{P=A{P=---=A{" . Here the additional index
s=1,...(2n+1), ©) g=1,2,... enumerates Manakov components. Degenerate
i1 solutions can be constructed from any nondegenerate self-

consistent solution of arbitrary order and, therefore, must in-
clude not fewer tham independent components. To con-
struct a degenerate solution, théh component of any

21 [AM2a(D(k)=(a?2)n(n+1), j=1,

2n+1 primary nondegenerate self-consistattt order solution can
E [Ai(“>]2ai<j“>(k):o, ji=23,...n. (10) be expanded in a sum e=1,2, ... Manakov components.
=1 Their amplitudesAi(f‘[]) must satisfy the relationship
Here a andk are considered as the given parameters. It is s
easy to see that the first 12-1) equations(9) of the ob- [AV2= 2 [ANT2, (12)
tained set determing" and the nexn equations(10) de- =1
termine[ A{"]2. If n=1, one can construct a fully degenerate self-consistent
For eachn value, one can construct not more than solution.
o (2n+1)X(2n)X---(2n—p+2) VI. NONDEGENERATE CNOIDAL WAVES
2n+17 1X2:--p up

TO THE THIRD ORDER

linearly independenp-component self-consistent solutions _
: g inr A(M72 We have constructed nondegenerate cnoidal waves con-
of the problem(1). Since the sef10) is linear in[A;”]° and - ;
: ) . sisting of up to three mutually incoherent components. For
containsn independent equations, nonzero squared ampli-

(M2 ) . n=1,2,3, we have solved the s€t0) and found all self-
tudes[A;”]" are determined ambiguously far>n. When consistent combinations afith-order modes, their ampli-

p=n, nonzero squared amplitudés”]* are determined  {des, and the ranges of allowable spatial periods. The non-
uniquely. It means that there ar€;,., self-consistent |inear phase shift velocitie8(™ have been determined from
n-componentnth-order solutions, which differ from each Eg. (9) by the expressions

other by a concrete choice of the set of the modes with

[A{(M]2:0. Moreover, this numbem(=n) of nonzero inde- ABY=[AP12/K2—[AP12(1—K?)/K?, (13
pendent self-consistenth-order components is minimal, be-

cause whemp<n the set(10) is overdetermined and has no AB? = A2 (2721 A@T12(1 — k) /K4

o ltons, B = 2 NP P - [AL (- KK,
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FIG. 2. Instability of cnoidal wave composed @f? and
p§: 109 (£,0)] @ and[p(£,0)] (b); p{”, & and ¢ are the
dimensionless light field of the&th component and transverse and
4 6 8 © longitudinal coordinatek=0.7; noise lever1%.

PI(?)

. . ) solutions(of 53, 52, 43, and 42 typgsire realizable. Solu-
(l)F'G- 1-( 21)3"3 dlat%rams f?zr) C”O'd?z')waves COTZE’OSGO'P‘(%) (a)., tions of 31 and 21 types exist only in the defocusing case,
p3” (0), ps” andpy” (c), ps” andpy” (d), andpy” andpy” (6);  whereas combinations of 54, 51, 41, and 32 types are never
Bl(n) and Pl(n) are the dimensionless nonlinear phase shift Velocltyself_cons|stent A Second_order Solutlon Of 53 type has also
and averaged power of théh componentky, determines the npever been presented before. Two-component third-order

range of cnoidal wave stability. cnoidal waves do not exist for the same reaéee above
All three-component cnoidal waves have never been pre-
A= 2 [Ags)]z[yga)]g/ K2 sented before. Only a first-order solution of the 321 type
ists ! : exists. A full number of three-component second-order solu-

tions might be equal tﬁlgz 10. However, only eight of them
-3 [A}3)]2[y}3)]2(1—k2)/ K2, (of 543, 542, 532, 531, 521, 432, 431, _and 421_typma
i=2.6 realizable. A solution of the 321 type exists only in the de-
focusing case whereas a combination of the 541 type can
Depending on the concrete solution, some squared amplhever be self-consistent. A full number of such third-order
tudes[A{"]? must be zeroed here. The eigenval@8(k)  solutions might be equal t63=35, but only eight of them
are self-consistent in the meaning of their dependence on thef 753, 653, 743, 643, 752, 652, 742, and 642 types
concrete mode combination. Therefogt" (k) can be dif- realizable. Solutions of 531, 521, 431, and 421 types exist in
ferent for the same mode in different solutions. This fact willthe defocusing case, whereas all other combinations can
be very important in further analysis of the stability of the never be self-consistent.
obtained solutiongSec. VII). It is easy to check that nondegeneratecomponent
For short,p-component cnoidal waves, composed of thenth-order cnoidal waves are only those combinations which
i1th, i,th,... i th modes of theth-order problent3), willbe  asymptotically go into nondegeneraten-component
called further thenth-order solution of %4i,---i,” type. Itis nth-order solitons wherk— 1. It means than-component
easy to check that a full number of possible one-componeniondegenerate cnoidal waves never contain the lowiest (
first-order solutions might be equal l©§=3, but one of =1) mode of thenth-order problen{3) and two modes with
them (=1) is realizable only in the defocusing case. One-the same asymptotic fd— 1. Otherwise, the corresponding
component second- and third-order solutions can never basymptotic would be a degeneratecomponent Manakov
self-consisten{Sec. 1\V). All two-component first-order so- soliton with p<<n independent components. As a result, the
lutions (C§=3) are realizable. As far as we know, such afull number of nondegeneratecomponentnth-order cnoi-
solution of 32 type with both evefon ¢ components has dal waves is equal to™2 For p>n, self-consistent solutions
never been presented before. Only four such second-ordean contain the lowesti€1) mode of Eq.(3). When k
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A0 FIG. 4. Crossing of two £=1,2) cnoidal waves composed of
[p$]s and [p{?]s. Isolines of [22_,[p{(£0)]d (@ and
|22_.[p2(£,0)14 (0); p™, & and{ are the dimensionless light
° field of theith component and transverse and longitudinal coordi-

- . tes;k=0.99.
FIG. 3. Stability of cnoidal wave composed pf? and p? : nates

10 (£,0)] (@ and|p(£,0)| (b); p{™, & and{ are the dimension- | __. - - - -
less light field of theth component and transverse and longitudinal lation of propagation of the obtained self-consistent solutions

coordinatesk=0.99; noise levek1%.

—1, such a solution asymptotically goes into a soliton, con

sisting of thenth-order Legendre polynomiaP,(aé) (a

“dark” componeny and thenth Legendre associated poly-

nomials P](«€) (“bright” components. For n=1 andp

perturbed by a noisg32,59, etc.

The authors of59] suggested a rather universal criterion
of stability of fundamental nonlinear modé60] for rela-
tively weak nonlinearity[61]. The criterion is based on a
topological analysis of the3[P("V] dependence. Here
P =|p{M|2d¢ is the power, transported by thieh nonlin-

=2, such a solution is known as a self-consistent pair, coméa" mode of thenth order. For short, we will identify this

posed of bright and dark solitoig,47]. Moreover, whemp

dependence as g3-P” diagram. The key points of analysis

>n, self-consistent solutions can also contain two mode$59] are searching thg-P diagram for bifurcation points

with the same asymptotic fdc— 1. Whenk— 1, such solu-
tions go into partially degenerate Manakov solitons.

VII. STABILITY OF NONDEGENERATE
MULTICOMPONENT CNOIDAL WAVES

and clarifying the derivative)B{™/9P{" sign. A necessary
but not insufficient criterion of stability is the positive sign of
the last quantity. Unfortunately, because we are interested in
the stability of self-consistent combinations of some nonlin-
ear modes, this is not the case. There are too many ways to

perturb a multicomponent solution. One can add, for ex-
Let us discuss the stability of the obtained multicompo-ample, correlated or uncorrelated perturbations in the ampli-

nent cnoidal waves. Though many papers concerning witltudes of some components simultaneously, in the amplitude
the stability problem have been publishgt6,27,48-54 a  of the only component, in PRC parameters, etc. A loss of
universal approach to its solution has not been developestability of the only component can destabilize a multicom-
until now [55]. This is primarily connected with a variety of ponent solution as a whole due to cross-modulation. That is
scenarios of transverse instability developmddi8,51,53  why, after analysis of the stability of the obtained solutions
and transitions of the systems considered to ctia6f To by means of the3-P diagram technique, we perform an
check the stability of the self-consistent solutions, some speadditional checking of their stability in relation to two types
cial techniques are mainly used. One can list, among them, af perturbations. First, by numerical integration of a short-
linearization techniqu§26,53, including some of its modi- ened wave equatidr8], we simulate the propagation of such
fications connected with analysis of so-called modulation inwaves, perturbed by an additive Gaussian noise with varying
stability [57]; a phase portrait techniqyé0]; a technique parameters: the correlation radi(@ong the& axis) and the
connected with counting the number of negative eigenvalueamplitude variance. Second, in the same way, we check the
of the Sturm-Liouville operatof50]; direct computer simu- stability of the solutions obtained regarding collisions with
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FIG. 5. B-P diagrams for cnoidal waves composed @3), . (©)

pg ag?p‘f’) @; o, i, andp® (0); p?, pE?, andpf (0
p%, &, andp$? (d); andpl?, p§?, andp$? (e); ™ and P{"”
are the dimensionless nonlinear phase shift velocity and averaged ° &
power of theith componentk,,, determines the range of cnoidal

wave stability. FIG. 6. Instability of cnoidal wave composedpif , ps’, and

P [p(E0] @, o0 (b), and[pP(£0)] (0); p™, &,
) ) . ) and ¢ are the dimensionless light field of théh component and
each other. In this case, crossing cnoidal waves are directaghnsverse and longitudinal coordinatks:0.7; noise lever1%.

into PRC’s at an angle to each other and their spatial spectra
do not initially ({=0) overlap.

In our version of3-P diagramgFigs. 1 and % Pi(”) is the
averaged power, transported by thta component of an
nth-order multicomponent cnoidal wave, because, in contra
to [59], |p{™|? is integrated within the spatial period of each
solution. Self-consistent values ﬁf”) are calculated by Eq.

(13). Depgndenues&(”)[Pi(”.)] for all the components of g1y stable for anyk. Figure 2 illustrates the development of
each multicomponent solution are plotted on its oveaP  modylation instability in both components whier: 0.7. Fig-
diagram, and these dependences can be quite different for thge 3 snows stable propagation of such cnoidal waves of
same modes of the Lame equation in different solutions.  ggjiton type wherk=0.99. Figures @) and 3b) represent

It is easy to check tha#{)/oP{)>0 [Figs. X8 and 2D spatial distributions of the corresponding components
1(b)] and both one-component cnoidal waves are potentially,(2)| ‘and |p?)| of the cnoidal wave on thé ) plane. In
stable in their existence ranges%k=0 for p§" and 1=k  poth cases, the relative level of noise is the s&mi). The
=Kpnin=0.71 for p{)). However, our numerical integration collision of two such cnoidal waves of soliton type (
with a small additive stochastic Gaussian ndisee above  =0.99) is illustrated by Fig. 4. The corresponding interfer-
has shown that both the stability margins and propagatiodnce patternss2_,[ pP(£,2) 14 and|22_,[plP(£,£)]4 are
dynamics ofp§3 are sharply dependent da Whenk—1  shown separately in Figs.(@ and 4b) for each coherent
(solutions of soliton typeandk—0 (this case is realizable pair of the components of crossing cnoidal waves. It is easy
for p{M), stability margins significantly increase and de- to see that spatial profiles of both components are robust. A
crease, because in these two cases we deal with stable brigiiite different character is inherent to ti#eP diagram of

solitons and unstabl@ue to modulation instability22,57)
plane waves.

Let us discuss the stability of two-component cnoidal
Shaves. Figure @) shows thes-P diagram for the solution,
composed op?) andp$?) . The former component is poten-
tially stable when k= k,,=0.74, whereap$? is poten-
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and/ are the dimensionless light field tth component, transverse,
and longitudinal coordinate&=0.99; noise levek1%;

the wave, composed @f?) andp$?) [Fig. 1(e)]. Both curves
have positive slopes JB7aPA>0). However, p$?
«cosg) and pPcsin(€) whenk—0. It means that the over-
all intensity distribution becomes a constant and modulatio
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12210p2(&,01d (b), and |22 1[pE(&, 014 (©): p™, & and (¢
are the dimensionless light field of thiéh component and trans-

verse and longitudinal coordinatds:=0.99.

fre always well localized (%k=k;;,=0.95) and have great

instability must be observed. Our simulation has shown that@Pility margins. Figure @) illustrates the character of the

such cnoidal waves can stably propagate BK=Kpi,
=0.61. The waves of 52 and 42 types are well localized (

=k=k,,n=0.895) and have great stability margins. Figure

1(c) illustrates the character of the correspondd® dia-
grams.

The stability of three-component third-order cnoidal
waves is illustrated by Fig. 53-P diagrams, Figs. 6 and 7
[unstable k=0.7) and stable K=0.99) propagation of the
wave composed g5, p{¥), andp$>], and Fig. §crossing
of two such cnoidal waveskE&0.99)]. Two-dimensional
spatial distributions of the corresponding compon¢p§§)|,
1p), and|p$| (Figs. 6 and ¥, as well as corresponding

4
interference patterns|=2_,[p&1d, [22_,[pP1J, and

corresponding3-P diagrams. Though stability ranges vary

4from one solution to othefsee Fig. 3, the general regularity

noticed above is the same: the stability margin of any cnoi-
dal wave gradually increases ks-1, i.e., with increase of
its spatial localization. Notice that the limitations obtained on
k values(see Figs. 1 and)5restrain not too much acceptable
spatial periods of cnoidal waves. For example, kifi,
=0.95, the spatial period of the corresponding solution may
vary in the range from the infinity to 10.4.

So our simulation has shown that the main trouble of the
criterion [59] is connected with an abrupt demarcation line
between stability and instability ranges. In the case of per-
turbations with small finite amplitudes, a much more realistic
concept looks like the stability margin of each solution be-

|E§:1[pg3)]s| for each coherent pair of the components ofcause the length of its stable propagation gradually decreases

crossing cnoidal waved-ig. 8 are shown separately on the

as the noise level increases. That is why the rangass. 1

(&) plane. Four three-component third-order cnoidal wavesand 5, determined by the criteriof69], are the ranges of
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potential(relative stability and absolute instability. To finish linearity of the auxiliary problem built, the sum of its solu-
the section, notice that saturation of PRC nonlinearitytions of some orders is a solution of an extended problem
[39,62 should significantly extend the stability margins of with a kernel function equal to the sum of kernel functions of

multicomponent cnoidal waves. the same orders. In such a manner we can construct much
more new multicomponent solutions, but obviously, not all
VIIl. CONCLUSIONS AND FINAL REMARKS of them will be self-consistent.

] ) ) ) In our opinion, self-consistent multicomponent periodical
~ So relying on the simplest model of PRC’s with drift non- so|ytions of the nonlinear Schiimger equation must be of
linear response, we have formulated an algorithm of buildingather general character because this equation takes into ac-
up of a different class of multicomponent photorefractivecount the first(cubic) term in expansion of the nonlinear
cnoidal waves. We have obtained a set of equations to Comyp|arization in a standard wave equation. In many cases, it
struct such solutions of an arbitrary order and have showinaples one to describe the propagation of stable wave pack-
that solutions, consisting of up to three mutually incoherents composed of electronic wave functions, taking into ac-
components, are stable. We have shown that the considerggunt, for example, the electron-phonon interaction. It means
cnoidal waves asymptotically go into multicomponent soli-the multicomponent solutions considered could be important
tons[31,32 when their spatial period tends to infinity. Most iy physics of 1D chains or 2D atomic planes in ferromagnet-
parts of known one- and two-component first- and secondics HTSC's, and conjugated polymers. Here the concept of
order cnoidal wave$9,11,37,38,41,4pare particular cases some incoherent but bounded and stable electronic wave
of the considered class. Some known two-component Cno'dfﬁackets—components of the multicomponent wave packet
waves (see, for example|[42]) can be easily obtained by (excitons, biexcitons, superconductive pairs, etc., condensed
shifting our two-component solutions 6 by a quarter of iy 5 kind of Bose condensate-might be very fruitful. The
their period. This procedure enables us to transform the COMequired incoherence of the components could be supplied

sidered class to another one. Its main, specific feature igy a phase relaxation and different carrier frequencies.
missing an asymptotic transition to the multicomponent soli-

tons of[31,32 because both spatial periods and shift of such

solutions tend to i.nfinity whetk— 1. As a result, all pright ACKNOWLEDGMENT
components turn into zero whereas dark ones go into con-
stants. The authors 0f38] have constructed a two- This work has been performed with financial support from

component cnoidal wave looking like a sum of two Lamethe Russian Foundation for Basic Resea@hant Nos. 98-
equation modes of different orders. Actually, because of th®2-17230 and 98-02-17231
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