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Multicomponent photorefractive cnoidal waves: Stability, localization, and soliton asymptotics

V. M. Petnikova, V. V. Shuvalov, and V. A. Vysloukh
International Laser Center, M.V. Lomonosov Moscow State University, Vorob’evy Gory, Moscow 119899, Russia

~Received 29 July 1998; revised manuscript received 29 March 1999!

An algorithm of building up a different class of stable self-consistent multicomponent periodical solutions of
the nonlinear Schro¨dinger equation—multicomponent cnoidal waves—has been formulated by the example of
a nonlinear wave propagating through a photorefractive crystal with a drift nonlinear response. Exact analytical
expressions, describing distribution of light field in the components, have been obtained for solutions, which
include up to three mutually incoherent components. It has been shown that such cnoidal waves are stable and
their spatial structure is robust to collisions with the same cnoidal waves and to stochastic perturbations of the
components’ intensity distributions in a sufficiently wide range of changing spatial period.
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PACS number~s!: 42.65.Tg, 42.65.Hw, 42.65.Jx, 42.65.Wi
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I. INTRODUCTION

One of the most exciting problems of modern laser ph
ics is the investigation of self-organization in systems c
sisting of a nonlinear medium and a light field. After pred
tions of the possibility of the existence@1# and first
demonstration@2# of stable self-consistent distributions o
light field ~optical solitons! in systems of such kind, the sim
plest case of a nonlinear medium with a spatially localiz
~local! cubic nonlinear response~so-called ‘‘Kerr-type’’ non-
linearity @3#! has been studied in detail. The concept of on
component@4# and two-component~‘‘vector’’ ! @5# solitons
as stable self-consistent solutions of nonlinear problems
solidly clamped many fields of modern physics. Fiber opt
and the optics of ultrashort laser pulses@3,6#, nonlinear op-
tics and laser spectroscopy@7,8#, physics of one-dimensiona
~1D! chains and two-dimensional~2D! atomic planes in mo-
lecular systems@9#, ferromagnetics@10#, high-temperature
superconductors~HTSC’s! @11#, conjugated polymers@12#,
etc., could be listed among these fields. From the mo
point of view, results obtained in recent investigations
solitons, ‘‘multisolitons’’ ~high-order solitons!, and stable
soliton pairs in photorefractive crystals~PRC’s!, are of great
importance. The main specific feature of PRC’s is a v
strong optical nonlinearity. Perceptible nonlinear effects c
be observed here in laser beams with intensities of on
few mW/cm2 @13#. Starting from the pioneering papers
@14# related to PRC’s with a drift~local! nonlinear response
@15#, so-called photorefractive ‘‘bright’’@16,17#, ‘‘dark’’
@17,18#, ‘‘gray’’ @19#, vector @20# and ‘‘vortex’’ @21# soli-
tons, spatial shock waves@22#, and multisolitons@23#, as
well as some questions of such solitons propagation, inte
tion @24#, spatial dimensionality@25#, and stability@26,27#
were intensively studied. It is known that in a Kerr-type no
linear medium one can ‘‘write’’ a stable solitonlike wave
guide by an intensive light beam and capture relatively w
~in intensity! light beams. In PRC’s, intensive light beam
can be captured in waveguides written by beams with lo
intensity @23,28,29# when the wavelengths of the intensiv
beams do not fall within the photorefractive sensitiv
range. Stable pairs of two incoherent spatial photorefrac
PRE 601063-651X/99/60~1!/1009~10!/$15.00
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solitons of any listed above types were predicted and exp
mentally observed@30#.

Recently, we presented a different class of multicomp
nent screening solitons, which can stably propagate thro
PRC’s with a drift nonlinear response@31,32#. A particular
~two-component! case of such solitons was considered b
fore for Kerr-type nonlinear media@33#. Multicomponent
solitons of this class consist of some mutually incoher
light beams, coupled by cross-modulation interaction. In
lation to the character of the light field distribution, the
components look like some zero- and higher-order mod
confined within the nonlinear waveguide written in PRC’s
themselves. We formulated an analytical algorithm of co
structing of such solitons and showed that they are robus
collisions and appreciable stochastic perturbations.

The approach, used in@31,32#, is based on three point
that have been discussed before.

~1! A long transient time of the PRC nonlinear respon
enables one to neglect by interference of incoherent
shifted in carrier frequency light field componen
@31,32,34,35#. The situation is fully analogous to the case
a two-component soliton with cross-polarized compone
@33#, while the maximal number of frequency-shifted com
ponents is obviously limited by the photorefractive sensit
ity bandwidth.

~2! If both components of the two-component soliton~the
particular case of a multicomponent soliton! do not interfere,
light field distributions of its components are described b
set of coupled nonlinear Schro¨dinger equations@36#.

~3! To find steady-state solutions of a self-consistent pr
lem, one may reduce it to a special auxiliary linear proble
@37–40#.

Notice, that it is the set of points that enables us to c
struct a different class of multicomponent solitons by mea
of eigenfunctions~modes! of an auxiliary linear problem.
This problem describes a beam propagating through the
dient optical waveguide with a fixed~auxiliary! spatial pro-
file, induced by all the components. A similar approach to
problem of such kind was independently described by
authors of@34#. Though they used a more realistic model
PRC nonlinearity, taking into account saturation, a quite d
ferent iteration algorithm was here suggested. Self-consis
solutions, obtained by this way, should be an infinite ser
1009 ©1999 The American Physical Society
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of light field components. Cutting off the series reduces
accuracy of the description of the self-consistent struct
and, therefore, leads to a limitation on the distance of
stable propagation of such a soliton.

The main goal of this paper is to construct multicomp
nent photorefractive cnoidal waves, i.e., multicomponent
riodical distributions of light field that can stably propaga
through PRC’s with a drift nonlinear response. We descr
here the physical model used~Sec. II!, the algorithm of solv-
ing the self-consistent problem~Secs. III–V!, the analytical
solutions obtained, consisting of up to three mutually inc
herent components~Sec. VI!. An analysis of stability of the
solutions obtained~Sec. VII! is illustrated by examples o
stochastic perturbations and collisions. Notice that, beca
to build up the auxiliary problem we use a number of on
and two-component cnoidal waves@9,11,37,38,41,42#,
known in fiber-optics and condensed matter physics, th
solutions are a particular case of presented class of m
component cnoidal waves.

II. MODEL

The basis of our model is a well-known set of mater
equations@15# for the internal electric fieldEsc, formed in
PRC’s due to a spatially nonuniform redistribution of char
carriers under illumination and a standard shortened w
equation@3# in a paraxial approximation with no regard fo
absorption. We consider the case of partial steady-s
screening@43# of the external static electric fieldE0 , applied
to PRC’s in the transverse direction, by the internal fie
Esc!E0 in experiments with so-called ‘‘slit’’ beams@44#,
which are widely used due to a large anisotropy of P
nonlinearity. For example,E0;7 kV/cm in BTO crystals
@24#, but theE0 value can be significantly reduced if on
uses a more efficient photorefractive crystal such as S
@13# with larger electro-optical constants. That means
types of photorefractive multicomponent solitons and cn
dal waves considered here, can be referred to the clas
so-called 2D screening solitons@17,19#. Without taking into
account the photovoltaic effect in PRC’s illuminated byp
mutually incoherent light field components, their spatial d
tributions are described by a normalized set of coupled n
linear Schro¨dinger equations@31,32#

d2r i~j!/dj262F(
i 51

p

r i
2~j!2b i Gr i~j!50, i 51, . . . ,p.

~1!

Here r i(j) is the real dimensionless amplitude of thei th
component, the positive constantsb i define the components
nonlinear phase shifts along thez axis asb iz, j andz are the
dimensionless transverse and longitudinal coordinates
the signs ‘‘1’’ and ‘‘ 2’’ correspond to the cases of focusin
and defocusing nonlinearities. Further, we will consider
former case, but both of them can be realized under a co
sponding choice of PRC andE0 orientations@15#.

III. AUXILIARY LINEAR PROBLEM

The order of our further consideration will be analogo
to the following @31,32#.
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~a! In the first stage, we remove the set~1! from the class
of self-consistent problems. We build up an auxiliary line
problem, which describes a beam propagating in a period
gradient waveguide with fixed~auxiliary! profile of the re-
fractive index. We describe this problem in terms of its
genvalues and eigenfunctions: the modes.

~b! In the second stage, we reset the problem to the c
of self-consistent problems. That means we construct s
consistent solutions of~1! from the modes of the auxiliary
problem, found on the first stage. We determine the const
of such solution decomposition on the modes, allowable s
tial periods, etc.

It seems a similar procedure, though not so clearly form
lated, was used by the authors of@37,38# to construct self-
consistent periodical solutions of the set of two coupled n
linear Schro¨dinger equations. It enabled one to describe t
cross-polarized cnoidal waves propagating through a K
type nonlinear medium. With respect to@37,38#, we go for-
ward and formulate an algorithm of constructing of cnoid
waves composed of an arbitrary number of components.

There is a simple and universal way to build up an aux
iary linear problem. Actually, a definite profile of the refra
tive index distribution corresponds to known one-compon
self-consistent solutions of the set~1!. Let us suppose tha
this profile shape is the same for a certain class of multico
ponent self-consistent solutions of~1!. In this case, one can
build up a proper linear equation~the auxiliary problem! by
replacing( i 51

p r i
2(j) with a kernel function in~1!. It should

be noticed that the auxiliary problem must give a possibi
to scale the refractive index profile, i.e., to change its dep
After this, the initial problem~1!, looking like a set of equa-
tions of motion for some coupled nonlinear oscillato
comes to the required auxiliary linear problem, i.e., to t
equation of motion for the only oscillator in a field of know
restoring force. One needs to find steady-state soluti
~eigenfunctions and eigenvalues! of the built auxiliary prob-
lem. These eigenfunctions~the modes! can be used in the
second stage to construct self-consistent multicomponen
lutions of ~1!. Notice that one can build up some classes
multicomponent self-consistent solutions of the same pr
lem ~1! which differ in the choice of kernel function of th
auxiliary problem@38,42#.

To build up multicomponent solitons in@31,32#, we used
the auxiliary problem based on a well-known equation
Legendre associated polynomials@45#. To build up the aux-
iliary problem for periodical self-consistent solutions of~1!,
we will use the so-called Lame equation@46#. The point is
that well-known @9# one-component periodical self
consistent solutions of~1! are proportional to the Jacobi e
liptic functions cn~j!, dn~j!, and sn~j!. Their periods are de-
termined by an additional parameter: the modulusk (1>k
>0) @46#. These functions form a fundamental set of so
tions of the first-order Lame equation and can be expres
in terms of each other@46#:

dn2~j!512k2 sn2~j!512k21k2 cn2~j!. ~2!

According to the procedure described above, the kernel fu
tion of our auxiliary problem must be proportional to cn2(j),
dn2(j), or sn2(j). Notice that the first- and second-ord
Lame equations~in so-called Weierstrass form! have been
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TABLE I. A full set of the eigenfunctionsL i
(n)(j) and the eigenvaluesBi

(n)(k) of the nth-order Lame
equation forn51,2,3.

i L i
(n)(j) Bi

(n)(k) Bi
(n)(k→1) Bi

(n)(k→0)

n51
3 dn~j! 22k2 1 2
2 cn~j! 1 1 1
1 sn~j! 12k2 0 1

n52
5 dn2(j)1g5

(2) 2(k221)/g5
(2) 4 6

4 cn~j!dn~j! 52k2 4 5
3 sn~j!dn~j! 524k2 1 5
2 sn~j!cn~j! 22k2 1 2
1 dn2(j)1g1

(2) 2(k221)/g1
(2) 0 2

n53
7 dn(j)@dn2(j)1g7

(3)# 5(22k2)12A12k214k4 9 12
6 cn(j)@dn2(j)1g6

(3)# 722k212A42k21k4 9 11
5 sn(j)@dn2(j)1g5

(3)# 725k212A427k214k4 4 11
4 sn~j!cn~j!dn~j! 4(22k2) 4 8
3 dn(j)@dn2(j)1g3

(3)# 5(22k2)22A12k214k4 1 8
2 cn(j)@dn2(j)1g2

(3)# 722k222A42k21k4 1 3
1 sn(j)@dn2(j)1g1

(3)# 725k222A427k214k4 0 3
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used before to find two-component cnoidal waves in Ke
type nonlinear medium@37,38#. Moreover, eigenfunctions o
the Lame equation of the same orders appear almost in
one- and two-component periodical self-consistent soluti
of the nonlinear Schro¨dinger equation known toda
@9,11,37,38,41,42#.

We will use a form of the Lame equation with a kern
function, expressed in terms of dn2(j),

d2L i
~n!~j !/dj21@n~n11!dn2~j!2Bi

~n!#L i
~n!~j !50,

n51,2, . . . , i 51,2, . . . ,~2n11!. ~3!

HereL i
(n)(j) is the i th eigenfunction of thenth-order Lame

equation, corresponding to the eigenvalueBi
(n) . Changingn

scales the profile of the nonlinear waveguide, written do
in PRC’s.

The modulusk substantially affects solutions of the pro
lem ~3!. When k→0 or 1, Jacobi elliptic functions asymp
totically go into trigonometric or hyperbolic ones@46#:

sn~j!→sin~j!, cn~j!→cos~j!, dn~j!→1 when k→0,

sn~j!→tanh~j!, cn~j!→1/cosh~j!,

dn~j!→1/cosh~j! when k→1. ~4!

When k→0, the Lame equation goes into the equation
harmonic oscillators. It means that there are no nonlin
terms in the initial set~1!. With increasingk, the nonlinear
terms ‘‘switch on’’ and gradually increase. Whenk→1, the
Lame equation goes into the equation for Legend
associated polynomials@45#, periods of elliptic functions
tend to infinity, and all periodical solutions asymptotically g
into spatially localized ones. That is why multicompone
-

all
s

n

f
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-

t

solitons, described in@31,32#, are the asymptotic (k→1) of
the multicomponent cnoidal waves presented here.

Thenth-order Lame equation has (2n11) eigenfunctions
@46# and, in the second stage~Secs. IV–VI!, we will use
them to constructnth-orderp-component cnoidal waves. Fo
n51 – 3, a full set of eigenfunctionsL i

(n)(j) and eigenvalues
Bi

(n)(k) of Eq. ~3! is given in Table I.
The following designations are used here:

g1,5
~2!~k!5~k2227A12k21k4!/3,

g2,6
~3!5~k2237A42k21k4!/5,

g1,5
~3!5~2k2237A427k214k4!/5,

g3,7
~3!5~2k2247A12k214k4!/5. ~5!

Whenk51, we obtain three new~with respect to@31,32#!
spatially localized solutions

L1
~1!~j !5tanh~j!, L1

~2!~j !51/cosh2~j!22/3,

L1
~3!~j !5tanh~j!@1/cosh2~j!22/5#. ~6!

All corresponding eigenvalues are equal to zero. In this ca
Eq. ~3! goes into the equation for Legendre polynomials a
modes of this type relate to the defocusing case. In cont
to @31,32#, the modes~6! do not decrease at infinity. The firs
one (n51) is a well-known dark soliton@17,18#. In the limit
of k51, the remaining 2n eigenfunctions of Eq.~3! go into
the full set of solutions of Legendre-associated polynom
equations that consists ofn doubly degenerated eigenfunc
tions.

IV. CONSTRUCTION OF NONDEGENERATE
SELF-CONSISTENT SOLUTIONS

Let the components of any multicomponent se
consistent solution of Eq.~1! be proportional to eigenfunc



ht

-

t

s

p

h
it

-
o

ed

ber

d of

of
w-

of

-
nts.

in
en-

re
ent

rate
self-
in-

n-

.

tent

con-
or

-
on-

1012 PRE 60V. M. PETNIKOVA, V. V. SHUVALOV, AND V. A. VYSLOUKH
tions of thenth-order auxiliary problem~3! with unknown
amplitudesAi

(n) :

r i
~n!~j !5Ai

~n!L i
~n!~aj!, i 51, . . . ,~2n11!. ~7!

Herea is the scale factor, andn51,2, . . . . Let usdefine a
p-component solution of the problem~1! as the solution~7!,
in which only p<(2n11) amplitudesAi

(n) are not equal to
zero for a fixed set ofi numbers. To check that the soug
self-consistent solutions~7! form the kernel function of the
Lame equation~3!, we expand@L i

(n)(aj)#2 in a power series
of dn2(aj) by means of Eq.~2!:

@L i
~n!~aj!#25(

j 50

n

ai j
~n!~k!dn2 j~aj!,

n51,2, . . . , i 51, . . . ,~2n11!. ~8!

Here ai j
(n)(k) can be easily determined for fixedi and n.

Further, substituting Eqs.~7! and~8! into Eq.~1!, comparing
the equations obtained with Eq.~3!, and equating the coeffi
cients at the same degrees of dn2(aj), we obtain the set of
(3n11) independent linear equations in@As

(n)#2 andbs
(n) :

bs
~n!5~a2/2!Bs

~n!1Db~n!,

Db~n!5 (
i 51

2n11

@Ai
~n!#2ai0

~n!~k!, j 50,

s51, . . . ,~2n11!, ~9!

(
i 51

2n11

@Ai
~n!#2ai1

~n!~k!5~a2/2!n~n11!, j 51,

(
i 51

2n11

@Ai
~n!#2ai j

~n!~k!50, j 52,3, . . . ,n. ~10!

Here a and k are considered as the given parameters. I
easy to see that the first (2n11) equations~9! of the ob-
tained set determinebs

(n) and the nextn equations~10! de-
termine@Ai

(n)#2.
For eachn value, one can construct not more than

C2n11
p 5

~2n11!3~2n!3¯~2n2p12!

132¯p

linearly independentp-component self-consistent solution
of the problem~1!. Since the set~10! is linear in@Ai

(n)#2 and
containsn independent equations, nonzero squared am
tudes@Ai

(n)#2 are determined ambiguously forp.n. When
p5n, nonzero squared amplitudes@Ai

(n)#2 are determined
uniquely. It means that there areC2n11

n self-consistent
n-componentnth-order solutions, which differ from eac
other by a concrete choice of the set of the modes w
@Ai

(n)#2Þ0. Moreover, this number (p5n) of nonzero inde-
pendent self-consistentnth-order components is minimal, be
cause whenp,n the set~10! is overdetermined and has n
solutions.
is

li-

h

Not all self-consistent solutions, obtained by the describ
algorithm, have physical meaning because@Ai

(n)#2 and b i
(n)

must be positive. The first requirement decreases the num
of allowable mode combinations. For example, ifn.1, mul-
ticomponent self-consistent solutions cannot be compose
the only even@ain

(n)(k).0# or odd @ain
(n)(k),0# nth-order

modes because the last equation of Eqs.~10! cannot be sat-
isfied. The second requirement follows from consideration
focusing nonlinearity and results in a narrowing of the allo
able range ofk.

Whenk→1, the number of independent eigenfunctions
Eq. ~3! falls to n. In this case, the only solution of the sets~9!
and ~10! can be written as

@Ai
~n!#252a2i 2~n2 i !!/ ~n1 i !!, b i

~n!5~a2/2!Bi
~n! ,

i 51, . . .n. ~11!

V. ‘‘DEGENERATE’’ MULTICOMPONENT
SELF-CONSISTENT SOLUTIONS

We described the algorithm of constructing of multicom
ponent cnoidal waves with linearly independent compone
However, one can construct self-consistent solutions
which some components are proportional to the same eig
function of Eq. ~3!. As previously, these components a
considered to be incoherent due to, for example, differ
carrier frequencies. Further, by analogy with@32#, such com-
ponents and solutions will be called ‘‘Manakov’’ ones@5#.
Such solutions are degenerate becauseb i ,1

(n)[b i ,2
(n)[¯

[b i ,q
(n) andL i ,l

(n)[L i ,2
(n)[¯[L i ,q

(n) . Here the additional index
q51,2, . . . enumerates Manakov components. Degene
solutions can be constructed from any nondegenerate
consistent solution of arbitrary order and, therefore, must
clude not fewer thann independent components. To co
struct a degenerate solution, thei th component of any
primary nondegenerate self-consistentnth order solution can
be expanded in a sum ofs51,2, . . . Manakov components
Their amplitudesAi ,q

(n) must satisfy the relationship

@Ai
~n!#25 (

q51

s

@Ai ,q
~n!#2. ~12!

If n51, one can construct a fully degenerate self-consis
solution.

VI. NONDEGENERATE CNOIDAL WAVES
UP

TO THE THIRD ORDER

We have constructed nondegenerate cnoidal waves
sisting of up to three mutually incoherent components. F
n51,2,3, we have solved the set~10! and found all self-
consistent combinations ofnth-order modes, their ampli
tudes, and the ranges of allowable spatial periods. The n
linear phase shift velocitiesb i

(n) have been determined from
Eq. ~9! by the expressions

Db~1!5@Ai
~2!#2/k22@A2

~2!#2~12k2!/k2, ~13!

Db~2!5 (
i 51,5

@Ai
~2!#2@g i

~2!#22@A2
~2!#2~12k2!/k4,
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Db~3!5 (
i 51,5

@Ai
~3!#2@g i

~3!#2Y k2

2 (
j 52,6

@Aj
~3!#2@g j

~3!#2~12k2!Y k2.

Depending on the concrete solution, some squared am
tudes@Ai

(n)#2 must be zeroed here. The eigenvaluesb i
(n)(k)

are self-consistent in the meaning of their dependence on
concrete mode combination. Therefore,b i

(n)(k) can be dif-
ferent for the same mode in different solutions. This fact w
be very important in further analysis of the stability of th
obtained solutions~Sec. VII!.

For short,p-component cnoidal waves, composed of t
i 1th, i 2th,...,i pth modes of thenth-order problem~3!, will be
called further thenth-order solution of ‘‘i 1i 2¯ i p’’ type. It is
easy to check that a full number of possible one-compon
first-order solutions might be equal toC3

153, but one of
them (i 51) is realizable only in the defocusing case. On
component second- and third-order solutions can neve
self-consistent~Sec. IV!. All two-component first-order so
lutions (C3

253) are realizable. As far as we know, such
solution of 32 type with both even~on j! components has
never been presented before. Only four such second-o

FIG. 1. b-P diagrams for cnoidal waves composed ofr2
(1) ~a!,

r3
(1) ~b!, r4

(2) andr2
(2) ~c!, r5

(2) andr3
(2) ~d!, andr4

(2) andr3
(2) ~e!;

b i
(n) and Pi

(n) are the dimensionless nonlinear phase shift veloc
and averaged power of thei th component;kmin determines the
range of cnoidal wave stability.
li-

he

l

nt

-
be

er

solutions~of 53, 52, 43, and 42 types! are realizable. Solu-
tions of 31 and 21 types exist only in the defocusing ca
whereas combinations of 54, 51, 41, and 32 types are n
self-consistent. A second-order solution of 53 type has a
never been presented before. Two-component third-o
cnoidal waves do not exist for the same reason~see above!.
All three-component cnoidal waves have never been p
sented before. Only a first-order solution of the 321 ty
exists. A full number of three-component second-order so
tions might be equal toC5

3510. However, only eight of them
~of 543, 542, 532, 531, 521, 432, 431, and 421 types! are
realizable. A solution of the 321 type exists only in the d
focusing case whereas a combination of the 541 type
never be self-consistent. A full number of such third-ord
solutions might be equal toC7

3535, but only eight of them
~of 753, 653, 743, 643, 752, 652, 742, and 642 types! are
realizable. Solutions of 531, 521, 431, and 421 types exis
the defocusing case, whereas all other combinations
never be self-consistent.

It is easy to check that nondegeneraten-component
nth-order cnoidal waves are only those combinations wh
asymptotically go into nondegeneraten-component
nth-order solitons whenk→1. It means thatn-component
nondegenerate cnoidal waves never contain the lowesi
51) mode of thenth-order problem~3! and two modes with
the same asymptotic fork→1. Otherwise, the correspondin
asymptotic would be a degeneraten-component Manakov
soliton with p,n independent components. As a result, t
full number of nondegeneraten-componentnth-order cnoi-
dal waves is equal to 2n. For p.n, self-consistent solutions
can contain the lowest (i 51) mode of Eq.~3!. When k

y

FIG. 2. Instability of cnoidal wave composed ofr3
(2) and

r5
(2) : ur3

(2)(j,z)u ~a! and ur5
(2)(j,z)u ~b!; r i

(n) , j, and z are the
dimensionless light field of thei th component and transverse an
longitudinal coordinates;k50.7; noise level;1%.
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→1, such a solution asymptotically goes into a soliton, c
sisting of the nth-order Legendre polynomialPn(aj) ~a
‘‘dark’’ component! and thenth Legendre associated poly
nomials Pn

m(aj) ~‘‘bright’’ components!. For n51 and p
52, such a solution is known as a self-consistent pair, co
posed of bright and dark solitons@7,47#. Moreover, whenp
.n, self-consistent solutions can also contain two mo
with the same asymptotic fork→1. Whenk→1, such solu-
tions go into partially degenerate Manakov solitons.

VII. STABILITY OF NONDEGENERATE
MULTICOMPONENT CNOIDAL WAVES

Let us discuss the stability of the obtained multicomp
nent cnoidal waves. Though many papers concerning w
the stability problem have been published@26,27,48–54#, a
universal approach to its solution has not been develo
until now @55#. This is primarily connected with a variety o
scenarios of transverse instability developments@49,51,53#
and transitions of the systems considered to chaos@56#. To
check the stability of the self-consistent solutions, some s
cial techniques are mainly used. One can list, among the
linearization technique@26,53#, including some of its modi-
fications connected with analysis of so-called modulation
stability @57#; a phase portrait technique@50#; a technique
connected with counting the number of negative eigenva
of the Sturm-Liouville operator@50#; direct computer simu-

FIG. 3. Stability of cnoidal wave composed ofr3
(2) and r5

(2) :
ur3

(2)(j,z)u ~a! andur5
(2)(j,z)u ~b!; r i

(n) , j, andz are the dimension-
less light field of thei th component and transverse and longitudin
coordinates;k50.99; noise level;1%.
-

-

s

-
th

d

e-
, a

-

es

lation of propagation of the obtained self-consistent solutio
perturbed by a noise@32,58#, etc.

The authors of@59# suggested a rather universal criterio
of stability of fundamental nonlinear modes@60# for rela-
tively weak nonlinearity@61#. The criterion is based on a
topological analysis of theb i

(n)@Pi
(n)# dependence. Here

Pi
(n)5* ur i

(n)u2dj is the power, transported by thei th nonlin-
ear mode of thenth order. For short, we will identify this
dependence as a ‘‘b-P’’ diagram. The key points of analysis
@59# are searching theb-P diagram for bifurcation points
and clarifying the derivative]b i

(n)/]Pi
(n) sign. A necessary

but not insufficient criterion of stability is the positive sign o
the last quantity. Unfortunately, because we are intereste
the stability of self-consistent combinations of some nonl
ear modes, this is not the case. There are too many way
perturb a multicomponent solution. One can add, for
ample, correlated or uncorrelated perturbations in the am
tudes of some components simultaneously, in the amplit
of the only component, in PRC parameters, etc. A loss
stability of the only component can destabilize a multico
ponent solution as a whole due to cross-modulation. Tha
why, after analysis of the stability of the obtained solutio
by means of theb-P diagram technique, we perform a
additional checking of their stability in relation to two type
of perturbations. First, by numerical integration of a sho
ened wave equation@3#, we simulate the propagation of suc
waves, perturbed by an additive Gaussian noise with vary
parameters: the correlation radius~along thej axis! and the
amplitude variance. Second, in the same way, we check
stability of the solutions obtained regarding collisions w

l

FIG. 4. Crossing of two (s51,2) cnoidal waves composed o
@r3

(2)#s and @r5
(2)#s . Isolines of u(s51

2 @r3
(2)(j,z)#su ~a! and

u(s51
2 @r5

(2)(j,z)#su ~b!; r i
(n) , j, and z are the dimensionless ligh

field of the i th component and transverse and longitudinal coor
nates;k50.99.
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each other. In this case, crossing cnoidal waves are dire
into PRC’s at an angle to each other and their spatial spe
do not initially ~z50! overlap.

In our version ofb-P diagrams~Figs. 1 and 5!, Pi
(n) is the

averaged power, transported by thei th component of an
nth-order multicomponent cnoidal wave, because, in cont
to @59#, ur i

(n)u2 is integrated within the spatial period of eac
solution. Self-consistent values ofb i

(n) are calculated by Eq
~13!. Dependenciesb i

(n)@Pi
(n)# for all the components o

each multicomponent solution are plotted on its overallb-P
diagram, and these dependences can be quite different fo
same modes of the Lame equation in different solutions.

It is easy to check that]b3,2
(1)/]P3,2

(1).0 @Figs. 1~a! and
1~b!# and both one-component cnoidal waves are potenti
stable in their existence ranges (1>k>0 for r3

(1) and 1>k
>kmin>0.71 for r2

(1)). However, our numerical integratio
with a small additive stochastic Gaussian noise~see above!
has shown that both the stability margins and propaga
dynamics ofr3,2

(1) are sharply dependent onk. When k→1
~solutions of soliton type! and k→0 ~this case is realizable
for r3

(1)), stability margins significantly increase and d
crease, because in these two cases we deal with stable b

FIG. 5. b-P diagrams for cnoidal waves composed ofr6
(3) ,

r4
(3) , andr2

(3) ~a!; r7
(3) , r4

(3) , andr3
(3) ~b!; r6

(3) , r4
(3) , andr3

(3) ~c!;
r7

(3) , r5
(3) , andr3

(3) ~d!; andr6
(3) , r5

(3) , andr3
(3) ~e!; b i

(n) andPi
(n)

are the dimensionless nonlinear phase shift velocity and aver
power of thei th component;kmin determines the range of cnoida
wave stability.
ed
tra

st

the

ly

n

ght

solitons and unstable~due to modulation instability@22,57#!
plane waves.

Let us discuss the stability of two-component cnoid
waves. Figure 1~d! shows theb-P diagram for the solution,
composed ofr5

(2) andr3
(2) . The former component is poten

tially stable when 1>k>kmin>0.74, whereasr3
(2) is poten-

tially stable for anyk. Figure 2 illustrates the development o
modulation instability in both components whenk50.7. Fig-
ure 3 shows stable propagation of such cnoidal waves
soliton type whenk50.99. Figures 3~a! and 3~b! represent
2D spatial distributions of the corresponding compone
ur3

(2)u and ur5
(2)u of the cnoidal wave on the~j,z! plane. In

both cases, the relative level of noise is the same~;1%!. The
collision of two such cnoidal waves of soliton type (k
50.99) is illustrated by Fig. 4. The corresponding interfe
ence patternsu(s51

2 @r3
(2)(j,z)#su and u(s51

2 @r5
(2)(j,z)#su are

shown separately in Figs. 4~a! and 4~b! for each coherent
pair of the components of crossing cnoidal waves. It is e
to see that spatial profiles of both components are robus
quite different character is inherent to theb-P diagram of

ed

FIG. 6. Instability of cnoidal wave composed ofr3
(3) , r4

(3) , and
r6

(3) : ur3
(3)(j,z)u ~a!, ur4

(3)(j,z)u ~b!, and ur6
(3)(j,z)u ~c!; r i

(n) , j,
and z are the dimensionless light field of thei th component and
transverse and longitudinal coordinates;k50.7; noise level;1%.
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the wave, composed ofr4
(2) andr3

(2) @Fig. 1~e!#. Both curves
have positive slopes (]b4,3

(2)/]P4,3
(2).0). However, r4

(2)

}cos(j) andr3
(2)}sin(j) whenk→0. It means that the over

all intensity distribution becomes a constant and modula
instability must be observed. Our simulation has shown t
such cnoidal waves can stably propagate if 1>k>kmin
>0.61. The waves of 52 and 42 types are well localized
>k>kmin>0.895) and have great stability margins. Figu
1~c! illustrates the character of the correspondingb-P dia-
grams.

The stability of three-component third-order cnoid
waves is illustrated by Fig. 5 (b-P diagrams!, Figs. 6 and 7
@unstable (k50.7) and stable (k50.99) propagation of the
wave composed ofr6

(3) , r4
(3) , andr3

(3)#, and Fig. 8@crossing
of two such cnoidal waves (k50.99)#. Two-dimensional
spatial distributions of the corresponding componentsur3

(3)u,
ur4

(3)u, and ur6
(3)u ~Figs. 6 and 7!, as well as correspondin

interference patternsu(s51
2 @r3

(3)#su, u(s51
2 @r4

(3)#su, and
u(s51

2 @r6
(3)#su for each coherent pair of the components

crossing cnoidal waves~Fig. 8! are shown separately on th
~j,z! plane. Four three-component third-order cnoidal wa

FIG. 7. Stability of cnoidal wave composed ofr3
(3) , r4

(3) , and
r6

(3) : ur3
(3)(j,z)u ~a!, ur4

(3)(j,z)u ~b!, and ur6
(3)(j,z)u ~c!; r i

(n) , j,
andz are the dimensionless light field ofi th component, transverse
and longitudinal coordinates;k50.99; noise level;1%;
n
at

1

l

f

s

are always well localized (1>k>kmin>0.95) and have grea
stability margins. Figure 5~a! illustrates the character of th
correspondingb-P diagrams. Though stability ranges va
from one solution to other~see Fig. 5!, the general regularity
noticed above is the same: the stability margin of any cno
dal wave gradually increases ask→1, i.e., with increase of
its spatial localization. Notice that the limitations obtained
k values~see Figs. 1 and 5!, restrain not too much acceptab
spatial periods of cnoidal waves. For example, ifkmin
>0.95, the spatial period of the corresponding solution m
vary in the range from the infinity to 10.4.

So our simulation has shown that the main trouble of
criterion @59# is connected with an abrupt demarcation li
between stability and instability ranges. In the case of p
turbations with small finite amplitudes, a much more realis
concept looks like the stability margin of each solution b
cause the length of its stable propagation gradually decre
as the noise level increases. That is why the ranges~Figs. 1
and 5!, determined by the criterion@59#, are the ranges o

FIG. 8. Crossing of two (s51,2) cnoidal waves composed o
@r3

(3)#s , @r4
(3)#s , and @r6

(3)#s . Isolines of u(s51
2 @r3

(3)(j,z)#su ~a!,
u(s51

2 @r4
(3)(j,z)#su ~b!, and u(s51

2 @r6
(3)(j,z)#su ~c!; r i

(n) , j, and z
are the dimensionless light field of thei th component and trans
verse and longitudinal coordinates;k50.99.
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potential~relative! stability and absolute instability. To finis
the section, notice that saturation of PRC nonlinea
@39,62# should significantly extend the stability margins
multicomponent cnoidal waves.

VIII. CONCLUSIONS AND FINAL REMARKS

So relying on the simplest model of PRC’s with drift no
linear response, we have formulated an algorithm of build
up of a different class of multicomponent photorefracti
cnoidal waves. We have obtained a set of equations to c
struct such solutions of an arbitrary order and have sho
that solutions, consisting of up to three mutually incoher
components, are stable. We have shown that the consid
cnoidal waves asymptotically go into multicomponent so
tons@31,32# when their spatial period tends to infinity. Mo
parts of known one- and two-component first- and seco
order cnoidal waves@9,11,37,38,41,42# are particular case
of the considered class. Some known two-component cno
waves ~see, for example,@42#! can be easily obtained b
shifting our two-component solutions inj by a quarter of
their period. This procedure enables us to transform the c
sidered class to another one. Its main, specific featur
missing an asymptotic transition to the multicomponent s
tons of@31,32# because both spatial periods and shift of su
solutions tend to infinity whenk→1. As a result, all bright
components turn into zero whereas dark ones go into c
stants. The authors of@38# have constructed a two
component cnoidal wave looking like a sum of two Lam
equation modes of different orders. Actually, because of
ev

on

.

y

g

n-
n
t

red
-

-

al

n-
is

i-
h

n-

e

linearity of the auxiliary problem built, the sum of its solu
tions of some orders is a solution of an extended prob
with a kernel function equal to the sum of kernel functions
the same orders. In such a manner we can construct m
more new multicomponent solutions, but obviously, not
of them will be self-consistent.

In our opinion, self-consistent multicomponent periodic
solutions of the nonlinear Schro¨dinger equation must be o
rather general character because this equation takes int
count the first~cubic! term in expansion of the nonlinea
polarization in a standard wave equation. In many case
enables one to describe the propagation of stable wave p
ets, composed of electronic wave functions, taking into
count, for example, the electron-phonon interaction. It me
the multicomponent solutions considered could be import
in physics of 1D chains or 2D atomic planes in ferromagn
ics, HTSC’s, and conjugated polymers. Here the concep
some incoherent but bounded and stable electronic w
packets—components of the multicomponent wave pac
~excitons, biexcitons, superconductive pairs, etc., conden
in a kind of Bose condensate!—might be very fruitful. The
required incoherence of the components could be supp
by a phase relaxation and different carrier frequencies.
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