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Abstract.  It is found that chirped elliptically polarised cnoidal 
waves can propagate and aperiodic regimes, resembling polarisa-
tion chaos, can emerge in an isotropic medium with local and nonlo-
cal components of cubic nonlinearity and second-order frequency 
dispersion. In the particular case of the formation of the waveguides 
of the same profile for two circularly polarised components of the 
light field relevant analytical solutions are derived and the frequen-
cies of chirped components are shown to vary in concord with peri-
odic changes of their intensities. In this case, the nature of the 
changes in the polarisation state during the light wave propagation 
depends on the values of nonlinear phase shifts of circularly polar-
ised components of the field during the period and is sensitive to 
changes in the initial conditions. 

Keywords: cubic nonlinearity, spatial dispersion, nonlinear 
Schrödinger equation, elliptical polarisation, cnoidal waves, chirp, 
polarisation chaos. 

1. Introduction

Propagation of elliptically polarised electromagnetic waves in 
an isotropic medium with cubic nonlinearity and second-
order frequency dispersion in the absence of diffraction is 
described by a system of two nonlinear Schrödinger equations 
(NSEs). If the polarisation of the medium has local and 
nonlocal (associated with spatial dispersion [1 – 4]) compo-
nents, this system of NSEs takes the form [5 – 9]: 
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where A±(z, t) are the slowly varying complex amplitudes of 
circularly polarised components of the light field; t is the time 
in the intrinsic (travelling) coordinate system; k2 = d2k/dw2 is 
the constant characterising the frequency dispersion of the 
medium; w is the frequency of the propagating wave; and k is 
the modulus of its wave vector directed along the z axis. 

In equation (1) the constants s1 = 4pw2cxyxy/(kc2) and s2 = 
2pw2cxxyy /(kc 2) are related to the components of a local cubic 
nonlinearity tensor, ( ; , , )( )3c w w w w-t , that is symmetric with 
respect to replacement of the last two indices. The constants  
r0,1 = 2pw2g0,1/c2 are proportional to pseudoscalar constants 
of linear and nonlinear gyration, g0 and g1. They, respectively, 
define nonzero tensor components of nonlocal linear and 
nonlinear susceptibilities, ( )1gt  and ( )3gt , with which the contri-
butions E( )1 dgt  and EE E( )3 dgt  to the polarisation of the 
medium are associated [1 – 4]. 

At arbitrary relationships between s1,2 and r0,1, system (1) 
is nonintegrable [10 – 14], and it is impossible to find the 
boundaries of the stability of nonlinear polarisation modes 
(nonlinear eigenpolarisations according to the terminology of 
paper [14]). In this case, consideration is restricted to the 
search and detailed analysis of the families of particular solu-
tions of (1), the form of which in some cases allows some con-
clusions about the nature of radiation propagation in a 
medium with a nonlocal nonlinear optical response. A num-
ber of its numerical [5 – 7] and analytical [8 – 13] particular 
solutions is known, which were obtained by imposing some 
additional constraints. For example, Makarov and Petrov [8], 
assuming a linear relationship of the amplitudes of two circu-
larly polarised components of the light field, found the solu-
tions of system (1) in the form of soliton pairs. Under the con-
dition of the formation of waveguides of the same profile for 
both components of the light field A±(z, t) the authors of 
paper [9] found a family of solutions to system (1), which 
includes nine types of elliptically polarised cnoidal waves 
whose amplitudes are proportional to the Jacobi elliptic func-
tions [15] and the phases are independent of time and vary 
linearly with increasing z. 

In this paper we find the particular (corresponding to the 
formation of the waveguides of the same type for two circu-
larly polarised components of the light field) solutions of sys-
tem (1), in which, in contrast to the solutions presented in [9], 
the phases of the components A±(z, t) are not only linearly 
dependent on z, but also change nonlinearly with t: 

( , ) ( ) { [ ( ) ]}exp iA z t R t t zf k= +! ! ! ! .	 (2)

Here k± are the linear additions to the propagation constants 
(constants of separation of variables), and R±(t) and f±(t) are 
real functions. It will be shown that in this particular case, the 
intensities of the circularly polarised components R2

± and 
nonlinear additions  w±(t) = df±/dt to the frequency w (chirp) 
are expressed in terms of the Jacobi elliptic functions and con-
sistently oscillate. The evolution of the polarisation state of 
waves is also unusual. Depending on the initial conditions, in 
a nonlinear medium both the solutions with strictly periodic 
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changes in the polarisation state (chirped elliptically polarised 
cnoidal waves) and the solutions resembling the polarisation 
chaos can be formed. Note that the solutions of NSEs of type 
(2) in the integrable case have been already analysed in 
[16 – 19] when considering parametric processes in quadratic 
nonlinearity. 

2. Integrals of the problem and particular 
analytical solutions 

By substituting (2) into (1) and performing the standard pro-
cedure of separation of variables, with k2 ¹ 0 we derive a sys-
tem of four ordinary differential equations: 
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Note that equations (3b) are valid in all cases where the 
nonlinear addition to the refractive index of two circularly 
polarised components of the field in (1) does not depend on 
the phases f±, being arbitrary functions of intensities |A±|2. 
Indeed, system (3) coincides with the equations describing the 
mechanical motion of a system consisting of two material 
points of unit mass, with the radius vectors R±(t) = 
{R±(t) cos f±(t), R±(t) sin f±(t)}, in the field of central forces. 
From the point of view of the analogy, relations (3b) reflect 
the law of conservation of angular momenta of these points 
and hold true in all cases when the potential energy of the 
system is an arbitrary function of R2

±. 
Equations (3b) are easily integrated, which, as in [16 – 19], 

defines two integrals of the problem 

( ) [ ( ) / ] ( ) ( )d dR t t t R t t2 2/f w! ! ! !

	 = (0) (0)R R2
0
2

0w w=! ! ! ! ,	 (4)

which, within the above-mentioned analogy, are the angular 
momenta of the material points. It follows from (4) that if the 
relations R±(t0) = 0 and ( / ) | 0d dR t t t0 !! =  are fulfilled at least 
for one value of t0, at all points of time t1, when the  R±(t1) ¹ 
0, the derivative ( / ) | 0d dt t t1 /f! = , and hence, f± = const. In 
this case, the phases f± can change abruptly just at the points 
corresponding to zeros of R±. Therefore, the solutions of (3) 
we are interested in, where w±(t) ¹ 0, can exist only if |R±(t)| > 0 
for all t. In this case, the phases  f± and w± are found using the 
integrals (4) after solving (3a): 
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The condition for the formation of the waveguides of the 
same type for two circularly polarised components of the 
field, A±(z, t), is equivalent to the requirement of linear cou-
pling d+|A+|2 + d–|A–|2 = d0 between their intensities, in which 

the constants d0,± are subject to further determination (see 
[9]). Due to this, the amplitudes R±(t) become dependent, and 
system (3a) is transformed into a pair of formally independent 
equations, which in view of (4) can be written as 
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Now, using the general form of the solution of equation (6) 
given in [16 – 19], we find d0/d+, d–/d+ and the amplitudes 
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In this case, the actual real factor n and modulus m of the 
Jacobi elliptic sine [15], which set the same type of the wave-
guides for two circularly polarised components of the field, 
are determined by the initial conditions with the help of the 
relations 
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Note that the values of n and m must be such that  R2
±(t) 

and w2
±0 defined by them were positive. This is possible if at 

least one of the inequalities

0 ( , ) , 1 ( , )n n< < < < 23m n m n m- -! ! ,	 (9)

allowing one to obtain the desired constraints on the values of  
n and m, is fulfilled. The values of R±0 are always defined with 
accuracy up to a sign, which, by analogy with [16 – 19], leads 
to the existence of two (‘positive’ and ‘negative’) branches of 
the solutions of (7). 

Using (5), (7) and (8), the phases of the components A±(z, t) 
can be expressed through the elliptic integral of the third kind 
[15] 
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where  n± is the elliptic characteristic. Nonlinear additions to the 
frequencies are expressed through the Jacobi elliptic functions: 
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The condition w±(t) ¹ 0, corresponding to a nonzero chirp of 
a cnoidal wave, removes degeneration of solutions with 
respect to n and m, which took place in [9]. In (2), additions to 
the propagation constants k± are expressed by the formulas 
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The solutions R±(t), whose ratios R+(t)/R–(t) are independent 
of time, as in [9] will be called degenerate and denoted by a 
superscript d in parentheses. It follows from the above formu-
las that the amplitudes R 0

( )d
! , phases ( )t( )df! , and additions to 

the frequency ( )t( )dw!  of these solutions are related by the 
expressions 

[ / ] ( ) /( )R R( ) ( )d d
0 0

2
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(13)

It is easy to verify that elliptically polarised cnoidal waves, 
which were discussed in paper [9], are special limit cases of the 
above solutions for w±(t) º 0, corresponding to boundaries 
[following from inequalities (9)] of admissible values of n±. The 
solutions ( )R t =! [ ( ) /( )] ( , )dnk t/

2 2 1 1
2

1 2 2
2 1 2"n s r r s s s n m- + +  

which do not change the sign, are formed from the positive 
branch of formula (7) at n± = –m2. Sign-changing solutions  
( ) [ ( ) /( )]R t k /

2 2 1 1
2

1 2 2
2 1 2"nm s r r s s s= + +!  ́   ( , )sn tn m  and ( )R t!  =

[ ( ) /( )] ( , )cnk t/
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2
1 2 2

2 1 2"nm s r r s s s n m- + +  are obtained from 
(7) at n± ® ¥ and n± = –1, respectively. And in the last two 
cases, one must sew (see [18]) the positive and negative 
branches of (7) at those point of times when R±(t) = 0 and the 
phase jumps occur. Note also the possible existence of ‘hybrid’ 
solutions, in which one of the circularly polarised compo-
nents of the field is chirped, and the other is not. 

3. Chirped cnoidal elliptically polarised waves 
and polarisation ‘chaos’ 

Based on the character of the variation of the amplitude of 
two circularly polarised field components in time and their 
asymptotics [9], as well as on the connectivity of boundaries 
of their existence regions, all the solutions of (7) – (10) can be 
divided into three groups. 

The first group includes those in which the amplitudes of 
both field components grow at point t = 0. Solutions of this 
type exist in the cases when the signs of ( )k2 1

2
1 2 2

2r s s s+ +  
and ( 2 1"s r ) are the same and, therefore, n± > 0. When w±(t) 
º 0, they undergo a transition to the solutions of ss type 
according to the classification given in [9]. The second group 
consists of those solutions in which the amplitudes of both 
field components at point t = 0 start to decrease. They exist in 
the cases where the signs of ( )k2 1

2
1 2 2

2r s s s+ +  and ( 2 1"s r ) 
are opposite and, therefore, n± < 0. When w±(t) º 0, the solu-
tions of this group become the solutions of cc, cd and dd types 
(classification given in [9]). In the cases when ( )k2 1

2
1 2 2

2r s s s+ +  
and (s2  – r1) are positive and the parameter (s2  + r1) is nega-
tive, or vice versa, the amplitude of one of the field compo-
nents at point t = 0 begins to increase, and the amplitude of 
the second one – to decrease, thereby forming the third group 
of solutions. When w±(t) º 0, they undergo a transition to the 
solution of sc and sd types (classification given in [9]). Note 
that the solutions of the three groups listed above have the 
soliton asymptotics corresponding to the passage to the limit 
of the Jacobi elliptic functions in the hyperbolic functions at 

m ® 1. The degeneracy is only possible for the solutions of the 
first and second groups. 

In the optical range the characteristic scale of manifesta-
tion of the nonlocal response to the external light field in 
gyrotropic media is significantly smaller than the wavelength, 
so that |r1| << |s1,2|. Consequently, the solutions of the third 
group in such media are unlikely to be realised. Figure 1 illus-
trates the typical behaviour of the dependences of the nor-
malised moduli | | | / |r R k /1

1 2
1 2n s=! !

- , phases f±, and nonlin-
ear additions w±(t) = df±/dt to the frequency w on the dimen-
sionless time nt, corresponding to the solutions of the first of 
the three groups listed above. 

The evolution of the polarisation state of chirped cnoidal 
waves corresponding to the found solutions is convenient to 
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Figure 1.  Dependences of r± (a), f± (b) and w±/n (c) on the dimension-
less time vt at z = 0, r+(0) = 0.27, r–(0) = 0.47, r1/s1 = 0.2, s2/s1 = 2 and 
m = 0.95. 
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describe using the Stokes parameters [20] coupled with the 
complex amplitudes A± by the relations: 

( ) (| | | | ) /2, ( ) { }ReS t A A S t A A *
0

2 2
1= + =+ - + - ,

2 2( ) { }, ( ) (| | | | ) /2ImS t A A S t A A*
2 3= = -+ - - + .	

(14)

In this case, the parameters sx,y,z = S1,2,3/S0 are Cartesian 
coordinates of the end of the unit vector s, which moves, as t 
changes, on the surface of the so-called Poincare sphere [20]. 

The Stokes parameters are uniquely related to the polari-
sation characteristics, which were used previously in paper 
[5 – 9]. In this case, S0 specifies the instantaneous intensity of 
the light field 
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the sz component describes the degree of ellipticity of the 
polarisation ellipse, M, 
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is twice the angle of rotation of the main axis of the polarisa-
tion ellipse ( { }/2Arg A A *

+ - ). In (17), ( ) ( / )t 0w nDF = +  ́
( , , ) ( / ) ( , , )t n t n0n m w n n mP P-+ - - . 
It is easy to see that, as in [9], the dependence of the longi-

tude on the coordinate z reduces to a renormalisation of the 
constant r0 of linear gyration due to the nonlinearity. For 
fixed z the change of F in time is due only to the dependence  
DF(t). In this case, the end of the vector s moves along the 
surface of a spherical shell, the lower and upper boundaries of 
which are determined by the extrema sz. The dimensionless 
period nT of this motion is twice the complete elliptic inte-
grals of the first kind K(m). During the time T the angle F 
increases by DF (t = 2K/n). 

If pDF(t = 2K/n) = 2qp, where p and q are integers, then 
the orientation of the end of the vector s in space and, there-
fore, the polarisation state of the light wave will change peri-
odically. In all other cases, the end of the vector s will pass 
over time through any point of the surface of the specified 
layer. The change in the polarisation state of the light wave 
will seem chaotic, but the overall situation will be similar to 
the evolution of a strange attractor, which eventually fills a 
region of its phase space. The typical character of the evolu-
tion of the polarisation state for the solutions of the first 
group on the Poincare sphere is demonstrated in Fig. 2. The 
figure shows periodic [corresponding to a chirped elliptically 

polarised cnoidal wave (Figs 2a, c)] and aperiodic [corre-
sponding to polarisation ‘chaos’ (Figs 2b, d)] trajectories of 
the movement of the end of the normalised Stokes vector s on 
the Poincare sphere. We emphasise that the term ‘chaos’ is 
used here only for the sake of brevity, as its correct applica-
tion requires a detailed study of the correlation properties of 
the aperiodic solutions obtained. The emergence of ‘loops’ on 
the trajectories (Figs 2c, d) are due to the possibility of a non-
monotonic dependence DF (t) (the formation of local extrema) 
for certain values of the parameters of the problem (Fig. 3). 

4. Conclusions 

It is shown that in an isotropic medium with local and nonlo-
cal cubic nonlinearity and second-order frequency dispersion, 
chirped elliptically polarised cnoidal waves can propagate 
and the regimes that resemble polarisation chaos can appear. 
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Figure 2.  Periodic motion of the end of the Stokes vector on the surface 
of the Poincare sphere at  r+(0) = 0.47, r–(0) = 0.82 (  p/q = 3) (a), r+(0) = 
0.27, r–(0) = 0.47 (  p/q = 6) (c) and transition to its aperiodic motion for 
irrational values of p/q (b and d); the other parameters are the same as 
in Fig. 1. 
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Figure 3.  Dependence DF(t) at r+(0) = 0.47, r–(0) = 0.82 (a) and r+(0) = 
0.27, r–(0) = 0.47(b); the other parameters are the same as in Fig. 1.
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The analytical solutions of the system of two nonlinear 
Schrödinger equations, corresponding to these two situations, 
are found and analysed in a particular case when in a nonlin-
ear medium nonlinear waveguides of the same type are 
formed for the two circularly polarised components of the 
light field. It is found that the frequencies of both components 
vary in concord with a periodic change of their moduli, and 
the evolution of the polarisation state of chirped nonlinear 
waves during their propagation can radically change with 
changing the initial conditions. 

Acknowledgements.  The authors thank I.A. Perezhogin and 
K.V. Rudenko for useful discussions. 

This work was supported by the Russian Foundation for 
Basic Research (Grant No. 11-02-00653-a), the President 
Grant for Government Support of the Leading Scientific 
Schools of the Russian Federation (No. NSH-6897.2012.2) 
and the Federal Program of the Ministry of Education and 
Science of the Russian Federation (Grant No. 8393). 

References
  1.	 Akhmanov S.A., Zharikov V.I. Pis’ma Zh. Eksp. Teor. Fiz., 6, 644 

(1967) [ JETP Lett., 6, 137 (1967)]. 
  2.	 Akhmanov S.A., Lyakhov G.A., Makarov V.A., Zharikov V.I. 

Optica Acta, 29, 1359 (1982).
  3.	 Zheludev N.I., Petrenko A.D. Kristallografiya, 29, 1045 (1984) 

[ Sov. Phys. Crystallogr., 29, 613 (1984)]. 
  4.	 Golubkov A.A., Makarov V.A. J. Mod. Opt., 37, 1531 (1990).
  5.	 Golubkov A.A., Makarov V.A., Perezhogin I.A. Vestn. Mosk. 

Univ. Ser. Fiz., Astronom., No. 1, 52 (2009). 
  6.	 Golubkov A.A., Makarov V.A., Rakhmatullina I.G. Kvantovaya 

Elektron., 19, 1195 (1992) [ Quantum Electron., 22, 1117 (1992)]. 
  7.	 Makarov V.A., Perezhogin I.A., Potravkin N.N. Laser Phys., 19, 

322 (2009).
  8.	 Makarov V.A., Petrov K.P. Kvantovaya Elektron., 20, 1011 (1993) 

[ Quantum Electron., 23, 880 (1993)]. 
  9.	 Makarov V.A., Perezhogin I.A., Petnikova V.M., et al. 

Kvantovaya Elektron., 42, 117 (2012) [ Quantum Electron., 42, 117 
(2012)]. 

10.	 Christiansen P.L., Eilbeck J.C., Enolskii V.Z., Kostov N.A. Proc. 
Roy. Soc. London, Ser. A, 456, 2263 (2000).

11.	 Chow K.W., Nakkeeran K., Malomed B.A. Opt. Commun., 219 
(1), 251 (2003).

12.	 Tsang S.C., Nakkeeran K., Malomed B.A., Chow K.W. Opt. 
Commun., 249 (1-3) 117 (2005).

13.	 Chiu H.S., Chow K.W. Int. J. Comput. Math., 87 (5), 1083 (2010).
14.	 Kaplan A.E. Opt. Lett., 8, 560 (1983).
15.	 Gradshteyn I.S., Ryzhik I.M. Tables of Integrals, Series and 

Products (San Diego, CA: Academic Press, 2000; Moscow: 
Nauka, 1971). 

16.	 Petnikova V.M., Shuvalov V.V. Phys. Rev. E, 76 (4), 046611 
(2007).

17.	 Petnikova V.M., Shuvalov V.V. Kvantovaya Elektron., 37, 561 
(2007) [ Quantum Electron., 37, 561 (2007)].

18.	 Kuratov A.S., Petnikova V.M., Shuvalov V.V. Kvantovaya 
Elektron., 38, 148 (2008) [ Quantum Electron., 38, 148 (2008)]. 

19.	 Petnikova V.M., Shuvalov V.V. Kvantovaya Elektron., 39, 1137 
(2009) [ Quantum Electron., 39, 1137 (2009)]. 

20.	 Born M., Wolf E. Principles of Optics (London: Pergamon, 1970; 
Moscow: Nauka, 1973). 


