

THE 5th INTERNATIONAL SYMPOSIUM ON ADVANCED MAGNETIC MATERIALS AND APPLICATIONS

04-07th August 2024, Quang Binh, Vietnam

PROGRAM and **ABSTRACT**

TMh-P8

Magnetic and magneto-optical properties of hybrid multilayer nanostructures $\{[(Co_{41}Fe_{39}B_{20})_{33.9}(SiO_2)_{66.1}]/[ZnO]\}_n$

N. N. Perova^{1,*}, I. M. Pripechenkov¹, E. A. Gan'shina¹, S. N. Nikolaev², A. S. Sitnikov^{2,3}, A. B. Granovskiy^{1,4} and V.V. Ryl'kov^{2,4}

¹Department of Physics, Moscow State University, Moscow, 119991 Russia

²National Research Center Kurchatov Institute, Moscow, 123182 Russia

³ Voronezh State Technical University, Voronezh, 394026 Russia

⁴ Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow, 125412 Russia

*Email: perova.n@physics.msu.ru

The study presents the structural, magnetic, and magneto-optical properties of hybrid multilayers {[(Co₄₁Fe₃₉B₂₀)_{33.9}(SiO₂)_{66.1}]/[ZnO]}_n, varying the layer thicknesses of the (Co₄₁Fe₃₉B₂₀)_{33.9}(SiO₂)_{66.1} nanocomposite and the ZnO semiconductor. The sample were synthesized by ion beam sputtering on a sapphire substrate [1]. The thin composite layers exhibit an amorphous structure, while ZnO semiconductor layers maintain a hexagonal crystalline structure with *P6₃mc* symmetry group. The single-layer nanocomposite exists in a superparamagnetic state with a ferromagnetic component content far from the percolation threshold. The results of magnetic property measurements with VSM, as well as magneto-optical spectra and magnetoresistance, indicate that no long-range ferromagnetic order is formed in the studied multilayers at different ZnO interlayers up to 77 K.

Exploration of the magneto-optical properties of hybrid multilayers showcases their high sensitivity to structural parameters. Changing the thickness of the nonmagnetic ZnO interlayer led to the enhancement of the magneto-optical signal and to the appearance of new features in the spectral dependences of the TKE. Possible mechanisms for such enhancement are discussed.

References

[1] O.V. Dunets, Yu.E. Kalinin, M.A. Kashirin, A.V. Sitnikov. "Electrical and magnetic properties of multilayer structures based on (Co₄₀Fe₄₀B₂₀)_{33.9}(SiO₂)_{66.1} composite" // Journal of Technical Physics. - 2013. – Vol. 83. - P. 114-120.