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ON TYPICAL AND ATYPICAL ASYMPTOTIC
BEHAVIOR OF SINGULAR SOLUTIONS TO

EMDEN–FOWLER TYPE EQUATIONS
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Consider the equation

(1) y(n) = p(x, y, y′, . . . , y(n−1))|y|k sign y,

where n ≥ 2, k > 1, p is a positive, continuous and Lipschitz continuous

in the last n variables function. Consider also a special case of (1),
namely

(2) y(n) = p0 |y|k sgn y

with p0 > 0.

We discuss the problem posed by I.Kiguradze (see [1, Problem 16.4])
on asymptotic behavior of all positive non-extensible (so-called ”blow-
up”) solutions to this equation. It appears for n = 2 (see [1]), n =
3, 4 (see [2]), that if p(x, y1, y2, . . . , yn−1) tends to p0 as x → x∗ −
0, y0 →∞, · · · , yn−1 →∞, then all such solutions have the power-law
asymptotic behavior

(3) y(x) = C(x∗ − x)−α(1 + o(1)), x→ x∗ − 0,

with α = n
k−1 , C =

(
α(α+1)...(α+n−1)

p0

) 1
k−1

.

The same is true for weakly super-linear equations.
Theorem 1. ([3]) Suppose p ∈ C(Rn+1)

⋂
Lipy0,...,yn−1(R

n) and
p → p0 > 0 as x → x∗, y0 → ∞, . . . , yn−1 → ∞. Then for any integer
n > 4 there exists K > 1 such that for any real k ∈ (1, K), any
solution to equation (1) tending to +∞ as x → x∗ − 0 has the power-
law asymptotic behavior (3).

In the case n ≥ 12 even if we deal with equation (2), another type
of asymptotic behavior of singular solutions appears (see [3, 4, 5]).

If we have more strong nonlinearity, then the power-law asymptotic
behavior becomes atypical. The following theorem generalizes the re-
sults of [6]:

Theorem 2. If 12 ≤ n ≤ 100000, then there exists kn > 1 such that
at any point x0 ∈ R the set of initial data of asymptotically power-law
solutions to equation (2) has zero Lebesgue measure whenever k > kn.
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