
Introduction
Band broadening in a chromatographic bed caused by the 

lateral differences in eluent velocity (e.g., due to wall effect) is 
inversely related to the rate of transverse mass transport in the bed. 
Therefore, several recent studies [1–3] have been devoted to the 
simulations and measurements of the solute transverse dispersion
under conditions of laminar flow in sphere packings, silica monoliths, 
and arrays of non-porous cylindrical pillars. Unfortunately, only few 
models of the dispersion process in ordered pillar arrays are 
available [3].

Hexagonal array of pillars closely resembles the Galton board. 
Nevertheless, the simple Galton-board model of transverse disper-
sion [3, 4] fails to describe the experimental data. The aim of this
presentation is to show how the Galton-board model can be modified 
in order to obtain a useful expression for the velocity dependence of 
the transverse dispersion coefficient in regular pillar arrays.

Extension of the Galton-board model
Actually, no purely mechanical contribution to DT is possible in 

ordered pillar arrays under laminar flow conditions. The streamlines 
do not split (Fig. 2), and mass transfer between adjacent streamlines 
is diffusive. In the absence of diffusion, the solute molecules would 
simply follow the same streamlines they were initially placed in, 
proceeding in sequences of alternating steps (+ – + – ...) of the 
approximate length s. This would result in zero transverse 
dispersion. In reality, diffusion allows the molecules to cross the lines 
of zero transverse velocity (Fig. 2) and make consecutive steps in 
the same direction, such steps being necessary for the lateral solute 
spreading. Adopting the terminology used by Scheven [2] to describe 
transverse dispersion in random sphere packings, the above process 
can be called diffusively coupled mechanical dispersion.

This process can be treated as a two-state Markov chain [5], i.e., 
as a sequence of such trials (steps) that the probability of a particular 
outcome (one of the two chain states, which corresponds to a 
particular step direction; Fig. 3) is dependent on the outcome of the 
preceding trial and independent of the outcomes of all earlier trials.
Fig. 2 suggests that the probability p to make a step in the same 
direction as the preceding step is smaller than the probability q = 1–p
to reverse the direction of motion, i.e., p < 0.5 < q. To give another 
definition, p is the conditional probability to exit a rhombic unit cell of 
the array through the red boundary (Fig. 4; see the black arrows) 
after entering the cell through the other red boundary (or blue after 
blue), while q corresponds to the combinations “blue after red” and 
“red after blue”. The value of T

2 after N steps of this Markov chain is 
given by [6, 7]:

Limitations and adjustment of the model
Treatment of the diffusively coupled mechanical dispersion as 

the Markov chain described by Fig. 3 requires that only such 
trajectories of the molecules as those shown by the black arrows in 
Fig. 4 be possible. This situation can be safely assumed at high . 
However, at low  such trajectories as those exemplified by the 
purple arrows in Fig. 4 cannot be neglected, and the sum p + q
becomes smaller than unity. This necessitates considering more 
complicated Markov chains. Further, it is more difficult to define the 
frequency of steps at low . Division of the overall dispersion 
coefficient into purely diffusive and diffusively coupled mechanical 
terms is controversial as well.

Nevertheless, a useful expression for DT/Dm() can be obtained 
by introducing a multiplier () = c(1–exp(–b)) to the second term 
of Eq. (10):

The Galton-board model
Usually, solute dispersion is considered as a combination of two 

independent processes: molecular diffusion and advective (purely 
mechanical) dispersion. In the Galton-board model [4], the latter 
contribution is treated as a one-dimensional random walk consisting 
of independent steps of the length s and describing the imaginary 
streamline-splitting process shown in Fig. 1A. The steps in positive 
and negative directions of the y-axis, which is orthogonal to the 
direction of flow, are equally probable (P(+) = P(–) = 0.5). The ave-
rage squared transverse displacement of the molecules from their
original position T

2 after N steps of this random walk is given by

σ  T s N2 2 .

where dp is the pillar diameter, Dm is the molecular diffusion 
coefficient of the solute,  = udp/Dm is the reduced mobile phase 
velocity. For a fixed (hexagonal) arrangement of pillars, parameter 
is a function of the array porosity (interpillar volume fraction)  only:  
  0.1774 and 0.2510 for  = 0.4 and 0.7, respectively.

Assumption of the additivity of diffusive and advective
contributions to DT results in
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The transverse dispersion coefficient DT is calculated as

where t is time and symbol  denotes the differences of the 
quantities. Expressing the step length s and the frequency of steps 
N/t through the geometrical parameters of the array (Fig. 1B) and 
the interstitial linear velocity of the mobile phase u leads to

where  is the diffusion obstruction factor. Linear Eq. (4) does not
describe the experimental DT/Dm() curves, which level off at high .

(1)

(3)

(2)
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In derivation of Eq. (5), positive and negative directions are assumed 
to be equally probable for the first step. Fig. 5 shows that the function 
T

2(N) becomes linear after sufficiently large number of steps 
depending on p. The asymptotic transverse dispersion coefficient is 
calculated as

(4)

(6)

By analogy with Eq. (2), Eq. (6) leads to

(7)

Eq. (7) differs from Eq. (3) only by the multiplier p/(1–p) that 
becomes unity at p = 0.5. Eq. (7) describes the main contribution to 
DT at high (>10). Assumption of the additivity of pure diffusion and 
diffusively coupled mechanical dispersion results in

(8)

Importantly, p is velocity-dependent. With the increase in , it 
should decrease since the time available for the solute to cross the 
zero-velocity lines (Fig. 2) decreases. At low , the reasonable 
limiting value for p should be 0.5. The velocity-dependence of p
accounts for the leveling-off of the experimental DT/Dm vs.  curves 
at high . Assuming the following simple expression for p():

(9)

The least squares fit of Eq. (10) to the simulation data from 
paper [1] is presented in Fig. 6A. Parameters of the fit are given in 
Table 1. The fit is rather satisfactory. The remaining non-ideality is 
due to the assumed simple form of Eq. (9) and intrinsic limitations of 
the model.
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Fig. 1. (A) Top view onto the hexagonal 
array of pillars and scheme of the 
streamline-splitting process assumed in 
the Galton-board model of transverse 
dispersion. (B) Rectangular unit cell of the 
hexagonal array of pillars.

where a is a coefficient, leads to
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

DT/Dm

where b and c are coefficients. The multiplier () with c > 1  
increases the contribution of the second term to DT/Dm at high  and 
decreases it at low .

Eq. (11) fits the simulation data [1] well (Fig. 6B and Table 1). 
The inflection point of the DT/Dm vs.  curves (seen in linear 
coordinates) is taken into account by Eq. (11). The product c varies 
only slightly for different  and can be used as a single new 
coefficient. Fixing c at 0.260 does not impair the fitting quality and 
only slightly changes the other parameters (Table 1).
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Fig. 5. Dependences of the average squared trans-
verse displacement T

2 on the number of steps N in 
the considered Markov chain (Eq. (5)) for various 
values of probability p. The step length s = 1.

Table 1. Parameters of the least squares fit of the equations 
proposed in this study to the data from Ref. [1]

Equation   a b c r2 c

(10)
0.4 0.526 0.017 n.a. n.a. 0.991 n.a.

0.7 0.507 0.094 n.a. n.a. 0.989 n.a.

(11)
0.4 0.595 0.028 0.082 1.552 >0.999 0.275

0.7 0.728 0.108 0.199 1.030 0.999 0.259

(11)
with c
= 0.260

0.4 0.603 0.027 0.089 n.a. >0.999 fixed

0.7 0.727 0.108 0.198 n.a. 0.999 fixed

Fig. 2. Scheme of the main streamlines in 
a laminar flow through the ordered pillar 
array. Thin horizontal lines are the lines of 
zero transverse eluent velocity. Green 
arrows indicate the more probable 
changes of the direction of lateral motion 
of the molecules following the stream-
lines. Each red arrow illustrates the 
diffusive transfer necessary to make a 
less probable random step in the same 
direction as the previous step. 

Fig. 3. Directed graph of the two-state 
Markov chain that models transverse 
dispersion in the ordered pillar array. 
Probabilities of transitions between the 
states are p and q, p + q = 1, and p < q.

Fig. 4. Division of the hexagonal array of 
pillars into rhombic unit cells to define
probabilities p and q. Black arrows 
indicate preferential paths of the solute at 
high . Purple arrows exemplify the paths 
that cannot be neglected at low  (see 
“Limitations…” section for discussion).
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Fig. 6. Plot showing the least squares fit of (A) Eq. (10) and 
(B) Eq. (11) to the simulation data [1]. The data points were re-
plotted from Fig. (14) in Ref. [1]. Note that  was defined using 
the domain size of the array ddom in Ref. [1] and was recalculated 
to dp-based  here. The point  = 0 unseen in logarithmic coordi-
nates was also used for fitting.
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Conclusions
Using the concept of Markov chains, a way was proposed to extend the probabilistic 
Galton-board model of transverse dispersion in order to make this model more 
consistent with the mechanism of advective–diffusive mass transport in laminar flow 
through regular pillar arrays. The limitations of the extended model were discussed.    
A relatively simple four-parameter equation that describes the available dispersion 
data well was suggested. The equation can be used as a part of the expression for the 
wall-induced contribution to the plate height of confined ordered arrays of non-porous 
pillars.

p

q
q

p

Negative 
step

(A) (B) (A)

(B)

 = 0.4

 = 0.4, fit

 = 0.7
 = 0.7, fit

Transverse dispersion in ordered pillar arrays as a Markov chain:
Extension of the Galton-board model

Konstantin Smirnov, Oleg Shpigun
Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia

SmirnovKN@analyt.chem.msu.ru, smirnov-const@yandex.ru

This poster was presented at the 30th International Symposium on Chromatography, September 14-18, 2014, Salzburg, Austria. Poster P065-FF-MO.


