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Abstract. We discuss a new approach for constructing polytope Lyapunov functions for continuous-time linear switching
systems. The method we propose allows to decide the uniform stability of a switching system and to compute the Lyapunov
exponent with an arbitrary precision. The method relies on the discretization of the system and provides - for any given
discretization stepsize - a lower and an upper bound for the Lyapunov exponent. The efficiency of the new method is illustrated
by numerical examples. For a more extensive discussion we remand the reader to [8].
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PROBLEM AND BACKGROUND

We consider the following class of linear switching system (LSS):
{

ẋ(t) = A(t)x(t) ; A(t) ∈ A , t ≥ 0

x(0) = x0 ∈ Rd.
(1)

HereA(t) ∈ Rd,d is assumed to be a summable function that takes values on a given compact set of matricesA . The
upper Lyapunov exponentσ(A ) is the infimum of numbersα such that‖x(t)‖ ≤ Ceαt for every trajectory of (1). The
system is said uniformly stable if‖x(t)‖ → 0 ast → +∞ for every trajectory of (1). Ifσ(A ) < 0, then the system is
stable, and, conversely, the stability implies thatσ(A )≤ 0. There is a wide bibliography concerning the computation
of σ(A ) and several approaches based on the construction of Lyapunov functions (see e.g. [11, 2, 3]) have been
proposed in the literature. Here we make use of a polytope based approach which provides an arbitrarily accurate
approximation ofσ(A ) whenA is either finite or essentially finite (i.e. there exists a finite subsetA ′ of A such that
σ(A ′) = σ(A ), as is the case - for example - ifA is the convex hull ofA ′).

Optimal norms

In order to deal with the upper Lyapunov exponent we make use of the following key instrument.

Definition 1 A norm ‖ · ‖ is called extremal for a setA if for every trajectory of (1) we have‖x(t)‖ ≤

eσ(A ) t‖x(0)‖ , t ≥ 0. An extremal norm is called invariant if for every x0 ∈ Rd there exists a trajectoryx(t)
with x(0) = x0 such that‖x(t)‖ = eσ(A ) t ‖x0‖ , t ≥ 0.

Note that for an extremal norm the function e−σ(A ) t ‖x(t)‖ is non-increasing int on every trajectory. For an invariant
norm this function is identically constant on some trajectory, and for every pointx0 ∈ Rd there is such a trajectory
starting in it. In particular, forσ(A ) = 0 we have the following result.

Corollary 1 If σ(A ) = 0 a norm is extremal forA if and only if it is non-increasing in t on every trajectory of(1).
An extremal norm is invariant if and only if for any x0 ∈ Rd there exists a trajectoryx(t) with x(0) = x0, on which this
norm is identically constant.

If we take a unit ballB of that norm, we see that a norm is extremal if and only if everytrajectory starting on the unit
sphere∂B never leaves the ballB. This norm is invariant if for each point of the unit sphere there exists a trajectory
starting at this point that remains on the sphere. A set of operatorsA is calledirreducible if these operators do not
share a nontrivial common invariant subspace. N.Barabanov[1] proved that an irreducible set of operators possesses
an invariant norm, which is a very deep and important result in terms of computability ofσ(A ).



METHODOLOGY AND RESULTS

We take into consideration here a finite familyA = {A1,A2, . . . ,Am} of matrices and think of the restriction of the
function A(t) to the space of piecewise constant functions on the discretegrid {t j = j∆t} j≥0. This transforms the
problem of computing the upper Lyapunov exponent into that of computing the joint spectral radius (for an extended
analysis see [10]) of the family of matricesB∆t = {B1, . . . ,Bm} := {eA1∆t , . . . ,eAm∆t}.

Joint spectral radius

Let B = {B1, . . . ,Bm} and‖ · ‖ a given norm onRd and also denote the corresponding inducedd×d-matrix norm
defined by‖B‖= max

‖x‖=1
‖Bx‖. Let I = {1, . . . ,m}. Then, fork= 1,2, . . ., consider

Σk(B) = {Bik · · ·Bi1 | i1, . . . , ik ∈ I }

of all products oflength kand the number

ρ̂k(B) = max
P∈Σk(B)

‖P‖1/k.

Definition 2 (joint spectral radius [13]) The number

ρ̂(B) = limsup
k→∞

ρ̂k(B)

is said the joint spectral radius (j.s.r.) of the familyB.

It represents the maximal rate of growth of a sequence of products{Pk}k>0, with Pk ∈ Σk(B) so that all sequences
vanish asymptotically ask → ∞ if and only if ρ̂(B) < 1. Analogously, letρ(·) denote the spectral radius of ad×d-
matrix. For each positive integerk, consider the number

ρ̄k(B) = sup
P∈Σk(B)

ρ(P)1/k.

Definition 3 (generalized spectral radius (see [5]))The number

ρ̂(B) = limsup
k→∞

ρ̄k(B)

is said to be the generalized spectral radius (g.s.r.) of thefamilyB.

In their paper [5], Daubechies and Lagarias also proved that

ρ̄k(B)≤ ρ̄(B)≤ ρ̂(B)≤ ρ̂k(B) for all k≥ 1. (2)

The fundamental equalitŷρ(B) = ρ̄(B) has been proved later by Berger and Wang [4]. Consequently wecan simply
denote asρ(B) the spectral radiusof B. An important characterization of the spectral radiusρ(B) of a matrix
family is the generalization of Gelfand formula. In order tostate this characterization, we define thenorm of the family
B = {Bi}i∈I as‖B‖= ρ̂1(B) = maxi∈I ‖Bi‖.

Proposition 1 (see [13, 6])The spectral radius of a bounded familyB of d×d-matrices is characterized by

ρ(B) = inf
‖·‖∈Op

‖B‖.

whereOpdenotes the set of operator norms.

In order to establish whether the infimum in (3) is a minimum, we give the following definition.

Definition 4 (Extremal norm) We say that a norm‖ · ‖∗ satisfying‖B‖∗ = ρ(B) is extremal for the familyB.

The main idea of the method for the j.s.r. computation by a polytope norm is that of finding aspectrum maximizing
product (s.m.p.), i.e., a productP of matrices fromB of lengthk for which the value[ρ(P)]1/k is maximal among
all products of matrices fromB. The algorithm in [7] (see also [9]) follows (for a real set ofvectorsX we denote
by absco(X) = co({X,−X})). Algorithm 1 includes indeed stopping criteria to detect whether the given productP is
actually not an s.m.p.; when the algorithm halts it means that the polytopeP is mapped by the familyB̊ into itself.
Here we assume for simplicity that the leading eigenvalue ofthe s.m.p. is real.



Data: B = {B1, . . . ,Bm}
begin

1 Preprocessing: find a productP of lengthk≥ 1 s.t.ρ(P)1/k is maximal among
⋃

ℓ≤k̄ Σℓ(B) with k̄ fixed

2 SetR := ρ(P)1/k andB̊ := R−1B

3 Computev0, real leading eigenvector ofP (for an extension to complex eigenpairs see [7])
4 SetV0 := {v0}. Seti = 0
5 while span(Vi) 6= Rd do
6 Vi+1 :=Vi ∪ B̊Vi
7 Seti = i +1

end
8 P(i) = absco(Vi)

9 while B̊Vi 6∈ P(i) do
10 Seti = i +1

11 Let Vi a system of vertices of absco(Vi−1∪ B̊Vi−1). SetP(i) = absco(Vi)

end
12 ReturnP := P(i) (extremal polytope)

end
Algorithm 1: Basic polytope algorithm

Bilateral bounds

The key idea relies on the simple equality (for realη) σ (A + η I) = σ (A ) + η .
We nameP∆t the polytope computed by Algorithm 1 andV∆t its vertices. An obvious lower bound forσ(A ) is

σ∆t = log(ρ(B∆t))/∆t

that is the upper Lyapunov exponent restricted to functionswhich are piecewise constant on every mesh interval
[ j∆t,( j +1)∆t)] ( j nonnegative). In order to obtain an upper bound it is convenient to consider the shifted family

Âα ,∆t := {Âi}
m
i=1 with Âi = Ai − (σ∆t +α)I

with α ≥ 0, whose upper Lyapunov exponent is justσ(A )−σ∆t −α. Obviously we can infer thatσ(Â0,∆t) ≥ 0 but

for sufficiently largeα we haveσ(Âα ,∆t) ≤ 0. Let v∈ ∂ (P∆t); if the vectorfieldÂiv is oriented insideP∆t for all v

andi thenP∆t is positively invariant and every trajectory is bounded so thatσ(Âα ,∆t)≤ 0.
Exploiting this property, by minimizing w.r.t.α,

α∗
∆t −→ min

α≥0
P∆t is invariant forÂα ,∆t

we obtain the upper boundσ(A )≤ σ∆t +α∗
∆t := γ∆t . The following main result is proved in [8].

Theorem 1 For every compact irreducible familyA of matrices, there is a constant C such that

γ∆t − σ∆t ≤ C∆t , ∆t > 0,

whereγ∆t ,σ∆t are the bounds computed with the chosen dwell time∆t.

Thus the algorithm localizes the Lyapunov exponentσ(A ) on the segment[σ∆t , γ∆t ] of length at mostC∆t.

Illustrative examples

Example 1. Let A = {A1,A2} with A1 = log(B1) andA2 = log(B2), where

B1 =

(
1
3

1
3

−1
3

1
3

)
, B2 =

(
1
3

1
3

−1
3 0

)
.



Setting∆t = 1 we apply Algorithm 1. As a result we obtainσ∆t =−0.725149. . . and the polytope norm in Figure 1.

FIGURE 1. In red the vertices of the polytope computed by Algorithm 1; in green the vectors(A1− (σ∆t +α∗
∆t)I)v and in blue

the vectors(A2− (σ∆t +α∗
∆t)I)v, for all verticesv of P∆t andα∗

∆t = 0.433445. . .. One of the vectorfields is aligned with one of the

sides of the polytope which means that ifα < α∗
∆t then the polytope is not anymore invariant for the shifted familŷAα,1.

Applying the shifting technique explained in the previous section we obtain the bilateral estimate

−0.725149. . .≤ σ(A )≤−0.291704. . .

This estimate allows to state that the system is uniformly stable, that is, for any control law the solution of (1) vanishes.
Example 2. Let A = {A1,A2} with

A1 =




−0.0822 0.0349 −0.1182
0.0953 −0.0897 −0.1719
0.0787 0.0223 −0.2781


 , A2 =




0.1391 0.1397 −0.0916
0.0338 −0.1769 −0.0707
0.7417 0.3028 −0.4621


 .

In Table 1 we report the obtained results. Using a dwell time∆t = 1/8 we get an accuracy smaller than 10−2.

TABLE 1. Approximationσ(A ) of Example 2.

∆t σ∆t γ∆t α∗
∆t s.m.p.

1/2 −0.0470 −0.0148 0.0322 B27
1 B29

2

1/4 −0.0470 −0.0243 0.0227 B55
1 B58

2

1/8 −0.0470 −0.0374 0.0096 B109
1 B117

2
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