Computing Lyapunov exponents of switching systems

Nicola Guglielmi* and Vladimir Protasov ${ }^{\dagger}$
*DISIM, Università dell'Aquila and Gran Sasso Science Institute I-67100 L’Aquila, Italy
${ }^{\dagger}$ Department of Mechanics and Mathematics, Moscow State University, Vorobyovy Gory, Moscow, Russia

Abstract

We discuss a new approach for constructing polytope Lyapunov functions for continuous-time linear switching systems. The method we propose allows to decide the uniform stability of a switching system and to compute the Lyapunov exponent with an arbitrary precision. The method relies on the discretization of the system and provides - for any given discretization stepsize - a lower and an upper bound for the Lyapunov exponent. The efficiency of the new method is illustrated by numerical examples. For a more extensive discussion we remand the reader to [8].

Keywords: Linear switching systems, Lyapunov exponent, polytope Lyapunov funcions, joint spectral radius, iterative method.
PACS: 02.10.Yn,02.60.Pn,02.30.Yy

PROBLEM AND BACKGROUND

We consider the following class of linear switching system (LSS):

$$
\left\{\begin{array}{l}
\dot{x}(t)=A(t) x(t) ; \quad A(t) \in \mathscr{A}, t \geq 0 \tag{1}\\
x(0)=x_{0} \in \mathbf{R}^{d} .
\end{array}\right.
$$

Here $A(t) \in \mathbf{R}^{d, d}$ is assumed to be a summable function that takes values on a given compact set of matrices \mathscr{A}. The upper Lyapunov exponent $\sigma(\mathscr{A})$ is the infimum of numbers α such that $\|x(t)\| \leq C \mathrm{e}^{\alpha t}$ for every trajectory of (1). The system is said uniformly stable if $\|x(t)\| \rightarrow 0$ as $t \rightarrow+\infty$ for every trajectory of (1). If $\sigma(\mathscr{A})<0$, then the system is stable, and, conversely, the stability implies that $\sigma(\mathscr{A}) \leq 0$. There is a wide bibliography concerning the computation of $\sigma(\mathscr{A})$ and several approaches based on the construction of Lyapunov functions (see e.g. [11, 2, 3]) have been proposed in the literature. Here we make use of a polytope based approach which provides an arbitrarily accurate approximation of $\sigma(\mathscr{A})$ when \mathscr{A} is either finite or essentially finite (i.e. there exists a finite subset \mathscr{A}^{\prime} of $\mathscr{A}^{\text {such }}$ that $\sigma\left(\mathscr{A}^{\prime}\right)=\sigma(\mathscr{A})$, as is the case - for example - if \mathscr{A} is the convex hull of $\left.\mathscr{A}^{\prime}\right)$.

Optimal norms

In order to deal with the upper Lyapunov exponent we make use of the following key instrument.
Definition 1 A norm $\|\cdot\|$ is called extremal for a set \mathscr{A} if for every trajectory of (1) we have $\|x(t)\| \leq$ $\mathrm{e}^{\sigma(\mathscr{A}) t}\|x(0)\|, t \geq 0$. An extremal norm is called invariant if for every $x_{0} \in \mathbf{R}^{d}$ there exists a trajectory $\bar{x}(t)$ with $\bar{x}(0)=x_{0}$ such that $\|x(t)\|=\mathrm{e}^{\sigma(\mathscr{A}) t}\left\|x_{0}\right\|, t \geq 0$.
Note that for an extremal norm the function $\mathrm{e}^{-\sigma(\mathscr{A}) t}\|x(t)\|$ is non-increasing in t on every trajectory. For an invariant norm this function is identically constant on some trajectory, and for every point $x_{0} \in \mathbf{R}^{d}$ there is such a trajectory starting in it. In particular, for $\sigma(\mathscr{A})=0$ we have the following result.

Corollary 1 If $\sigma(\mathscr{A})=0$ a norm is extremal for \mathscr{A} if and only if it is non-increasing in t on every trajectory of (1). An extremal norm is invariant if and only if for any $x_{0} \in \mathbf{R}^{d}$ there exists a trajectory $\bar{x}(t)$ with $\bar{x}(0)=x_{0}$, on which this norm is identically constant.
If we take a unit ball B of that norm, we see that a norm is extremal if and only if every trajectory starting on the unit sphere ∂B never leaves the ball B. This norm is invariant if for each point of the unit sphere there exists a trajectory starting at this point that remains on the sphere. A set of operators \mathscr{A} is called irreducible if these operators do not share a nontrivial common invariant subspace. N.Barabanov [1] proved that an irreducible set of operators possesses an invariant norm, which is a very deep and important result in terms of computability of $\sigma(\mathscr{A})$.

METHODOLOGY AND RESULTS

We take into consideration here a finite family $\mathscr{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ of matrices and think of the restriction of the function $A(t)$ to the space of piecewise constant functions on the discrete grid $\left\{t_{j}=j \Delta t\right\}_{j \geq 0}$. This transforms the problem of computing the upper Lyapunov exponent into that of computing the joint spectral radius (for an extended analysis see [10]) of the family of matrices $\mathscr{B}_{\Delta t}=\left\{B_{1}, \ldots, B_{m}\right\}:=\left\{\mathrm{e}^{A_{1} \Delta t}, \ldots, \mathrm{e}^{A_{m} \Delta t}\right\}$.

Joint spectral radius

Let $\mathscr{B}=\left\{B_{1}, \ldots, B_{m}\right\}$ and $\|\cdot\|$ a given norm on \mathbf{R}^{d} and also denote the corresponding induced $d \times d$-matrix norm defined by $\|B\|=\max _{\|x\|=1}\|B x\|$. Let $\mathscr{I}=\{1, \ldots, m\}$. Then, for $k=1,2, \ldots$, consider

$$
\Sigma_{k}(\mathscr{B})=\left\{B_{i_{k}} \cdots B_{i_{1}} \mid i_{1}, \ldots, i_{k} \in \mathscr{I}\right\}
$$

of all products of length k and the number

$$
\hat{\rho}_{k}(\mathscr{B})=\max _{P \in \Sigma_{k}(\mathscr{B})}\|P\|^{1 / k}
$$

Definition 2 (joint spectral radius [13]) The number

$$
\hat{\rho}(\mathscr{B})=\limsup _{k \rightarrow \infty} \hat{\rho}_{k}(\mathscr{B})
$$

is said the joint spectral radius (j.s.r.) of the family \mathscr{B}.
It represents the maximal rate of growth of a sequence of products $\left\{P_{k}\right\}_{k>0}$, with $P_{k} \in \Sigma_{k}(\mathscr{B})$ so that all sequences vanish asymptotically as $k \rightarrow \infty$ if and only if $\hat{\rho}(\mathscr{B})<1$. Analogously, let $\rho(\cdot)$ denote the spectral radius of a $d \times d$ matrix. For each positive integer k, consider the number

$$
\bar{\rho}_{k}(\mathscr{B})=\sup _{P \in \Sigma_{k}(\mathscr{B})} \rho(P)^{1 / k} .
$$

Definition 3 (generalized spectral radius (see [5])) The number

$$
\hat{\rho}(\mathscr{B})=\underset{k \rightarrow \infty}{\limsup } \bar{\rho}_{k}(\mathscr{B})
$$

is said to be the generalized spectral radius (g.s.r.) of the family \mathscr{B}.
In their paper [5], Daubechies and Lagarias also proved that

$$
\begin{equation*}
\bar{\rho}_{k}(\mathscr{B}) \leq \bar{\rho}(\mathscr{B}) \leq \hat{\rho}(\mathscr{B}) \leq \hat{\rho}_{k}(\mathscr{B}) \text { for all } k \geq 1 \tag{2}
\end{equation*}
$$

The fundamental equality $\hat{\rho}(\mathscr{B})=\bar{\rho}(\mathscr{B})$ has been proved later by Berger and Wang [4]. Consequently we can simply denote as $\rho(\mathscr{B})$ the spectral radius of \mathscr{B}. An important characterization of the spectral radius $\rho(\mathscr{B})$ of a matrix family is the generalization of Gelfand formula. In order to state this characterization, we define the norm of the family $\mathscr{B}=\left\{B_{i}\right\}_{i \in \mathscr{I}}$ as $\|\mathscr{B}\|=\hat{\rho}_{1}(\mathscr{B})=\max _{i \in \mathscr{I}}\left\|B_{i}\right\|$.
Proposition 1 (see [13, 6]) The spectral radius of a bounded family \mathscr{B} of $d \times d$-matrices is characterized by

$$
\rho(\mathscr{B})=\inf _{\|\cdot\| \in \mathrm{Op}}\|\mathscr{B}\| .
$$

where Op denotes the set of operator norms.
In order to establish whether the infimum in (3) is a minimum, we give the following definition.
Definition 4 (Extremal norm) We say that a norm $\|\cdot\|_{*}$ satisfying $\|\mathscr{B}\|_{*}=\rho(\mathscr{B})$ is extremal for the family \mathscr{B}.
The main idea of the method for the j.s.r. computation by a polytope norm is that of finding a spectrum maximizing product (s.m.p.), i.e., a product P of matrices from \mathscr{B} of length k for which the value $[\rho(P)]^{1 / k}$ is maximal among all products of matrices from \mathscr{B}. The algorithm in [7] (see also [9]) follows (for a real set of vectors X we denote by absco $(X)=\operatorname{co}(\{X,-X\})$). Algorithm 1 includes indeed stopping criteria to detect whether the given product P is actually not an s.m.p.; when the algorithm halts it means that the polytope \mathscr{P} is mapped by the family \mathscr{B} into itself. Here we assume for simplicity that the leading eigenvalue of the s.m.p. is real.

```
Data: \(\mathscr{B}=\left\{B_{1}, \ldots, B_{m}\right\}\)
begin
    Preprocessing: find a product \(P\) of length \(k \geq 1\) s.t. \(\rho(P)^{1 / k}\) is maximal among \(\bigcup_{\ell \leq \bar{k}} \Sigma_{\ell}(\mathscr{B})\) with \(\bar{k}\) fixed
    Set \(R:=\rho(P)^{1 / k}\) and \(\mathscr{B}:=R^{-1} \mathscr{B}\)
    Compute \(v_{0}\), real leading eigenvector of \(P\) (for an extension to complex eigenpairs see [7])
    Set \(V_{0}:=\left\{v_{0}\right\}\). Set \(i=0\)
    while \(\operatorname{span}\left(V_{i}\right) \neq \mathbf{R}^{d}\) do
        \(V_{i+1}:=V_{i} \cup \mathscr{B} V_{i}\)
        Set \(i=i+1\)
    end
    \(\mathscr{P}^{(i)}=\operatorname{absco}\left(V_{i}\right)\)
    while \(\mathscr{\mathscr { B }} V_{i} \notin \mathscr{P}^{(i)}\) do
        Set \(i=i+1\)
        Let \(V_{i}\) a system of vertices of \(\operatorname{absco}\left(V_{i-1} \cup \mathscr{\mathscr { B }} V_{i-1}\right)\). Set \(\mathscr{P}^{(i)}=\operatorname{absco}\left(V_{i}\right)\)
    end
    Return \(\mathscr{P}:=\mathscr{P}^{(i)}\) (extremal polytope)
end
```

Algorithm 1: Basic polytope algorithm

Bilateral bounds

The key idea relies on the simple equality (for real η) $\sigma(\mathscr{A}+\eta I)=\sigma(\mathscr{A})+\eta$.
We name $\mathscr{P}_{\Delta t}$ the polytope computed by Algorithm 1 and $V_{\Delta t}$ its vertices. An obvious lower bound for $\sigma(\mathscr{A})$ is

$$
\sigma_{\Delta t}=\log \left(\rho\left(\mathscr{B}_{\Delta t}\right)\right) / \Delta t
$$

that is the upper Lyapunov exponent restricted to functions which are piecewise constant on every mesh interval $[j \Delta t,(j+1) \Delta t)]$ (j nonnegative). In order to obtain an upper bound it is convenient to consider the shifted family

$$
\widehat{\mathscr{A}}_{\alpha, \Delta t}:=\left\{\widehat{A}_{i}\right\}_{i=1}^{m} \quad \text { with } \quad \widehat{A}_{i}=A_{i}-\left(\sigma_{\Delta t}+\alpha\right) I
$$

with $\alpha \geq 0$, whose upper Lyapunov exponent is just $\sigma(\mathscr{A})-\sigma_{\Delta t}-\alpha$. Obviously we can infer that $\sigma\left(\widehat{\mathscr{A}}_{0, \Delta t}\right) \geq 0$ but for sufficiently large α we have $\sigma\left(\widehat{\mathscr{A}}_{\alpha, \Delta t}\right) \leq 0$. Let $v \in \partial\left(\mathscr{P}_{\Delta t}\right)$; if the vectorfield $\widehat{A}_{i} v$ is oriented inside $\mathscr{P}_{\Delta t}$ for all v and i then $\mathscr{P}_{\Delta t}$ is positively invariant and every trajectory is bounded so that $\sigma\left(\widehat{\mathscr{A}_{\alpha, \Delta t}}\right) \leq 0$.

Exploiting this property, by minimizing w.r.t. α,

$$
\alpha_{\Delta t}^{*} \longrightarrow \min _{\alpha \geq 0} \mathscr{P}_{\Delta t} \text { is invariant for } \widehat{\mathscr{A}}_{\alpha, \Delta t}
$$

we obtain the upper bound $\sigma(\mathscr{A}) \leq \sigma_{\Delta t}+\alpha_{\Delta t}^{*}:=\gamma_{\Delta t}$. The following main result is proved in [8].
Theorem 1 For every compact irreducible family \mathscr{A} of matrices, there is a constant C such that

$$
\gamma_{\Delta t}-\sigma_{\Delta t} \leq C \Delta t, \quad \Delta t>0
$$

where $\gamma_{\Delta t}, \sigma_{\Delta t}$ are the bounds computed with the chosen dwell time Δt.
Thus the algorithm localizes the Lyapunov exponent $\sigma(\mathscr{A})$ on the segment $\left[\sigma_{\Delta t}, \gamma_{\Delta t}\right]$ of length at most $C \Delta t$.

Illustrative examples

Example 1. Let $\mathscr{A}=\left\{A_{1}, A_{2}\right\}$ with $A_{1}=\log \left(B_{1}\right)$ and $A_{2}=\log \left(B_{2}\right)$, where

$$
B_{1}=\left(\begin{array}{rr}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{1}{3}
\end{array}\right), \quad B_{2}=\left(\begin{array}{rr}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & 0
\end{array}\right) .
$$

Setting $\Delta t=1$ we apply Algorithm 1 . As a result we obtain $\sigma_{\Delta t}=-0.725149 \ldots$ and the polytope norm in Figure 1.

FIGURE 1. In red the vertices of the polytope computed by Algorithm 1 ; in green the vectors $\left(A_{1}-\left(\sigma_{\Delta t}+\alpha_{\Delta t}^{*}\right) I\right) v$ and in blue the vectors $\left(A_{2}-\left(\sigma_{\Delta t}+\alpha_{\Delta t}^{*}\right) I\right) v$, for all vertices v of $\mathscr{P}_{\Delta t}$ and $\alpha_{\Delta t}^{*}=0.433445 \ldots$. One of the vectorfields is aligned with one of the sides of the polytope which means that if $\alpha<\alpha_{\Delta t}^{*}$ then the polytope is not anymore invariant for the shifted family $\widehat{\mathscr{A}}_{\alpha, 1}$.

Applying the shifting technique explained in the previous section we obtain the bilateral estimate

$$
-0.725149 \ldots \leq \sigma(\mathscr{A}) \leq-0.291704 \ldots
$$

This estimate allows to state that the system is uniformly stable, that is, for any control law the solution of (1) vanishes.
Example 2. Let $\mathscr{A}=\left\{A_{1}, A_{2}\right\}$ with

$$
A_{1}=\left(\begin{array}{rrr}
-0.0822 & 0.0349 & -0.1182 \\
0.0953 & -0.0897 & -0.1719 \\
0.0787 & 0.0223 & -0.2781
\end{array}\right), \quad A_{2}=\left(\begin{array}{rrr}
0.1391 & 0.1397 & -0.0916 \\
0.0338 & -0.1769 & -0.0707 \\
0.7417 & 0.3028 & -0.4621
\end{array}\right) .
$$

In Table 1 we report the obtained results. Using a dwell time $\Delta t=1 / 8$ we get an accuracy smaller than 10^{-2}.
TABLE 1. Approximation $\sigma(\mathscr{A})$ of Example 2.

Δt	$\sigma_{\Delta t}$	$\gamma_{\Delta t}$	$\alpha_{\Delta t}^{*}$	s.m.p.
$1 / 2$	-0.0470	-0.0148	0.0322	$B_{1}^{27} B_{2}^{29}$
$1 / 4$	-0.0470	-0.0243	0.0227	$B_{1}^{55} B_{2}^{58}$
$1 / 8$	-0.0470	-0.0374	0.0096	$B_{1}^{109} B_{2}^{117}$

ACKNOWLEDGMENTS

The first author thanks Italian I.N.d.A.M. G.N.C.S. for financial support and the center of excellence DEWS (L'Aquila). The second author has been supported by RFBR grants nos 13-01-00642 and 14-01-00332, and by the grant of Dynasty foundation.

REFERENCES

1. N.E. Barabanov, Siberian Math. J. 29, 521-530 (1988).
2. F. Blanchini, Automatica J. IFAC 31, 451-461 (1995).
3. F. Blanchini, S. Miani, Set-theoretic methods in control. Systems \& Control: Foundations \& Applications. Birkhäuser, 2008.
4. M. A. Berger, and Y. Wang, Linear Algebra Appl.
5. I. Daubechies, and J.C. Lagarias, Linear Algebra Appl. 166, 21-27 (1992).
6. L. Elsner, Linear Algebra Appl. 220, 151-159 (1995).
7. N. Guglielmi, and V.Yu. Protasov, Found. Comput. Math. 13, 37-97 (2013).
8. N. Guglielmi, L. Laglia and V.Yu. Protasov, Found. Comput. Math. in press (2015).
9. N. Guglielmi, F. Wirth, and M. Zennaro, SIAM J. Matrix Anal. Appl. 27, 721-743 (2005).
10. R. M. Jungers, The joint spectral radius: theory and applications, Lecture Notes in Control and Information Sciences 385, Springer-Verlag, 2009.
11. V.I. Opoitsev, Nauka, Moscow (1977).
12. V.Yu. Protasov, Functional Anal. Appl. 44, 230-233 (2010).
13. G.C. Rota, and G. Strang, Kon. Nederl. Acad. Wet. Proc. 63, 379-381 (1960).
