Computing Lyapunov exponents of switching systems
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Abstract. We discuss a new approach for constructing polytope Lyapunov funscfar continuous-time linear switching
systems. The method we propose allows to decide the uniform stability atehswg system and to compute the Lyapunov
exponent with an arbitrary precision. The method relies on the discretizafithe system and provides - for any given
discretization stepsize - a lower and an upper bound for the Lyapumpmnenrt. The efficiency of the new method is illustrated
by numerical examples. For a more extensive discussion we remaneatier to [8].
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PROBLEM AND BACKGROUND

We consider the following class of linear switching syst&i8%):

{ X(t) = At)x(t); At)e o/, t>0

x(0) = o € RY. @)

HereA(t) € R%Y is assumed to be a summable function that takes values o gimpact set of matriceg. The
upper Lyapunov exponeat.«?) is the infimum of numbera such that|x(t)|| < Ce? for every trajectory of (1). The
system is said uniformly stable fii(t)|| — O ast — 4o for every trajectory of (1). lio (%) < 0, then the system is
stable, and, conversely, the stability implies thét7) < 0. There is a wide bibliography concerning the computation
of o(«7) and several approaches based on the construction of Lyagunctions (see e.g. [11, 2, 3]) have been
proposed in the literature. Here we make use of a polytopedbapproach which provides an arbitrarily accurate
approximation ofo (<) when is either finite or essentially finite (i.e. there exists atéiriubset?’ of < such that
o(«') = o(«), as is the case - for example -df is the convex hull of”).

Optimal norms

In order to deal with the upper Lyapunov exponent we make tigeedollowing key instrument.

Definiton 1 A norm || - || is called extremal for a seks if for every trajectory of (1) we havéx(t)| <
e? @Y x(0)||, t > 0. An extremal norm is called invariant if for every x RY there exists a trajectory(t)
with X(0) = xo such that|x(t)|| = e“)t||xo||, t > 0.

Note that for an extremal norm the function®)||x(t)|| is non-increasing i on every trajectory. For an invariant
norm this function is identically constant on some trajegtand for every poinkg € RY there is such a trajectory
starting in it. In particular, foo(2#) = 0 we have the following result.

Corollary 1 If o(«/) = 0 a norm is extremal for7 if and only if it is non-increasing in t on every trajectory @).
An extremal norm is invariant if and only if for any x RY there exists a trajectorg(t) with X(0) = xo, on which this
norm is identically constant.

If we take a unit balB of that norm, we see that a norm is extremal if and only if exeajectory starting on the unit
spheredB never leaves the baB. This norm is invariant if for each point of the unit sphererthexists a trajectory
starting at this point that remains on the sphere. A set ofatpes.</ is calledirreducible if these operators do not
share a nontrivial common invariant subspace. N.Barabft]gwoved that an irreducible set of operators possesses
an invariant norm, which is a very deep and important resuieims of computability ob(<7).



METHODOLOGY AND RESULTS

We take into consideration here a finite famity = {A1,Ay,...,An} of matrices and think of the restriction of the
function A(t) to the space of piecewise constant functions on the disgrde{t; = jAt};>o. This transforms the
problem of computing the upper Lyapunov exponent into tfi@bmputing the joint spectral radius (for an extended
analysis see [10]) of the family of matricégy, = {B,...,Bm} = {€M8 ... emitl

Joint spectral radius

Let # = {B1,...,Bn} and|| - || a given norm orRY and also denote the corresponding indudedd-matrix norm
defined by||B|| = \m\a)illBXH' Let.# ={1,...,m}. Then, fork=1,2,..., consider
X||=
2 (AB) :{Bik"'Bil | i1,...,ik€F}
of all products ofength kand the number

Px(%)

Definition 2 (joint spectral radius [13]) The number
p(#) = limsuppy(#)

k—00

is said the joint spectral radius (j.s.r.) of the famiy.

max_||P||Y/¥.
PeZ (%)

It represents the maximal rate of growth of a sequence ofumtsd P }k~o, With R € Zx(#) so that all sequences
vanish asymptotically as — o if and only if (%) < 1. Analogously, lep(-) denote the spectral radius oflax d-
matrix. For each positive integ&r consider the number

p(#) = sup p(P)YK.
PEZK(,%)

Definition 3 (generalized spectral radius (see [5]))The number
p(2£) = limsuppy(2)
k—s00
is said to be the generalized spectral radius (g.s.r.) offémaily 2.
In their paper [5], Daubechies and Lagarias also proved that
ox(B) < p(B) < p(B) < pu(#) forallk> 1. 2

The fundamental equality(%) = p(#) has been proved later by Berger and Wang [4]. Consequentbawsimply
denote agp(A) the spectral radiusof #. An important characterization of the spectral radafs#) of a matrix
family is the generalization of Gelfand formula. In ordestate this characterization, we define ttoem of the family
% = {Bilic.r as|| B = p1(#) = maxes [|Bi|.

Proposition 1 (see [13, 6])The spectral radius of a bounded famil§ of d x d-matrices is characterized by

B)= inf ||4|.
p(#) = int 7|

whereOp denotes the set of operator norms.
In order to establish whether the infimum in (3) is a minimure, give the following definition.
Definition 4 (Extremal norm) We say that a norri- || satisfying||-%||. = p(#) is extremal for the family3.

The main idea of the method for the j.s.r. computation by gtppk norm is that of finding apectrum maximizing
product(s.m.p.), i.e., a produd® of matrices from# of lengthk for which the value[p(P)]l/k is maximal among
all products of matrices fron#8. The algorithm in [7] (see also [9]) follows (for a real setwafctorsX we denote
by abscdX) = co({X,—X})). Algorithm 1 includes indeed stopping criteria to detebiether the giverg produét is
actually not an s.m.p.; when the algorithm halts it meanstti@polytopes is mapped by the familyz into itself.
Here we assume for simplicity that the leading eigenvalubd®f.m.p. is real.



Data: # = {Bq,...,Bm}
begin

1 Preprocessing find a producP of lengthk > 1 s.t.p(P)*/¥ is maximal amongJ, % (%) with k fixed
2 | SetR:=p(P)Vkand# =R 1%
3 Computevy, real leading eigenvector & (for an extension to complex eigenpairs see [7])
4 SetVp := {wo}. Seti =0
5 | while sparfV;) # R do
6 Vi1 i=ViUBV,
7 Seti=i+1
end
8 | 20 =abscgV,)
9 | while 2V, ¢ 20) do
10 Seti=i+1
11 LetV; a system of vertices of abs_1 UBV;_1). Set2() = abscVi)
end
12 | ReturnZ := 2() (extremal polytope)
end

Algorithm 1: Basic polytope algorithm

Bilateral bounds
The key idea relies on the simple equality (for rgdlo (7 + nl) = o (<) + n.
We nameZy; the polytope computed by Algorithm 1 akf; its vertices. An obvious lower bound for(.«7) is

ont = log(p (%)) /At

that is the upper Lyapunov exponent restricted to functiwhich are piecewise constant on every mesh interval
[iAt, (j+1)At)] (j nonnegative). In order to obtain an upper bound it is coramrto consider the shifted family

Fam = (ANl with A=A (oy+a)l

with a > 0, whose upper Lyapunov exponent is jagte? ) — gx — a. Obviously we can infer tharlr(;a/f&m) > 0 but
for sufficiently largea we haveo (o7 at) < 0. Letv € (P ); if the vectorfieldﬂ,—v is oriented insideZy; for all v

andi then Zy; is positively invariant and every trajectory is boundedmnf(;a/f;m) <0.
Exploiting this property, by minimizing w.r.tz,

ax — m>ir3 Py is invariant for.
az
we obtain the upper boural(.«7) < oa + ay; = Y. The following main result is proved in [8].
Theorem 1 For every compact irreducible family” of matrices, there is a constant C such that
Yar — Ont < CAt7 At > 07

whereyp:, oa: are the bounds computed with the chosen dwell thine
Thus the algorithm localizes the Lyapunov expongf¢”) on the segmeritox , ya: | of length at mos€At.

lllustrative examples

Example 1 Let.o = {A1,Az} with A; = log(B;1) andA; = log(B3), where

(41 ~(41)
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SettingAt = 1 we apply Algorithm 1. As a result we obtain; = —0.725149 .. and the polytope norm in Figure 1.

FIGURE 1. In red the vertices of the polytope computed by Algorithm 1; in green thtoke@; — (oat + a,)l)v and in blue
the vectorgAy — (aa + ax, )1 )v, for all verticesv of 2y andajy, = 0.433445. .. One of the vectorfields is aligned with one of the

sides of the polytope which means thatrik: ay, then the polytope is not anymore invariant for the shifted fani\g{l.
Applying the shifting technique explained in the previoastfon we obtain the bilateral estimate
—0.725149.. < g(«/) < —0.291704 ..

This estimate allows to state that the system is unifornaplst that is, for any control law the solution of (1) vanishe
Example 2 Let o7 = {A1,A2} with

—0.0822 00349 -0.1182 01391 01397 -0.0916
A= 0.0953 —-0.0897 —-0.1719 |, A;=| 00338 —-0.1769 -0.0707
0.0787 00223 -0.2781 0.7417 Q3028 —-0.4621

In Table 1 we report the obtained results. Using a dwell tihe- 1/8 we get an accuracy smaller tharr 0
TABLE 1. Approximationo (<) of Example 2

At Opt Yat ax s.m.p.
1/2 -0.0470 -0.0148 00322 B?'BZ°
1/4 —0.0470 -0.0243 00227 B3°B3®
1/8 -0.0470 -0.0374 00096 BI09BIY
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