Computing Lyapunov exponents of switching systems

Nicola Guglielmi* and Vladimir Protasov[†]

*DISIM, Università dell'Aquila and Gran Sasso Science Institute I-67100 L'Aquila, Italy †Department of Mechanics and Mathematics, Moscow State University, Vorobyovy Gory, Moscow, Russia

Abstract. We discuss a new approach for constructing polytope Lyapunov functions for continuous-time linear switching systems. The method we propose allows to decide the uniform stability of a switching system and to compute the Lyapunov exponent with an arbitrary precision. The method relies on the discretization of the system and provides - for any given discretization stepsize - a lower and an upper bound for the Lyapunov exponent. The efficiency of the new method is illustrated by numerical examples. For a more extensive discussion we remand the reader to [8].

Keywords: Linear switching systems, Lyapunov exponent, polytope Lyapunov funcions, joint spectral radius, iterative method. **PACS:** 02.10.Yn,02.60.Pn,02.30.Yy

PROBLEM AND BACKGROUND

We consider the following class of linear switching system (LSS):

$$\begin{cases} \dot{x}(t) = A(t)x(t); & A(t) \in \mathscr{A}, t \ge 0\\ x(0) = x_0 \in \mathbf{R}^d. \end{cases}$$
(1)

Here $A(t) \in \mathbf{R}^{d,d}$ is assumed to be a summable function that takes values on a given compact set of matrices \mathscr{A} . The *upper Lyapunov exponent* $\sigma(\mathscr{A})$ is the infimum of numbers α such that $||x(t)|| \leq Ce^{\alpha t}$ for every trajectory of (1). The system is said uniformly stable if $||x(t)|| \to 0$ as $t \to +\infty$ for every trajectory of (1). If $\sigma(\mathscr{A}) < 0$, then the system is stable, and, conversely, the stability implies that $\sigma(\mathscr{A}) \leq 0$. There is a wide bibliography concerning the computation of $\sigma(\mathscr{A})$ and several approaches based on the construction of Lyapunov functions (see e.g. [11, 2, 3]) have been proposed in the literature. Here we make use of a polytope based approach which provides an arbitrarily accurate approximation of $\sigma(\mathscr{A})$ when \mathscr{A} is either finite or essentially finite (i.e. there exists a finite subset \mathscr{A}' of \mathscr{A} such that $\sigma(\mathscr{A}') = \sigma(\mathscr{A})$, as is the case - for example - if \mathscr{A} is the convex hull of \mathscr{A}').

Optimal norms

In order to deal with the upper Lyapunov exponent we make use of the following key instrument.

Definition 1 A norm $\|\cdot\|$ is called extremal for a set \mathscr{A} if for every trajectory of (1) we have $\|x(t)\| \leq e^{\sigma(\mathscr{A})t} \|x(0)\|$, $t \geq 0$. An extremal norm is called invariant if for every $x_0 \in \mathbf{R}^d$ there exists a trajectory $\overline{x}(t)$ with $\overline{x}(0) = x_0$ such that $\|x(t)\| = e^{\sigma(\mathscr{A})t} \|x_0\|$, $t \geq 0$.

Note that for an extremal norm the function $e^{-\sigma(\mathscr{A})t} ||x(t)||$ is non-increasing in *t* on every trajectory. For an invariant norm this function is identically constant on some trajectory, and for every point $x_0 \in \mathbf{R}^d$ there is such a trajectory starting in it. In particular, for $\sigma(\mathscr{A}) = 0$ we have the following result.

Corollary 1 If $\sigma(\mathscr{A}) = 0$ a norm is extremal for \mathscr{A} if and only if it is non-increasing in t on every trajectory of (1). An extremal norm is invariant if and only if for any $x_0 \in \mathbf{R}^d$ there exists a trajectory $\overline{x}(t)$ with $\overline{x}(0) = x_0$, on which this norm is identically constant.

If we take a unit ball *B* of that norm, we see that a norm is extremal if and only if every trajectory starting on the unit sphere ∂B never leaves the ball *B*. This norm is invariant if for each point of the unit sphere there exists a trajectory starting at this point that remains on the sphere. A set of operators \mathscr{A} is called *irreducible* if these operators do not share a nontrivial common invariant subspace. N.Barabanov [1] proved that an irreducible set of operators possesses an invariant norm, which is a very deep and important result in terms of computability of $\sigma(\mathscr{A})$.

METHODOLOGY AND RESULTS

We take into consideration here a finite family $\mathscr{A} = \{A_1, A_2, \dots, A_m\}$ of matrices and think of the restriction of the function A(t) to the space of piecewise constant functions on the discrete grid $\{t_j = j\Delta t\}_{j\geq 0}$. This transforms the problem of computing the upper Lyapunov exponent into that of computing the joint spectral radius (for an extended analysis see [10]) of the family of matrices $\mathscr{B}_{\Delta t} = \{B_1, \dots, B_m\} := \{e^{A_1\Delta t}, \dots, e^{A_m\Delta t}\}$.

Joint spectral radius

Let $\mathscr{B} = \{B_1, \ldots, B_m\}$ and $\|\cdot\|$ a given norm on \mathbb{R}^d and also denote the corresponding induced $d \times d$ -matrix norm defined by $\|B\| = \max_{\|x\|=1} \|Bx\|$. Let $\mathscr{I} = \{1, \ldots, m\}$. Then, for $k = 1, 2, \ldots$, consider

$$\Sigma_k(\mathscr{B}) = \{B_{i_k} \cdots B_{i_1} \mid i_1, \dots, i_k \in \mathscr{I}\}$$

of all products of *length k* and the number

$$\hat{\rho}_k(\mathscr{B}) = \max_{P \in \Sigma_k(\mathscr{B})} ||P||^{1/k}.$$

Definition 2 (joint spectral radius [13]) The number

$$\hat{\rho}(\mathscr{B}) = \limsup_{k \to \infty} \hat{\rho}_k(\mathscr{B})$$

is said the joint spectral radius (j.s.r.) of the family \mathcal{B} .

It represents the maximal rate of growth of a sequence of products $\{P_k\}_{k>0}$, with $P_k \in \Sigma_k(\mathscr{B})$ so that all sequences vanish asymptotically as $k \to \infty$ if and only if $\hat{\rho}(\mathscr{B}) < 1$. Analogously, let $\rho(\cdot)$ denote the spectral radius of a $d \times d$ -matrix. For each positive integer k, consider the number

$$\bar{\rho}_k(\mathscr{B}) = \sup_{P \in \Sigma_k(\mathscr{B})} \rho(P)^{1/k}$$

Definition 3 (generalized spectral radius (see [5])) The number

$$\hat{\rho}(\mathscr{B}) = \limsup_{k \to \infty} \bar{\rho}_k(\mathscr{B})$$

is said to be the generalized spectral radius (g.s.r.) of the family \mathcal{B} .

In their paper [5], Daubechies and Lagarias also proved that

$$\bar{\rho}_k(\mathscr{B}) \le \bar{\rho}(\mathscr{B}) \le \hat{\rho}(\mathscr{B}) \le \hat{\rho}_k(\mathscr{B}) \quad \text{for all } k \ge 1.$$
(2)

The fundamental equality $\hat{\rho}(\mathscr{B}) = \bar{\rho}(\mathscr{B})$ has been proved later by Berger and Wang [4]. Consequently we can simply denote as $\rho(\mathscr{B})$ the *spectral radius* of \mathscr{B} . An important characterization of the spectral radius $\rho(\mathscr{B})$ of a matrix family is the generalization of Gelfand formula. In order to state this characterization, we define the *norm of the family* $\mathscr{B} = \{B_i\}_{i \in \mathscr{I}}$ as $\|\mathscr{B}\| = \hat{\rho}_1(\mathscr{B}) = \max_{i \in \mathscr{I}} \|B_i\|$.

Proposition 1 (see [13, 6]) The spectral radius of a bounded family \mathcal{B} of $d \times d$ -matrices is characterized by

$$\rho(\mathscr{B}) = \inf_{\|\cdot\| \in \mathrm{Op}} \|\mathscr{B}\|.$$

where Op denotes the set of operator norms.

In order to establish whether the infimum in (3) is a minimum, we give the following definition.

Definition 4 (Extremal norm) We say that a norm $\|\cdot\|_*$ satisfying $\|\mathscr{B}\|_* = \rho(\mathscr{B})$ is extremal for the family \mathscr{B} .

The main idea of the method for the j.s.r. computation by a polytope norm is that of finding a *spectrum maximizing product* (s.m.p.), i.e., a product *P* of matrices from \mathscr{B} of length *k* for which the value $[\rho(P)]^{1/k}$ is maximal among all products of matrices from \mathscr{B} . The algorithm in [7] (see also [9]) follows (for a real set of vectors *X* we denote by $absco(X) = co(\{X, -X\})$). Algorithm 1 includes indeed stopping criteria to detect whether the given product *P* is actually not an s.m.p.; when the algorithm halts it means that the polytope \mathscr{P} is mapped by the family $\mathring{\mathscr{B}}$ into itself. Here we assume for simplicity that the leading eigenvalue of the s.m.p. is real.

Data: $\mathscr{B} = \{B_1, \ldots, B_m\}$ begin

1 **Preprocessing:** find a product *P* of length $k \ge 1$ s.t. $\rho(P)^{1/k}$ is maximal among $\bigcup_{\ell \le \bar{k}} \Sigma_{\ell}(\mathscr{B})$ with \bar{k} fixed 2 Set $R := \rho(P)^{1/k}$ and $\mathring{\mathscr{B}} := R^{-1}\mathscr{B}$ 3 Compute v_0 , real leading eigenvector of *P* (for an extension to complex eigenpairs see [7])

4 Set $V_0 := \{v_0\}$. Set i = 0

5 while $\operatorname{span}(V_i) \neq \mathbf{R}^d$ do

- $\mathbf{6} \qquad V_{i+1} := V_i \cup \mathscr{B} V_i$
- 7 | Set i = i + 1

```
end
```

- 8 $\mathscr{P}^{(i)} = \operatorname{absco}(V_i)$
- 9 while $\mathring{\mathscr{B}}V_i \notin \mathscr{P}^{(i)}$ do
- 10 Set i = i + 1

11 Let V_i a system of vertices of $absco(V_{i-1} \cup \mathring{\mathscr{B}} V_{i-1})$. Set $\mathscr{P}^{(i)} = absco(V_i)$ end

12 Return $\mathscr{P} := \mathscr{P}^{(i)}$ (extremal polytope)

end

Algorithm 1: Basic polytope algorithm

Bilateral bounds

The key idea relies on the simple equality (for real η) $\sigma(\mathscr{A} + \eta I) = \sigma(\mathscr{A}) + \eta$. We name $\mathscr{P}_{\Delta t}$ the polytope computed by Algorithm 1 and $V_{\Delta t}$ its vertices. An obvious lower bound for $\sigma(\mathscr{A})$ is

$$\sigma_{\Delta t} = \log\left(\rho(\mathscr{B}_{\Delta t})\right)/\Delta t$$

that is the upper Lyapunov exponent restricted to functions which are piecewise constant on every mesh interval $[j\Delta t, (j+1)\Delta t)]$ (*j* nonnegative). In order to obtain an upper bound it is convenient to consider the shifted family

$$\widehat{\mathscr{A}}_{\alpha,\Delta t}$$
 := $\{\widehat{A}_i\}_{i=1}^m$ with $\widehat{A}_i = A_i - (\sigma_{\Delta t} + \alpha)I$

with $\alpha \geq 0$, whose upper Lyapunov exponent is just $\sigma(\mathscr{A}) - \sigma_{\Delta t} - \alpha$. Obviously we can infer that $\sigma(\widehat{\mathscr{A}}_{0,\Delta t}) \geq 0$ but for sufficiently large α we have $\sigma(\widehat{\mathscr{A}}_{\alpha,\Delta t}) \leq 0$. Let $v \in \partial(\mathscr{P}_{\Delta t})$; if the vectorfield $\widehat{A}_i v$ is oriented inside $\mathscr{P}_{\Delta t}$ for all vand *i* then $\mathscr{P}_{\Delta t}$ is positively invariant and every trajectory is bounded so that $\sigma(\widehat{\mathscr{A}}_{\alpha,\Delta t}) \leq 0$.

Exploiting this property, by minimizing w.r.t. α ,

$$\alpha^*_{\Delta t} \longrightarrow \min_{\alpha > 0} \mathscr{P}_{\Delta t}$$
 is invariant for $\widehat{\mathscr{A}}_{\alpha, \Delta t}$

we obtain the upper bound $\sigma(\mathscr{A}) \leq \sigma_{\Delta t} + \alpha^*_{\Lambda t} := \gamma_{\Delta t}$. The following main result is proved in [8].

Theorem 1 For every compact irreducible family \mathcal{A} of matrices, there is a constant C such that

 $\gamma_{\Delta t} - \sigma_{\Delta t} \leq C \Delta t, \qquad \Delta t > 0,$

where $\gamma_{\Delta t}, \sigma_{\Delta t}$ are the bounds computed with the chosen dwell time Δt .

Thus the algorithm localizes the Lyapunov exponent $\sigma(\mathscr{A})$ on the segment $[\sigma_{\Delta t}, \gamma_{\Delta t}]$ of length at most $C\Delta t$.

Illustrative examples

Example 1. Let $\mathscr{A} = \{A_1, A_2\}$ with $A_1 = \log(B_1)$ and $A_2 = \log(B_2)$, where

$$B_1 = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix}, \quad B_2 = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & 0 \end{pmatrix}.$$

Setting $\Delta t = 1$ we apply Algorithm 1. As a result we obtain $\sigma_{\Delta t} = -0.725149...$ and the polytope norm in Figure 1.

FIGURE 1. In red the vertices of the polytope computed by Algorithm 1; in green the vectors $(A_1 - (\sigma_{\Delta t} + \alpha_{\Delta t}^*)I)v$ and in blue the vectors $(A_2 - (\sigma_{\Delta t} + \alpha_{\Delta t}^*)I)v$, for all vertices v of $\mathscr{P}_{\Delta t}$ and $\alpha_{\Delta t}^* = 0.433445...$ One of the vectorfields is aligned with one of the sides of the polytope which means that if $\alpha < \alpha_{\Delta t}^*$ then the polytope is not anymore invariant for the shifted family $\widehat{\mathscr{Q}}_{\alpha,1}$.

Applying the shifting technique explained in the previous section we obtain the bilateral estimate

$$-0.725149... \leq \sigma(\mathscr{A}) \leq -0.291704...$$

This estimate allows to state that the system is uniformly stable, that is, for any control law the solution of (1) vanishes. *Example 2.* Let $\mathscr{A} = \{A_1, A_2\}$ with

	(-0.0822)	0.0349	-0.1182	\		0.1391	0.1397	-0.0916	
$A_1 =$	0.0953	-0.0897	-0.1719],	$A_2 =$	0.0338	-0.1769	-0.0707).
	0.0787	0.0223	-0.2781)		0.7417	0.3028	-0.4621)

In Table 1 we report the obtained results. Using a dwell time $\Delta t = 1/8$ we get an accuracy smaller than 10^{-2} .

TABLE 1. Approximation $\sigma(\mathscr{A})$ of *Example 2*.

Δt	$\sigma_{\Delta t}$	$\gamma_{\Delta t}$	$lpha^*_{\Delta t}$	s.m.p.
1/2	-0.0470	-0.0148	0.0322	$B_1^{27}B_2^{29}$
1/4	-0.0470	-0.0243	0.0227	$B_1^{55}B_2^{58}$
1/8	-0.0470	-0.0374	0.0096	$B_1^{109}B_2^{117}$

ACKNOWLEDGMENTS

The first author thanks Italian I.N.d.A.M. G.N.C.S. for financial support and the center of excellence DEWS (L'Aquila). The second author has been supported by RFBR grants nos 13-01-00642 and 14-01-00332, and by the grant of Dynasty foundation.

REFERENCES

- 1. N.E. Barabanov, Siberian Math. J. 29, 521-530 (1988).
- 2. F. Blanchini, Automatica J. IFAC 31, 451-461 (1995).
- 3. F. Blanchini, S. Miani, Set-theoretic methods in control. Systems & Control: Foundations & Applications. Birkhäuser, 2008.
- 4. M. A. Berger, and Y. Wang, Linear Algebra Appl.
- 5. I. Daubechies, and J.C. Lagarias, Linear Algebra Appl. 166, 21–27 (1992).
- 6. L. Elsner, Linear Algebra Appl. 220, 151-159 (1995).
- 7. N. Guglielmi, and V.Yu. Protasov, Found. Comput. Math. 13, 37-97 (2013).
- 8. N. Guglielmi, L. Laglia and V.Yu. Protasov, Found. Comput. Math. in press (2015).
- 9. N. Guglielmi, F. Wirth, and M. Zennaro, SIAM J. Matrix Anal. Appl. 27, 721-743 (2005).
- 10. R. M. Jungers, *The joint spectral radius: theory and applications, Lecture Notes in Control and Information Sciences* **385**, Springer-Verlag, 2009.
- 11. V.I. Opoitsev, Nauka, Moscow (1977).
- 12. V.Yu. Protasov, Functional Anal. Appl. 44, 230-233 (2010).
- 13. G.C. Rota, and G. Strang, Kon. Nederl. Acad. Wet. Proc. 63, 379-381 (1960).