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A variational version of a Henstock type integral with respect to an
abstract derivation basis in a topological measure space is defined for the
case of Banach space-valued integrands. It is shown that this integral
recovers a primitive from its derivative which is defined with respect to
the same basis.

As an example of an application of this theory in harmonic analy-
sis, a derivation bases and the respective Henstock type integrals on a

zero-dimensional group are considered. It is shown that the vari-
ational integral on such a group solves the problem of recovering, by
generalized Fourier formulas, the Banach space-valued coefficients of a
series with respect to characters of this group.
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1. Introduction

A Riemann type integral, which solves the problem of recovering a primitive

from its derivative and covers the Lebesgue integral, was introduced by

Jaroslav Kurzweil in the late 1950s and independently by Ralph Henstock

in the early 60s. For a good introduction to the theory of this integral and

the history of its creation, including the reason why this integral is usually

referred to as Henstock integral, see.3

One of the way to generalize the construction of this integral and to

∗Author.
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apply it in various fields of analysis, is to consider Riemann sums in the

definition of the integral with respect to derivation bases more general than

a basis constituted by all intervals on the real line. In Subsection 2.1 of this

chapter we define an abstract derivation basis B in a topological measure

space, generalizing some partial cases known in the theory of Henstock in-

tegral (see,6 and13 –16). We consider a Henstock type integral with respect

to this bases, HB-integral, which integrates Banach space-valued functions.
In this Banach space-valued case HB-integral being defined with respect to
the usual interval basis, is a generalization of Bochner integral.

An important role in this theory is played by a notion of variational

equivalence. Using this notion, we can obtain another, so called variational

version of Henstock type integral with respect to the basis B. Subsection
2.2 is devoted to this issue. For the full interval basis on the real line in the

Banach space-valued case, such an integral was defined in.12 While those

two definitions are equivalent in the real-valued case, variational integral is

strictly included into HB-integral for the Banach space-valued functions.
The advantage of the variational version of an integral with respect

to any basis is that it reveals a direct connection of the concept of an

integral with a derivative with respect to the same basis. In Subsection 2.3

a theorem on recovering a function from its derivative by the variational

integral is proved. As for the problem of differentiability almost everywhere

of the indefinite integral, in classical real-valued case it is solved in fact for

the variational version of the integral. In the Banach space-valued case

theorem on differentiability almost everywhere of the indefinite variational

integral holds true for a wide class of bases, including a basis considered in

Section 3.

As an example of application of this theory in harmonic analysis we

consider in Section 3 a derivation bases and the respective integrals defined

on a zero-dimensional group. Typical examples of such a group are Cantor

Dyadic group and the group of p-adic integers.

We show that a problem of recovering, by generalized Fourier formulas,

the coefficients of a series with respect to characters of such a group can

be reduced to the one of recovering the primitive from its derivative with

respect to a special basis defined on the group, which in turn can be solved

by the variational integral with respect to the same basis (see Subsection

3.2).

As we consider Banach space-valued coefficients of a series, we need to

mention cases of strong and weak convergence. In the last case a Pettis

type variation integral is used to solve the coefficient problem.



October 13, 2024 19:53 ws-rv9x6 Book Title ws-rv9x6 page 45

Variational Version of Henstock type Integral and Application in Harmonic Analysis45

2. Henstock type integrals with respect to a basis

2.1. Derivational basis and Henstock integral with respect to

the basis

A derivation basis (or simply a basis) B in a measure space (X,M, μ) is

a non-empty family of non-empty subsets β of the product space I × X,

where I is a family of measurable subsets of X of positive measure μ called

generalized intervals or B-intervals and having property
(a) For every β1, β2 ∈ B there exists β ∈ B such that β ⊂ β1 ∩ β2.

So each basis is a directed set with the order given by “reversed” in-

clusion. We shall refer to the elements β ∈ B as basis sets. In this paper

we shall suppose that all the pairs (I, x) constituting each β are such that

x ∈ I, although it is not the case in the general theory (see,126).

For a set E ⊂ X and β ∈ B we write

β(E) := {(I, x) ∈ β : I ⊂ E} and β[E] := {(I, x) ∈ β : x ∈ E}.
We suppose that the basis B ignores no point, i.e., β[{x}] �= ∅ for any
point x ∈ X and for any β ∈ B. We assume also that the basis B has a

local character by which we mean that for any family of basis sets {βτ},
βτ ∈ B and for any pairwise disjoint sets Eτ there exists β ∈ B such that

β[
⋃

τ Eτ ] ⊂
⋃

τ βτ [Eτ ].

Assuming that X is a topological space we shall suppose that B is a

Vitali basis by which we mean that for any x and for any neighborhood

U(x) of x there exists βx ∈ B such that I ⊂ U(x) for each pair (I, x) ∈ βx.

A β-partition is a finite collection π of elements of β, where the dis-

tinct elements (I ′, x′) and (I ′′, x′′) in π have I ′ and I ′′ nonoverlapping, i.e.,
μ(I ′ ∩ I ′′) = 0. Let L ∈ I. If π ⊂ β(L) then π is called β-partition in L, if⋃
(I,x)∈π I = L then π is called β-partition of L and is denoted by π(L).

We say that a basis B has the partitioning property if the following

conditions hold: (i) for each finite collection I0, I1, ..., In of B-intervals with
I1, ...In ⊂ I0 the difference I0 \

⋃n
i=1 Ii can be expressed as a finite union of

pairwise non-overlapping B-intervals; (ii) for each B-interval I and for any
β ∈ B there exists a β-partition of I.

Let Pβ(L) denote a set of β-partitions of a fixed B-interval L. Using

the partitioning property and property (a) of basis B, it is not difficult to
see that family {Pβ(L)}β∈B is a filter base. Then for functions defined on

β-partitions π ∈ Pβ(L) with values in some metric space we can consider a

limit with respect to this filter base, and denote it limB F (π). In this term

Henstock integral with respect to basis B of a function Φ : I × X → Y ,
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where Y is a Banach space, is defined as follows:

Definition 1. A function Φ : I ×X → Y , is said to be Kurzweil-Henstock

integrable with respect to basis B (or HB-integrable) on L ∈ I, with HB-
integral value A ∈ Y , if there exists limit

lim
B

∑
(I,x)∈π(L)

Φ(I, x) = A.

We denote the integral value A by (HB)
∫
L
Φ.

It is easy to check that the set of all HB-tntegrable functions on a fixed
B-interval constitutes a linear space.

We note that if Φ is HB-integrable on L then it is HB-integrable also on
any B-interval I ⊂ L. It can be easily proved that the B-interval function
F : I �→ (HB)

∫
I
Φ is additive on I and we call it the indefinite HB-integral

of Φ.

In particular case Φ(I, x) = f(x)μ(I), where f : L → Y , we obtain

HB-integral of a function f on L with respect to measure μ. In this case

HB-integral is a generalization of Bochner integral. This can be checked in
the same way as it is done in the classical case of the basis constituted by

usual intervals on the real line (see8).

We consider also a Pettis type version of HB-integral. It is natural to
denote it by HPB-integral.

Definition 2. A function f : L → Y is Henstock-Pettis integrable with

respect to basis B (or HPB-integrable) on L ∈ I if y∗(f) is HB-integrable
on each B-interval I ⊂ L, for each functional y∗ ∈ Y ∗, and there exists

AI ∈ X such that

y∗(AI) = (HB)
∫
I

y∗(f)

for each y∗. AI is the value of the indefinite HPB integral on I and we

write

AI = (HPB)
∫
I

f.

2.2. Variational equivalence and variational Henstock type

integral

In the same terms of the limit with respect to the filter base which was

introduced above, we can define a notion of variational equivalence which is

in fact an analogue of Kolmogorov notion of differential equivalence (see4).
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Definition 3. (see6) Two functions Φ1 : I ×X → Y and Φ2 : I ×X → Y

are said to be variationally equivalent on a B-interval L if

lim
B

∑
(I,x)∈π(L)

∥∥∥Φ1(I, x)− Φ2(I, x)
∥∥∥ = 0

or, what is the same,

(HB)
∫
L

∥∥∥Φ1(I, x)− Φ2(I, x)
∥∥∥ = 0.

Variational equivalence can be connected also with another notion, which

plays an important role in the Henstock integration theory. Namely, with

the notion of variational measure. A standard definition of variational

measure with respect to basis B, generated by a function Φ : I ×X → Y ,

on a fixed B-interval L is this. First we define a β-variation on a set E ⊂ L:

V ar(E,Φ, β) := sup
π⊂β[E]

∑
||Φ(I, x)||.

Then variational measure of a set E ⊂ L is defined by

VΦ(E) = V (E,Φ,B) := inf
β∈B

V ar(E,Φ, β).

Following the proof given in15 for the interval bases in R it is possible to

show that the extended real-valued set function VΦ(·) is an outer measure
and a metric outer measure in the case of a metric space X (in the last case

the definition of Vitali basis should be used).

Variational measure, generated by a function Φ, of a set E ⊂ L can be

also defined as HB-integral over L of a function defined by

Φ1(I, x) :=

{
‖Φ(I, x)‖, x ∈ E,

0, x ∈ L \ E.

With this definition we have to admit that HB-integral of nonnegative
function can have an infinite value.

Using the notion of variational equivalence, we can obtain another, so

called variational version of Henstock type integral with respect to basis B.
For the full interval basis on the real line such an integral was defined in.12

Definition 4. A function f : L→ Y , where L ∈ I and Y is a Banach space,

is said to be V HB-integrable on L, if there exists an additive B-interval
function F : I → Y such that the function Φ1(I, x) = F (I) for all x ∈ I,

is variationally equivalent to the function Φ2(I, x) = f(x)μ(I). In this case

F is the indefinite V HB-integral of f , in particular (V HB)
∫
L
f = F (L).
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It is easy to prove that V HB-integrable function on L is also HB-
integrable and the integral values coincide. Indeed, let F be the indefinite

V HB-integral. Using Definitions 3, 4 and the definition of the limit with

respect to basis B we can state, that for any ε > 0 there exits β ∈ B such

that for any β-partition π(L) we have∑
(I,x)∈π(L)

∥∥f(x)μ(I)− F (I)
∥∥< ε.

Using additivity of V HB-integral we obtain from the above estimate that

for any β-partition π(L) where β ∈ B is chosen above, we have∥∥ ∑
(I,x)∈π

f(x)μ(I)− F (L)
∥∥= ∥∥ ∑

(I,x)∈π

f(x)μ(I)−
∑

(I,x)∈π

F (I)
∥∥≤ ∑

(I,x)∈π

∥∥f(x)μ(I)− F (I)
∥∥< ε.

This means that

lim
B

∑
(I,x)∈π(L)

f(x)|I| = F (L),

i. e., f is HB-integrable on L with F (L) being its HB-integral.
A result in the opposite direction is known, for a real valued functions

and for usual interval basis on an interval of the real line, as Saks-Henstock

lemma (see3). It can easily be generalized for the basis considered here.

Note that the version of this Lemma was used and proved by Kolmogorov

a long time ago in his paper.4 So it would be fair to call this result as

Kolmogorov-Henstock lemma.

Hence in the real valued case the HB-integral and the V HB-integral are
equivalent. Many properties of the HB-integral are based on this equiva-

lence, i.e., thay are proved in fact for variational version of integral (see3).

However, this equivalence of two integrals fails to be true in the Banach

valued case. It is proved in12 (see also5) that in the case of basis of usual

intervals on the real line the V HB-integral is equivalent to the HB-integral
if and only if the range space is of finite dimension. It is likely that this

result can be extended to the case of our abstract basis.

If we define a variational version of Henstock-Pettis integral then, due to

the above result on the real valued case, it would be equivalent to Henstock-

Pettis integral (see Definition 2).

It is easy to check that a function which is equal to zero almost every-

where on L ∈ I, is V HB-integrable (and also HB-integrable) on L with

integral value zero. This implies that HB-integrability of a function and

the value of the HB-integral does not depend on values of the function on
a set of measure zero. This justifies the following extension of Definitions

1 and 4 to the case of functions defined only almost everywhere on L.
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Definition 5. A function f defined almost everywhere on L ∈ I is said

to be HB-integrable (or V HB-integrable) on L, with integral value A, if the

function

f1(g) :=

{
f(g), where f is defined,

0, otherwise

is HB-integrable (respectively, V HB-integrable) on L to A in the sense of

Definition 1 (or 4).

2.3. Recovering the primitive and problem of differentiation

The advantage of the variational version of an integral is that it reveals a

direct connection of the concept of an integral with a derivative.

B-derivative of a Banach valued function F : I → Y at a point x is

defined as a limit

DBF (x) := lim
B

F (I)

μ(I)
,

if the limit exists. In other words, A ∈ Y is a value of B-derivative DBF (x)
if for any ε > 0 there exists β such that for all (I, x) ∈ β[{x}]

∥∥∥F (I)
μ(I)

−A
∥∥∥ < ε.

We define also a weak B-derivative of F at x as an element wDBF (x) ∈ Y

such that for any y∗ ∈ Y ∗

lim
B

y∗(F (I)
μ(I)

= y∗(wDBF (x)).

In this case we say that F is weakly B-differentiable at x.
The following statement on recovering a function from its B-derivative

holds.

Theorem 1. Let an additive function F : I → Y be B-differentiable ev-

erywhere on L ∈ I, outside a set E ⊂ L such that VF (E) = 0. Then the

function

f(x) :=

{
DBF (x ), if it exists,
0, if x ∈ E ,

is V HB-integrable on L and F is its indefinite V HB-integral.
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Proof. Fix ε > 0 and according to definition of variational measure find β

such that for any β[E]-partition π1 we have
∑

π1
||F (I)|| < ε

2 .

For each point x at which F is B-differentiable find βx such that for

(I, x) ∈ βx[{x}]
∥∥F (I)− f(x)μ(I)

∥∥ < ε
μ(I)

2μ(L)
.

In this way according to property (l) we define β on L. Then for any

β-partition π(L) of L we get∑
(I,x)∈π

∥∥F (I))− f(x)μ(I))
∥∥ ≤ ∑

(I,x)∈π, x/∈E

||f(x)μ(I)− F (I)||+

+
∑

(I,x)∈π
1
,

||f(x)μ(I)− F (I)|| ≤ ε

2μ(L)

∑
(I,x)∈π, x/∈E

μ(I) +
ε

2
≤ ε.

Thus F is the indefinite V HB-integral of f . In particular

F (L) = (V HB)
∫
L

f.

Note that the condition VF (E) = 0 put on the exceptional set E is

in fact necessary in the case μ(E) = 0. Moreover, the following theorem

giving a descriptive characterization of the indefinite V HB-integral holds.

Theorem 2. An additive B-differentiable almost everywhere on L ∈ I
function F : I → X is the indefinite V HB-integral of its derivative if and

only if the variational measure, generated by F , with respect to basis B, is
absolutely continuous with respect to μ.

Proof. The sufficiency follows from Theorem 1. Conversely, let F be the

indefinite V HB-integral of its derivative f . Take any set E ⊂ L, μ(E) = 0.

As f is integrable we can assume that f(x) = 0 on E. According to

Definitions 4 and 3

(HB)
∫
L

∥∥∥f(x)|I| − F (I)
∥∥∥ = 0.

Especially, (HB)
∫
E
||f(x)|I| − F (I)|| = (HB)

∫
E
||F (I)|| = 0. This means

that VF (E) = 0 and we obtain the absolute continuity of VF .
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We formulate also a weak version of Theorem 1:

Theorem 3. Let an additive function F : I → X be wB-differentiable on L

outside a set E such that Vy∗F (E) = 0 for any y∗ ∈ Y ∗. Then the function

f(x) :=

{
wDBF (x ), if it exists,
0, if x ∈ E

is HPB-integrable on L and F is its indefinite HPB-integral.

The problem of differentiability almost everywhere of the indefinite HB-
integral in classical real valued case is also proved in fact for the variational

version of integral. In the Banach space-valued case theorem on differen-

tiability almost everywhere of the indefinite V HB-integral holds true for a
wide class of bases (see an example in the next section). It is possible that

validity of this result in the case of an abstruct basis, we consider here,

could depend on some additional requirements for the basis

As for the indefinite HB-integral, we shall see in the next section that,
at least in the case of many particular bases, classical interval basis on the

real line including, for any Banach space of infinite dimension it is possible

to construct an example of an HB-integrable function with the indefinite

HB-integral B-differentiable nowhere.

3. Variational Integral in Harmonic Analisys

Henstock type integrals with respect to various bases are especially useful

in the problem of recovering, by generalized Fourier formulas, vector-valued

coefficients of orthogonal series from their sums. A choice of a particular

basis depends on the orthogonal system we are dealing with.

In classical harmonic analysis (i.e, on one-dimensional torus) various

kind of symmetric bases are useful and an integral with respect to the so-

called approximate symmetric basis (see16) solves the problem of recovering

the coefficients in this case

In the case of Haar and Walsh systems (see,214), considered on the

unterval [0, 1] the Dyadic basis is used in which a family I of B-intervals is
constituted by the family of dyadic intervals[

j

2n
,
j + 1

2n

]
, 0 ≤ j ≤ 2n − 1, n = 0, 1, 2, . . . .

3.1. Henstock type integrals on a zero-dimensional group

As a very important particular example of application of the above theory

in harmonic analysis we consider here in more detail a derivation bases and
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respective derivatives and integrals defined on a zero-dimensional group

with second countability axiom. Typical examples of such a group are

Cantor Dyadic group and the group of p-adic integers. We consider here

the case of abelian group although in the part related to the construction

of basis and integral this is not essential. Non-abelian case, the problem of

recovering the coefficients including, is considered in.11

It is known (see1) that with our assumption a topology in such a group

can be given by a chain of subgroups

G = G0 ⊃ G1 ⊃ G2... ⊃ Gn ⊃ ... (1)

with G =
⋃+∞

n=0Gn and {0} =
⋂+∞

n=0Gn. The subgroups Gn are clopen sets

with respect to this topology. As G is compact, the factor group G0/Gn

for each n is finite. Let its order be mn. We denote by Kn any coset of the

subgroup Gn. For any g ∈ G we denote by Kn(g) the coset of the subgroup

Gn which contains the element g, i.e.,

Kn(g) = g +Gn. (2)

For each g ∈ G the sequence {Kn(g)} is decreasing and {g} =
⋂

n Kn(g).

We denote by λ the normalized Haar measure on the group G. We can

make this measure to be complete by including all the subsets of the sets

of measure zero into the class of measurable sets.

Since λ(G0) = 1 and λ is translation invariant then

λ(Gn) = λ(Kn) =
1

mn
(3)

for all cosets Kn, n ≥ 0.

The family of all Kn for all n ∈ N is a semiring of sets which forms the

family I of B-intervals of a basis B on G. For any function ν : G→ N, we

define the basis set

βν := {(I, g) : g ∈ G, I = Kn(g), n ≥ ν(g)}.
Then our derivation basis B is the family {βν}ν where ν runs over the

set of all natural-valued functions on G. This basis has all the properties

described in Section 1. But in this case they are not postulated but are

easily checked.

If integrals HB, V HB and HPB are defined with respect to the basis

on the group G described above, we denote them as HG-integral, V HG-

integral and HPG-integral, respectively. Definition of the B-derivative is
reduced in this basis to the ordinary limit

DGF (x ) = limn→∞
F (Kn(g))

λ(Kn(g))
.
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A particular case of Theorem 1, in which condition VF (E) = 0 are en-

sured by requirement that difference ratio is bounded, is formulated in the

following way:

Theorem 4. Let an additive function F : I → Y be B-differentiable every-

where on G outside of a set E with μ(E) = 0, and

limn→∞
||F (Kn(g))||
μ(Kn(g))

<∞ (4)

everywhere on E. Then the function

f(x) :=

{
DBF (x ), if it exists,
0, if x ∈ E ,

is V HB-integrable on G and F is its indefinite V HB-integral.

In the weak version of Theorem 4 we need not use variational type

integral by the reason mentioned in the previous Section.

Theorem 5. Let an additive function F : I → X be weakly B-differentiable
everywhere on G outside of a set E with μ(E) = 0, and for any x∗ ∈ X∗

limn→∞
|x∗F (Kn(g))||

μ(Kn(g))
<∞

everywhere on E. Then the function

f(x) :=

{
wDBF (x ), if it exists,
0, if x ∈ E ,

is HPB-integrable on G and F is its indefinite HPB-integral.

It was proved in13 that in the scalar-valued case the indefinite HG-integral

of any HG-integrable function is G-differentiable everywhere on G and

DGF (g) = f(g) almost everywhere. In a similar way this property can

be proved in a case when a range of a function is of finite dimension, and

for V HG-integral it is true in the case of any Banach space:

Theorem 6. If a function f : G → X is V HG-integrable on G then the

indefinite V HG-integral F (K) = (V H)G
∫
K
f as an additive function on

the set of all B-intervals is G-differentiable almost everywhere on G and

DGF (g) = f(g) a.e. on L. (5)
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The proof follows the line of the argument in [13, Theorem 3.1] for the scalar

case provided one replaces a reference to Kolmogorov-Henstock lemma by

a reference to variational equivalence of functions F (I) and f(g)λ(I) (see

Definitions 4 and 3).

The next theorem, proved in,10 shows that this result can not be ex-

tended to the case of HB-integral.

Theorem 7. For any infinite-dimensional Banach space Y , there exists a

HB-integrable on G function f : G → Y with the indefinite HG-integral

which is G-differentiable nowhere on G.

3.2. Application to harmonic analysis on the group G

Let Γ denotes the dual group of G, i.e., the group of characters of the group

G. It is known (see1) that under assumption imposed on G the group Γ is

a discrete abelian group (with respect to the point-wise multiplication of

characters) and it can be represented as a sum of increasing chain of finite

subgroups

Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ ... ⊂ Γn ⊂ ... (6)

where Γ0 = {γ0} with γ0(g) = 1 for all g ∈ G. For each n ∈ N the group

Γn is the annulator of Gn, i.e.,

Γn := {γ ∈ Γ : γ(g) = 1 for all g ∈ Gn}.
The factor groups Γn+1/Γn and Gn/Gn+1 are isomorphic (see

1) and so they

are of the same finite order for each n ∈ N.

It is easy to check that if γ ∈ Γn then γ is constant on each coset Kn

of Gn, and if γ ∈ Γ \ Γn then
∫
Kn

γdμ = 0 for each coset Kn.

This implies that the characters γ constitute a countable orthonormal

system on G with respect to normalized measure λ, and we can consider a

series ∑
γ∈Γ

aγγ (7)

with respect to this system. We define the convergence of this series at a

point g as the convergence of its partial sums

Sn(g) :=
∑
γ∈Γn

aγγ(g) (8)

when n tends to infinity. If coefficients aγ are Banach-valued we can con-

sider strong and weak convergence of this series.
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We associate with the series (7) a function F defined on each coset Kn

by

F (Kn) :=

∫
Kn

Sn(g)dμ (9)

where Sn are partial sums given by (8). Similar to the scalar case (see13)

it is easy to check that F is an additive function on the family I of all

B-intervals. As it was in the case of Haar and Walsh series (see9 and7) we

call this function a quasi-measure associated with the series (7).

The properties of the characters, described above, imply that the sum

Sn, defined by (8), is constant on each Kn. Then by (4) we have

Sn(g) =
F (Kn(g))

μ(Kn(g))
. (10)

It follows directly from this equality that if the series (7) converges at

some point g ∈ G to a value f(g) then the associated quasi-measure F is

B-differentiable at g and DBF (g) = f(g). The same is true for the weak

convergence.

The following statement is essential for establishing that a given series

with respect to characters is the Fourier series in the sense of some general

integral.

Theorem 8. Let some integration process A be given which produces an

integral additive on I. Let a function F defined on I be the quasi-measure

associated with the series (7). Then this series is the Fourier series of an

A-integrable function f if and only if F (K) = (A) ∫
K
f for any K ∈ I.

In view of (10) and Theorem 8, in order to solve the coefficient problem,

it is enough to show that the quasi-measure associated with the series (7)

is the indefinite integral of its derivative (strong or weak, respectively).

By this we reduce the problem of recovering the coefficients to the one

of recovering the primitive and we can use a corresponding theorem on

primitives in Subsection 2.1.

Theorem 9. Suppose that the partial sums (8) of the series (7) converge

to a function f everywhere on G outside of a set E with μ(E) = 0, and

limn→∞||Sn(g)|| <∞
everywhere on E. Then f is V HG-integrable and (7) is the V HG-Fourier

series of f.
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In the same way, using Theorem 8 for the case of HPB-integral we get

Theorem 10. Suppose that the partial sums (8) of the series (7) converge

weakly to a function f everywhere on G outside of a set E with μ(E) = 0,

and for any y∗ ∈ Y ∗

limn→∞|y∗Sn(g)|| <∞
everywhere on E. Then f is HPG-integrable and (7) is the HPG-Fourier

series of f.

Note that the above theorem cover in particular the case of the convergence

of the series (7) everywhere on G.

It is remarkable that in Theorems 9 and 10 there is no need to sup-

pose that the sum of the series is integrable in the respective sense. The

integrability is an implication of the convergence. However if we assume

appriori that the sum is integrable in the sense of Lebesgue (or Bochner in

the Banach space-valued case) then we obtain an analogue of the classical

du Bois Reymond – Vallee Poissin theorem.

Theorem 11. Suppose that the partial sums (8) of the series (7) converge

(converge weakly) to a Lebesgue (Bochner) integrable function f everywhere

on G except a countable set. Then the series (7) is the Lebesgue–Fourier

series (resp. Bochner–Fourier series) of f .

A proof is reduced to checking that any Lebesgue (Bochner) integrable

function is also V HG-integrable and the integrals coincide what can be

done following the line of the proof in the case of the usual interval basis

on the real line.

Now we consider the problem of convergence of Fourier series in the

sense of V HG-integral andHB-integral. The partial sums Sn(f, g) of Fourier

series, with respect to the system Γ, of a function f : G → Y integrable

in the sense of these integrals can be represented, according to Theorem 8

and formula (10), as

Sn(f, g) =
1

μ(Kn(g))

∫
Kn(g)

f. (11)

From this equality together with differentiability property of the indefinite

V HB-integral (see Theorem 6) follows

Theorem 12. The partial sums Sn(f, g) of the V HB-Fourier series of a

V HB-integrable on G function f are convergent to f almost everywhere on

G.
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At the same time such a theorem fails to be true for HB-Fourier series.
Indeed, we get from Theorem 7:

Theorem 13. For any infinite-dimensional Banach space Y there exists

HG-integrable function f : G→ Y such that partial sums of its HG-Fourier

series with respect to the system Γ diverge everywhere.

It is interesting to note that a rate of growth of these partial sums

can not be made arbitrary large for the whole class of infinite-dimensional

Banach spaces. For some particular spaces such a rate have some restric-

tion. For example it can be deduced from9 that for some class of infinite-

dimensional Banach spaces for a Pettis-integrable function f taking values

in such a space, sums of its Fourier series with respect to the Walsh system,

which is the systems of characters of a particular case of a zero-dimensional

group, satisfy the relation ||Sn(f, g)|| = o(2
1
2n).
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