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ON THE EXISTENCE OF A NONEXTENDABLE SOLUTION

OF THE CAUCHY PROBLEM FOR A (3 + 1)-DIMENSIONAL

THERMAL–ELECTRICAL MODEL
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A thermal–electrical (3+1)-dimensional model of heating a semiconductor in an electric field is considered.

For the corresponding Cauchy problem, the existence of a classical solution nonextendable in time is proved

and an a priori estimate global in time is obtained.
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1. Introduction

The modern radio information systems that provide solutions to space monitoring problems are charac-

terized by a large number of densely located electronic units, continuous operation for a long time, and high

reliability requirements. When a structurally complex radio information system operates in heat-stressed

modes, the heat generation in electronic equipment increases sharply due to high current loads. The

increased heat generation leads to overheating of the equipment and hence to a decrease in the reliability

of the product [1] as well as an increase in the failure probability. These circumstances necessitate the need

to study nonlinear thermal processes in a semiconductor and to construct and study the thermal–electrical

model of a semiconductor.

This paper is a continuation of the studies started in [2]–[8]. In [7], a thermal–electrical semiconductor

heating model was proposed, which reduced to considering the nonclassical third-order equation

∂

∂t

(
φxx +

γ

2
|φx|2

)
+

4πσ

ε
φxx = 0. (1)

For the problem on the closed interval x ∈ [0, L] with the boundary conditions

φ(0, t) = μ0(t), φx(0, t) = μ1(t), φ(x, 0) = φ0(x) (2)

we obtained the result on the existence of a classical solution nonextendable in time and also obtained

sufficient conditions for the blow-up of solutions in finite time, which from a physical standpoint means the

occurrence of electrical breakdown.
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In this paper, we consider the following Cauchy problem for a model (3 + 1)-dimensional equation

in (1):

∂

∂t
(Δxu(x, t) + |Dxu(x, t)|q) + Δxu(x, t) = 0, u(x, 0) = u0(x), (3)

Δx :=

3∑
j=1

∂2

∂x2
j

.

For q > 3/2, we prove the existence of a nonextendable solution; for small initial data, we prove the existence

of a global-in-time solution of the Cauchy problem and obtain an estimate for the decrease in time.

2. Cauchy Problem. The case q � 2

We consider the Cauchy problem

∂

∂t
(Δxu+ |Dxu|q) + Δxu = 0, q > 1, (x, t) ∈ R

3 × [0, T ],

u(x, 0) = u0(x), x ∈ R
3.

(4)

We consider the class of radially symmetric solutions of Cauchy problem (4) and introduce a new function

w(r, t) := r2
∂u(r, t)

∂r
. (5)

Then Cauchy problem (4) becomes

∂

∂t

(
∂w(r, t)

∂r
+

1

r2(q−1)
|w(r, t)|q

)
+

∂w(r, t)

∂r
= 0,

w(r, 0) = r2
∂u0(r)

∂r
.

(6)

We thus arrive at the initial boundary value problem

∂

∂t

(
∂w(r, t)

∂r
+

|w|q(r, t)
r2(q−1)

)
+

∂w(r, t)

∂r
= 0, q > 1, (r, t) ∈ [0,+∞)× [0, T ],

w(0, t) = 0, w(r, 0) = w0(r), (r, t) ∈ [0,+∞)× [0, T ].

(7)

We consider the operator

Q2(w)h(r) :=
∂h(r)

∂r
+ q

|w(r)|q−2w(r)

r2(q−1)
h(r) (8)

and introduce Banach spaces required for the further study. We give the following definitions.

Definition 1. We say that h ∈ Cb(r
−α, 1+ rγ ; [0,+∞)) for α � 0 and γ � 0 if h ∈ Cb[0,+∞) and the

following norm is finite:

‖h‖α,γ := sup
r∈[0,+∞)

max{1 + rγ , r−α}|h(r)|. (9)

Remark 1. If γ = 0, then instead of Cb(r
−α, 1 + rγ ; [0,+∞)), we simply write Cb(r

−α; [0,+∞)),

and instead of ‖ · ‖α,γ , we write ‖ · ‖α.
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Definition 2. We say that h ∈ C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞)) for α � 0, β � 0, and γ � 0 if

h(r) ∈ C
(1)
b [0,+∞) and the following norm is finite:

‖h‖α,β,γ := sup
r∈[0,+∞)

max{1, r−α}|h(r)|+ sup
r∈[0,+∞)

max{1 + rγ , r−β}
∣∣∣∣dh(r)dr

∣∣∣∣. (10)

The following lemmas hold.

Lemma 1. The linear spaces

Cb(r
−α, 1 + rγ ; [0,+∞)), C

(1)
b (r−α, r−β , 1 + rγ ; [0,+∞))

are Banach spaces with respect to respective norms (9) and (10).

Lemma 2. For any function w(r) ∈ Cb(r
−α; [0,+∞)), if the inequalities

α � 2, q > 3/2 (11)

are satisfied, then the operator Q2(w) acts as

Q2(w) : C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞)) → Cb(r

−β , 1 + rγ ; [0,+∞)),

β = α+ (α− 2)(q − 1), γ = 2(q − 1),
(12)

and the following relations hold:

Q−1
2 (w) : Cb(r

−β , 1 + rγ ; [0,+∞)) → C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞)),

h(r) := Q−1
2 (w)f(r) =

∫ r

0

exp

(
−q

∫ r

ρ

|w(y)|q−2w(y)

y2(q−1)
dy

)
f(ρ) dρ.

(13)

Proof. For q > 3/2 and α � 2, we have the inequalities

∣∣∣∣ |w(r)|
q−2w(r)

r2(q−1)

∣∣∣∣ � ‖w‖q−1
α r(α−2)(q−1) � ‖w‖q−1

α for all r ∈ [0, 1],

∣∣∣∣ |w(r)|
q−2w(r)

r2(q−1)

∣∣∣∣ � ‖w‖q−1
α for all r ∈ [1,+∞].

(14)

We note the estimate
∣∣∣∣
∫ r

ρ

|w(y)|q−2w(y)

y2(q−1)
dy

∣∣∣∣ �
∫ +∞

0

|w(y)|q−1

y2(q−1)
dy =

=

∫ 1

0

|w(y)|q−1

y2(q−1)
dy +

∫ +∞

1

|w(y)|q−1

y2(q−1)
dy �

� ‖w‖q−1
α

∫ 1

0

y(α−2)(q−1) dy + ‖w‖q−1
α

∫ +∞

1

1

y2(q−1)
dy � M1(α, q)‖w‖q−1

α . (15)

On the one hand, we note that from the explicit form of h(r) in (22), it follows that h(r) ∈ C(1)[0,+∞).

On the other hand, for r ∈ (0, 1], we have

1

rβ+1
|h(r)| � exp(qM1(α, q)‖w‖q−1

α )
‖f‖β,γ
rβ+1

∫ r

0

ρβ dρ =

= exp(qM1(α, q)‖w‖q−1
α )

‖f‖β,γ
1 + β

, β + 1 > α. (16)
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For r > 1, we have

|h(r)| � exp(M1(α, q)‖w‖q−1
α )‖f‖β,γ

∫ 1

0

ρβ dρ+ exp(M1(α, q)‖w‖q−1
α )‖f‖β,γ ×

×
∫ r

1

dρ

1 + ργ
� M2(q, α) exp(M1(α, q)‖w‖q−1

α )‖f‖β,γ, (17)

because γ = 2(q − 1) > 1 for q > 3/2. Thus, from (16) and (17), we obtain h(r) ∈ Cb(r
−α; [0,+∞)). It is

easy to prove the relation

dh(r)

dr
= f(r) − q

|w(r)|q−2w(r)

r2(q−1)
h(r) ∈ Cb(r

−β , 1 + rγ ; [0,+∞)). (18)

The lemma is proved.

Lemma 3. For any function w(r, t) ∈ C([0, T ];Cb(r
−α; [0,+∞))), if the inequalities

α � 2, q � 2 (19)

are satisfied, then the operator Q2(w) acts as

Q2(w) : C([0, T ];C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞))) → C([0, T ];Cb(r

−β , 1 + rγ ; [0,+∞))),

β = α+ (α− 2)(q − 1), γ = 2(q − 1),
(20)

and the following relations hold:

Q−1
2 (w) : C([0, T ];Cb(r

−β , 1 + rγ ; [0,+∞))) → C([0, T ];C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞))), (21)

h(r, t) := Q−1
2 (w)f(r, t)

∫ r

0

exp

(
−q

∫ r

ρ

|w(y, t)|q−2w(y, t)

y2(q−1)
dy

)
f(ρ, t) dρ. (22)

Proof. Property (20) is obvious. We prove properties (21) and (22). The following relations hold:

h(r, t1)− h(r, t2) =

∫ r

0

[
exp

(
−q

∫ r

ρ

|w(y, t1)|q−2w(y, t1)

y2(q−1)
dy

)
−

− exp

(
−q

∫ r

ρ

|w(y, t2)|q−2w(y, t2)

y2(q−1)
dy

)]
f(ρ, t1) dρ+

+

∫ r

0

exp

(
−q

∫ r

ρ

|w(y, t2)|q−2w(y, t2)

y2(q−1)
dy

)
×

× [f(ρ, t1)− f(ρ, t2)] dρ := h1(r) + h2(r), (23)

exp

(
−q

∫ r

ρ

|w(y, t1)|q−2w(y, t1)

y2(q−1)
dy

)
− exp

(
−q

∫ r

ρ

|w(y, t2)|q−2w(y, t2)

y2(q−1)
dy

)
=

=

∫ 1

0

d

ds
exp

(
−q

∫ r

ρ

|ws(y)|q−2ws(y)

y2(q−1)
dy

)
ds,

ws(y) := sw(y, t1) + (1− s)w(y, t2), (24)

d

ds
exp

(
−q

∫ r

ρ

|ws(y)|q−2ws(y)

y2(q−1)
dy

)
= −q(q − 1) exp

(
−q

∫ r

ρ

|ws(y)|q−2ws(y)

y2(q−1)
dy

)
×

×
∫ r

ρ

|ws(y)|q−2

y2(q−1)
[w(y, t1)− w(y, t2)] dy. (25)
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First, we note the inequality

|ws(y)| � s|w(y, t1)|+ (1 − s)|w(y, t2)| � max{|w(y, t1)|, |w(y, t2)|}, s ∈ [0, 1].

We then have the estimates

∣∣∣∣
∫ r

ρ

|ws(y)|q−2

y2(q−1)
[w(y, t1)− w(y, t2)] dy

∣∣∣∣ �
∫ 1

0

|ws(y)|q−2

y2(q−1)
|w(y, t1)− w(y, t2)| dy +

+

∫ +∞

1

|ws(y)|q−2

y2(q−1)
|w(y, t1)− w(y, t2)| dy � max{‖w(t1)‖q−2

α , ‖w(t2)‖q−2
α } ×

×
[∫ 1

0

y(α−2)(q−1) dy +

∫ +∞

1

dy

y2(q−1)

]
‖w(t1)− w(t2)‖α �

� M3(α, q)max{‖w(t1)‖q−2
α , ‖w(t2)‖q−2

α }‖w(t1)− w(t2)‖α. (26)

Thus, from (23) with (26) taken into account, we obtain

‖h1‖α � M4(α, q) exp(M1(α, q)max{‖w(t1)‖q−1
α , ‖w(t2)‖q−1

α })×
×max{‖w(t1)‖q−2

α , ‖w(t2)‖q−2
α }‖w(t1)− w(t2)‖α‖f(t1)‖β,γ . (27)

Similarly, we obtain the estimate

‖h2‖α � M4(α, q) exp(M1(α, q)‖w(t2)‖q−1
α )‖f(t1)− f(t2)‖β,γ. (28)

Therefore, Eqs. (27) and (28) imply the estimate

‖h(t1)− h(t2)‖α � M4(α, q)[exp(M1(α, q)max{‖w(t1)‖q−1
α , ‖w(t2)‖q−1

α })×
×max{‖w(t1)‖q−2

α , ‖w(t2)‖q−2
α }‖w(t1)− w(t2)‖α‖f(t1)‖β,γ +

+ exp(M1(α, q)‖w(t2)‖q−1
α )‖f(t1)− f(t2)‖β,γ], (29)

whence it follows that

‖h(t1)− h(t2)‖α → +0 as |t1 − t2| → +0. (30)

We now note the relation
dh(r, t)

dr
= f(r, t)− q

|w(r, t)|q−2w(r, t)

r2(q−1)
h(r, t), (31)

from which, similarly to (30), we obtain the estimate

∥∥∥∥dh(r, t1)dr
− dh(r, t2)

dr

∥∥∥∥
β,γ

� ‖f(r, t1)− f(r, t2)‖β,γ + q‖w(t1)‖q−1
α ‖h(t1)− h(t2)‖α +

+ q(q − 1)max{‖w(t1)‖q−2
α , ‖w(t2)‖q−2

α }‖h(t2)‖α‖w(t1)− w(t2)‖α, (32)

which implies ∥∥∥∥dh(r, t1)dr
− dh(r, t2)

dr

∥∥∥∥
β,γ

→ +0 as |t1 − t2| → +0. (33)

Thus, from (30) and (33), we obtain

‖h(t1)− h(t2)‖α,β,γ → +0 as |t1 − t2| → +0. (34)

Therefore, h(r, t) ∈ C([0, T ];C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞))). The lemma is proved.
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We now define the classical solution of initial boundary value problem (7).

Definition 3. A function w(r, t) ∈ C(1)([0, T ];C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞))) with

α � 2, q > 1, β = α+ (α− 2)(q − 1), γ = 2(q − 1)

is called a classical solution of problem (7) if the function pointwise satisfies the above relations for all

(r, t) ∈ [0,+∞)× [0, T ], and the derivatives at the boundary points are understood as one-sided limits.

Let w(r, t) be a classical solution of problem (7) in the sense of Definition 1, and let q � 2. Then the

following equivalent relations hold for all (r, t) ∈ [0,+∞)× [0, T ]:

Q2(w)
∂w

∂t
+Q2(w)w = f(r, t), w(r, 0) = w0(r), f(r, t) := q

|w(r, t)|q
r2(q−1)

, (35)

∂w

∂t
+ w = Q−1

2 (w)f(r, t), w(r, 0) = w0(r), (36)

w(t) = w0e
−t +

∫ t

0

e−(t−τ)Q−1
2 (w(τ))f(τ) dτ, f(r, t) := q

|w(r, t)|q
r2(q−1)

. (37)

We can rewrite the last integral equation in the form

w(t) = Q(w)(t), (38)

Q(w)(t) := w0e
−t +

∫ t

0

e−(t−τ)Q−1
2 (w(τ))f(τ) dτ, f(r, t) := q

|w(r, t)|q
r2(q−1)

. (39)

The following lemma holds.

Lemma 4. For q � 2 and any function w0(r) ∈ C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞)), the operator defined

in (39) acts as

Q : C([0, T ];Cb(r
−α; [0,+∞))) → C(1)([0, T ];C

(1)
b (r−α, r−β , 1 + rγ ; [0,+∞))). (40)

Proof. On one hand, we note that

f(r, t) ∈ C([0, T ];Cb(r
−β , 1 + rγ ; [0,+∞)) (41)

for any function

w(r, t) ∈ C([0, T ];Cb(r
−α; [0,+∞))). (42)

On the other hand, the operator

Sφ(t) :=

∫ t

0

e−(t−τ)φ(τ) dτ (43)

act as

S : C([0, T ];C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞))) → C(1)([0, T ];C

(1)
b (r−α, r−β , 1 + rγ ; [0,+∞))). (44)

It remains to note that

Q(w) = w0(r)e
−t + S(Q−1

2 (w)f(r, t)), f(r, t) := q
|w(r, t)|q
r2(q−1)

. (45)
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Remark 2. In particular, we have

Q : C([0, T ];Cb(r
−α; [0,+∞))) → C([0, T ];Cb(r

−α; [0,+∞))). (46)

We consider the closed convex and bounded set

BR := {w(t) ∈ C([0, T ];Cb(r
−α; [0,+∞))) : ‖w‖ � R}, (47)

‖w‖ := sup
t∈[0,T ]

‖w(t)‖α.

The following lemma holds.

Lemma 5. For any function w0(r) ∈ Cb(r
−α; [0,+∞)) and for q > 1, there exists a sufficiently large

R > 0 and a sufficiently small T > 0 such that

Q : BR → BR. (48)

Proof. Let R > 0 be large enough that

‖w0‖ = ‖w0‖α � R

2
. (49)

We fix such an R > 0. The following estimate holds:

‖Q−1
2 (w(τ))f(τ)‖α � M4(α, q)e

M1(α,q)‖w‖q−1‖w‖q. (50)

It follows from (39) with (49) and (50) taken into account that the estimate

‖Q(w)‖ � ‖w0‖+ TM4(α, q)e
(M1(α,q)‖w‖q−1‖w‖q �

� R

2
+ TM4(α, q)e

M1(α,q)R
q−1

Rq � R, (51)

holds if T > 0 is small enough that

TM4(α, q)e
M1(α,q)R

q−1

Rq−1 � 1

2
. (52)

Taking Lemma 4 into account, we obtain the sought assertion. The lemma is proved.

The following lemma holds.

Lemma 6. For a sufficiently small T > 0 and for q � 2, Q is a contraction operator on BR:

‖Q(w1)−Q(w2)‖ � 1

2
‖w1 − w2‖ (53)

for any w1, w2 ∈ BR.

Proof. Let w1(t), w2(t) ∈ BR. We introduce the following functions for k = 1, 2:

gk(r, t) := (Q−1
2 (wk(r, t))fk(r, t))(r, t), fk(r, t) := q

|wk(r, t)|q
r2(q−1)

. (54)
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As in the derivation of estimate (29), we obtain the inequality

‖g1(r, t)− g2(r, t)‖ � M4(α, q)[e
M1(α,q)R

q−1

Rq−2‖w1 − w2‖ sup
t∈[0,T ]

‖f1‖β,γ +

+ eM1(α,q)R
q−1

sup
t∈[0,T ]

‖f1 − f2‖β,γ], (55)

and the following estimate holds:

sup
t∈[0,T ]

‖f1(t)− f2(t)‖β,γ � M5(α, q)R
q−1‖w1 − w2‖. (56)

From estimates (55) and (56), we obtain

‖g1(r, t)− g2(r, t)‖ � M6(α, q)e
M1(α,q)R

q−1

Rq−1[Rq + 1]‖w1 − w2‖. (57)

From (39) with (56) and (57) taken into account, we obtain the estimate

‖Q(w1)−Q(w2)‖ � TM6(α, q)e
M1(α,q)R

q−1

Rq−1[Rq + 1]‖w1 − w2‖ � 1

2
‖w1 − w2‖ (58)

if T > 0 is small enough that

TM6(α, q)e
M1(α,q)R

q−1

Rq−1[Rq + 1] � 1

2
.

The lemma is proved.

Taking Lemmas 5 and 6 and the contraction mapping principle into account, we conclude that for

any function w0(r) ∈ Cb(r
−α; [0,+∞)), if inequalities (19) are satisfied for sufficiently small T > 0, there

exists a unique solution of integral equation (38) in the class C([0, T ];Cb(r
−α; [0,+∞))). Using standard

algorithms for continuing solutions of integral equation (38) in time (see [9]), we obtain the following result.

Theorem 1. If q � 2 and the inequality α > 2 is satisfied, then for any function w0(r) ∈
Cb(r

−α; [0,+∞)), there is a maximal T0 = T0(w0) > 0 such that, for any T ∈ (0, T0), there exists

a unique solution w(r, t) of class C([0, T ];Cb(r
−α; [0,+∞))) of integral equation (38), and either T0 = +∞

or T0 < +∞; in the latter case,

lim
T↑T0

‖w(t)‖α = +∞. (59)

Taking Lemma 4 into account and using Eq. (38), we formulate the main theorem in this paper.

Theorem 2. If q � 2 and inequality α > 2 is satisfied, then for any function w0(r) ∈
Cb(r

−α; [0,+∞)) ∩ C(1)[0,+∞), there is a maximal T0 = T0(w0) > 0 such that, for any T ∈ (0, T0),

there exists a unique classical solution of problem (7) in the sense of Definition 3, and either T0 = +∞
or T0 < +∞; in the latter case, the limit property (59) holds.

We now consider the following integral inequality for t ∈ [0, T ]:

z(t) � z(0)e−t +

∫ t

0

e−(t−τ)a1e
a2z

q−1(τ)zq(τ) dτ, q > 1, z(t) � 0. (60)

We assume that the number d > 0 is such that the inequalities

z(0) < d, a1e
a2d

q−1

dq−1 � 1 (61)
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hold. We also assume that there is t = t0 > 0 such that

z(t) < d, z(t0) = d for all t ∈ [0, t0). (62)

Then we have

a1e
a2z

q−1(t)zq(t) � a1e
a2d

q−1

dq−1d � d for t ∈ [0, t0]. (63)

Therefore, from (60) with (61) and (63) taken into account, we obtain the inequality

z(t0) � z(0)e−t0 +

∫ t0

0

e−(t0−τ)a1e
a2z

q−1(τ)zq(τ) dτ <

< de−t0 + d(1 − e−t0) = d ⇒ z(t0) < d. (64)

This contradicts assumption (62). Therefore, if inequality (61) holds, we have

z(t) < d for all t ∈ [0, T ]. (65)

The following theorem holds.

Theorem 3. If in addition to the conditions in Theorem 2, we have

‖w0‖α < d for M4(α, q)e
M1(α,q)d

q−1

dq−1 � 1, (66)

where M1 and M4 are constants that appear in the proof of Lemma 2, then the classical solution of Cauchy

problem (7) in the sense of Definition 3 exists globally in time, and ‖w(t)‖α < d for all t ∈ [0,+∞). If

w0(r) � 0, M4(α, q)‖w0‖q−1
α < 1, (67)

then the solution of the Cauchy problem exists globally in time and the following inequality holds:

‖w‖α(t) � ‖w0‖αe−t

[1−M4(α, q)‖w0‖q−1
α (1− e−(q−1)t)]1/(q−1)

. (68)

Proof. As in the proof of Lemma 2, we obtain the inequality

‖w‖α(t) � ‖w0‖αe−t +

∫ t

0

e−(t−τ)M4(α, q)e
M1(α,q)‖w‖q−1

α (τ)‖w‖qα(τ) dτ. (69)

It remains to use the arguments in (60)–(65).

If w0(r) � 0 in addition to the other conditions, then integral equation (37) implies the inequality

w(r, t) � 0 for all (r, t) ∈ [0,+∞) × [0, T0). With this inequality taken into account, we use integral

equation (38) to obtain the estimate

‖w‖α(t) � ‖w0‖αe−t +M4(α, q)

∫ t

0

e−(t−τ)‖w‖qα(τ) dτ. (70)

We introduce the function

z(t) := ‖w‖α(t)et. (71)

From (70), we then derive the inequality

z(t) � z(0) +M4e
−t

∫ t

0

e−(q−1)τzq(τ) dτ � z(0) +M4

∫ t

0

e−(q−1)τzq(τ) dτ, (72)

whence, using the Bihari inequality (see [10]), we obtain the inequality

z(t) � z(0)

[1−M4(z(0))q−1(1 − e−(q−1)t)]1/(q−1)
, (73)

from which, using the condition M4z
q−1(0) < 1, we deduce the remaining assertions of the theorem.

The theorem is proved.
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3. Cauchy Problem. The case 3/2 < q < 2

In the case 3/2 < q < 2, Lemma 2 remains true. Lemma 3 takes the following form.

Lemma 7. For any function w(r, t) ∈ C([0, T ];Cb(r
−α; [0,+∞))) if the inequalities α � 2, 3/2 < q < 2,

and
w(r, t) � w0(r)e

−t, w0(r) ∈ Cb(r
−α; [0,+∞)),

w0(r) � a0 min{1, rα}, a0 > 0,
(74)

are satisfied, then the operator Q2(w) acts as

Q2(w) : C([0, T ];C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞))) → C([0, T ];Cb(r

−β , 1 + rγ ; [0,+∞))),

β = α+ (α− 2)(q − 1), γ = 2(q − 1),
(75)

and the following relations hold:

Q−1
2 (w) : C([0, T ];Cb(r

−β , 1 + rγ ; [0,+∞))) → C([0, T ];C
(1)
b (r−α, r−β , 1 + rγ ; [0,+∞))),

h(r, t) := Q−1
2 (w)f(r, t) =

∫ r

0

exp

(
−q

∫ r

ρ

|w(y, t)|q−2w(y, t)

y2(q−1)
dy

)
f(ρ, t) dρ.

(76)

Proof. The proof of this lemma repeats the proof of Lemma 2. We must consider estimate (26)

separately, where the use of condition q � 2 was essential. In the case 3/2 < q < 2, this estimate becomes

ws(y) = sw(y, t1) + (1− s)w(y, t2) � sw0(y)e
−t1 + (1 − s)w0(y)e

−t2 =

= w0(y)min{e−t1 , e−t2} � a0 min{1, yα}min{e−t1 , e−t2} � 0, s ∈ [0, 1], y � 0,

|ws(y)|q−2|w(y, t1)− w(y, t2)| �
� aq−2

0 yα(q−1) max{e(2−q)t1 , e(2−q)t2}‖w(t1)− w(t2)‖α, y ∈ [0, 1],

|ws(y)|q−2|w(y, t1)− w(y, t2)| �
� aq−2

0 max{e(2−q)t1 , e(2−q)t2}‖w(t1)− w(t2)‖α, y � 1,∣∣∣∣
∫ r

ρ

|ws(y)|q−2

y2(q−1)
[w(y, t1)− w(y, t2)] dy

∣∣∣∣ �
∫ 1

0

|ws(y)|q−2

y2(q−1)
|w(y, t1)− w(y, t2)| dy +

+

∫ +∞

1

|ws(y)|q−2

y2(q−1)
|w(y, t1)− w(y, t2)| dy �

� aq−2
0 max{e(2−q)t1 , e(2−q)t2}

[∫ 1

0

y(α−2)(q−1) dy +

∫ +∞

1

dy

y2(q−1)

]
×

× ‖w(t1)− w(t2)‖α � M3(α, q, a0)max{e(2−q)t1 , e(2−q)t2}‖w(t1)− w(t2)‖α.

Similarly, we must change estimate (32). Thus, the lemma is proved.

We now consider the following complete metric space with the metric generated by the norm

DR := {w(t) ∈ C([0, T ];Cb(r
−α; [0,+∞))) : ‖w‖ � R, w(t) � w0e

−t}, (77)

‖w‖ := sup
t∈[0,T ]

‖w(t)‖α, w0 ∈ Cb(r
−α; [0,+∞)).

Lemmas 4 and 5 with BR replaced by DR remain valid without changes. The following lemma holds.
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Lemma 8. If conditions (74) are satisfied for a sufficiently small T > 0 and for q ∈ (3/2, 2), then Q is

a contraction operator on DR:

‖Q(w1)−Q(w2)‖ � 1

2
‖w1 − w2‖ (78)

for any w1, w2 ∈ DR.

Proof. Let w1(t), w2(t) ∈ DR. We introduce the following functions for k = 1, 2:

gk(r, t) :=

(
Q−1

2 (wk(r, t))fk(r, t)

)
(r, t), fk(r, t) := q

|wk(r, t)|q
r2(q−1)

,

g1(r, t)− g2(r, t) =

∫ r

0

[
exp

(
−q

∫ r

ρ

|w1(y, t)|q−2w1(y, t)

y2(q−1)
dy

)
−

− exp

(
−q

∫ r

ρ

|w2(y, t)|q−2w2(y, t)

y2(q−1)
dy

)]
f1(ρ, t) dρ+

+

∫ r

0

exp

(
−q

∫ r

ρ

|w2(y, t)|q−2w2(y, t)

y2(q−1)
dy

)
×

× [f1(ρ, t)− f2(ρ, t)] dρ := h1(r, t) + h2(r, t),

exp

(
−q

∫ r

ρ

|w1(y, t)|q−2w1(y, t)

y2(q−1)
dy

)
− exp

(
−q

∫ r

ρ

|w2(y, t)|q−2w2(y, t)

y2(q−1)
dy

)
=

=

∫ 1

0

d

ds
exp

(
−q

∫ r

ρ

|ws(y, t)|q−2ws(y, t)

y2(q−1)
dy

)
ds,

ws(y, t) := sw1(y, t) + (1− s)w2(y, t),

d

ds
exp

(
−q

∫ r

ρ

|ws(y, t)|q−2ws(y, t)

y2(q−1)
dy

)
= −q(q − 1) exp

(
−q

∫ r

ρ

|ws(y, t)|q−2ws(y, t)

y2(q−1)
dy

)
×

×
∫ r

ρ

|ws(y, t)|q−2

y2(q−1)
[w1(y, t)− w2(y, t)] dy.

(79)

It now remains to use the estimates

ws(y, t) = sw1(y, t) + (1 − s)w2(y, t) � sw0(y)e
−t + (1− s)w0(y)e

−t =

= w0(y)e
−t � a0 min{1, yα}e−t � 0, s ∈ [0, 1], y � 0,

|ws(y, t)|q−2|w1(y, t)− w2(y, t)| � aq−2
0 yα(q−1)e(2−q)t‖w1(t)− w2(t)‖α, y ∈ [0, 1],

|ws(y, t)|q−2|w(y, t) − w(y, t)| � aq−2
0 e(2−q)t‖w1(t)− w2(t)‖α, y � 1,∣∣∣∣

∫ r

ρ

|ws(y, t)|q−2

y2(q−1)
[w1(y, t)− w2(y, t)] dy

∣∣∣∣ �
∫ 1

0

|ws(y, t)|q−2

y2(q−1)
|w1(y, t)− w2(y, t)| dy +

+

∫ +∞

1

|ws(y, t)|q−2

y2(q−1)
|w1(y, t)− w2(y, t)| dy � aq−2

0 e(2−q)t

[∫ 1

0

y(α−2)(q−1) dy +

∫ +∞

1

dy

y2(q−1)

]
×

× ‖w1(t)− w2(t)‖α � M3(α, q, a0)e
(2−q)t‖w1(t)− w2(t)‖α.

The further reasoning is the same as in the proof of Lemma 6. The lemma is proved.

Further, as in the preceding section, we conclude that Theorems 1 and 2 hold under the condition

q ∈ (3/2, 2) and conditions (74). Finally, under these conditions, Theorem 3 is also true.
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