
Application of the KAN theorem to two coupled nonlinear oscillators

Belyakin S.T., Stepanov A.V. Moscow State University named after M.V. 
Lomonosov, Faculty of Physics, Moscow, Russia

N Novgorod 2024



This article examines the influence of the 

hysteresis link on the behavior of a system of 

coupled nonlinear oscillators with internal 

resonance. The sinusoidal KAN model for two 

interacting oscillators is chosen as the model of 

the hysteresis link. In earlier works, the Bouk-

Ven model was chosen to describe hysteresis [1]. 

Where: σ, β, γ, n - parameters characterizing 

the Bowk-Wen model ( n N ).
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The hysteresis loops of adjacent cycles 

differ due to the irreversibility of the processes 

accompanied by energy dissipation. Analytical 

matching of hysteresis curves of adjacent cycles 

is a difficult task. Such mathematical models 

often turn out to be not only complex, but also 

very limited for describing real processes, and 

the KAN theorem can be used to describe 

hysteresis during non-stationary oscillations of a 

mechanical system [2]. 



Discrete models.

The study of the effect of periodic influence on relaxation oscillations arising in a Van der 

Pol-type oscillator greatly influenced the development of mathematics in this direction. Early 

studies of such models demonstrated both bistability (the ability to observe one of two modes 

depending on the initial conditions) and aperiodic dynamics.

Studies of periodic effects on nonlinear oscillators have shown that multistability and 

aperiodic dynamics can be explained by considering one-dimensional circle mappings (functions 

that map the circumference of a circle onto itself). It has also been shown that such mappings can 

exhibit aperiodic dynamics as a result of a sequence of period doubling bifurcations.

Circle displays can also be discontinuous; The bifurcations of these maps have not been well

studied. Among the discontinuous mappings studied, one can single out the piecewise linear

monotonically increasing irreversible mapping of a circle. The dynamics of irreversible

discontinuous mappings that do not have fixed points have been studied for piecewise linear

models as applied to the study of neural networks and analog-to-digital converters. But we are

primarily interested in the applications of circle mapping to the study of cardiac arrhythmias.

Bub and Glass considered the possible dynamics of a generalized class of discontinuous

irreversible circular mappings without fixed points and applied the results to a mathematical

model of the ventricular or ventricular parasystole. Attempts were made to model the parasystole;

the first person to think of using a circle display to study the heart was Acad. IN AND. Arnold.



φ = t ∕ T0 (mod1),

0 < t < T0, 

φn+1 = φn + f(φn) (mod1). 

Different types of circle mappings: (a) invertible, 

topological degree 1; (b) irreversible, topological 

degree 1; (c) piecewise continuous; (d) topological 

degree 0 display.



φn+1 = f(a, b, φn)  = φn + a + bsin2πφn (mod1). 

Schematic diagram of Arnold's languages. In the shaded areas 

there is stable phase locking. Between any two capture zones there are 

always other zones.
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Phase diagram for sine mapping of a circle taking into account the refractory 

period (6) and stable phase captures of the sine mapping (6) inside the 2:3 capture 

splitting region.



Model of two interacting pacemakers taking into account 

refractory time

tn+1 = tn + T1, 

τn+1 =  τn + T2 . 

tn+1 =  tn + T1 + Δ1((τn − tn) ∕ T1). 

τn+1 = τn + T2 + Δ2((tn+1 − τn) ∕ T2). 
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Scheme of constructing a model describing a system 

of two interacting nonlinear oscillators.
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xn+1 = xn + a + f2[(1 ∕ 2)(1 + f1(xn) − xn)] − f1(xn)     (mod1), 

xn+1 = xn + a + εh[(1 ∕ a)(1 + γh(xn) − xn)] − γh(xn)     (mod1), 

Regions of stable phase locks for piecewise linear mapping of a circle (2)

with QFO of the form (4) taking into account the mutual influence of oscillators.



Sine model

h(x) = sin(2πx), f '1(x) = γ sin(2πx),  f '2(x) = ε sin(2πx). 

xn+1 = xn + a + ε sin[(1 ∕ a)(1 + γ sin(2πxn) − xn)] − γ sin(xn)     (mod1), 

Structure of some phase locking regions for

piecewise linear mapping of a circle.



Areas of phase locking in space (а, γ)
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Phase locking areas of the oscillator system

with two-way communication (δ = 0,1): (a) ε = 0,1: (b) ε = 0,5.



The merit of Kolmogorov and Arnold is that they 

proved that the approximation of a continuous 

bounded function of a set of variables is reduced to 

finding a polynomial number of one-dimensional 

functions [1] (1):
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1. Matthias F.  SplineCNN: Fast Geometric Deep Learning 

with Continuous B-Spline Kernels, Department of Computer 

Graphics TU Dortmund University, arXiv: 1711.08920v2 

[cs.CV] 23, 5, 2018, P. 1-9. 



For a network with two (n = 2) input parameters, 

we obtain a two-layer (since the composition depth in 

the theorem is two) neural network with five (since the 

theorem involves 2n + 1 = 5 functions) neurons on the 

hidden layer. In our case, we consider with two 

neurons, based on the KAN theorem, the equation [2] 

(2) is obtained: 

𝑥𝑛+1 = 𝑥𝑛 + 𝑎 + 𝑓2 ቇ
1

𝑎
(1 + 𝑓1(𝑥𝑛) − 𝑥𝑛 − 𝑓1(𝑥𝑛) (mod 1)

2.  Loskutov A.U.  A model of cardiac tissue as a conductive 

system with interacting pacemakers and refractory time, Int. J. 

Bif and Chaos. 2004. vol. 14, P. 2457-2466. 



Parameter a = T2 ∕ T1, the ratio of the natural periods of 

the neuron oscillators. Functions f1(x), f2(x) are called phase 

response curves, which generally do not coincide with each 

other. However, we believe that since, according to the 

meaning of the problem, both oscillators are sources of action 

potentials in one tissue, they have a similar nature, and we can 

consider the functions f1(x) and f2(x) to be practically the 

same. The oscillator's response to an external stimulus 

depends only on the phase of the stimulus and its amplitude, 

the CFO changes its shape when the amplitude of the external 

influence changes. This means that the functions that define 

the shape of the phase response curves must depend on one 

parameter that determines the amplitude value, this 

dependence can be considered multiplicative.



3. Belyakin S.T. Discrete models of active media in attached to the 

activities of cardiac arrhythmia, Biomedical J. of Scientific & Technical 

Research. 2019. vol. 20, n. 3, P. 16730-16737. 

𝑥𝑛+1 = 𝑥𝑛 + 𝑎 + 𝜀ℎ ቇ
1

𝑎
(1 + 𝛾ℎ(𝑥𝑛) − 𝑥𝑛 − 𝛾ℎ(𝑥𝑛) ( mod 1)

Then the phase response curves will be written as: 

f1 = γh(x), f2 = εh(x), where h(x) is a periodic 

function, h(x+1) = h(x). In this case, formula (3) will 

take the form:



Sine model
As a model of two nonlinearly interacting 

excitation sources. Let us consider two coupled 

oscillators, taking the role of h(x) as a sine function 

without taking into account refractoriness and 

assuming the magnitude of the influence of the first 

oscillator on the second. Then the mapping (3) will 

take the form [4] (4):

𝑥𝑛+1 = 𝑥𝑛 + 𝑎 + 𝜀sin ቇ
2𝜋

𝑎
(1 + 𝛾sin(2𝜋𝑥𝑛) − 𝑥𝑛 − 𝛾sin(2𝜋𝑥𝑛) (mod 1)

The sinusoidal model is most often used to study 

the behavior of two interacting oscillators.



Fig.3. a) Sine model. Lyapunov exponents, (a1 =1.45, a2 =1.55), along the 

horizontal axis ε (0.1 → 1.0), along the vertical axis γ (0.1 → 1.0). 

b) Phase locking regions of a two-way oscillator system(ε = 0.1). 



In Fig.3(a) capture areas with temporary (δ = a2 ‒ a1 = 0.1)

refractoriness. The colors correspond to the Lyapunov indices.

Dark blue (λ = ‒ 1.0) stable steady state, blue (λ = 0.0)

nonequilibrium state, red (λ = 5.0) unstable unstable chaotic 

state, brown (λ = 7.0) stochastic state.

The arrangement of the phase-locking regions obtained 

as a result of the numerical study (7) is shown in Fig. 3(b). 

Similar to other cases of phase response curve approximation, 

taking into account the mutual influence of two discrete 

systems leads to the curvature of the phase-locking regions, 

their superposition on each other at small γ, and splitting of the 

main tongues. Within the split regions, locks arise that are 

multiples of the main one.



Let us consider two interconnected 

nonlinear oscillators with frequencies ω1, 

ω2, which are described by the Dufing

equations, μ is the coefficient of viscous 

friction, where z is the hysteresis link, for 

its description a sinusoidal model of two 

nonlinearly interacting excitation sources 

was chosen (5) : 
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Where a are the parameters characterizing 

the KAN model [3], α reflects the influence 

of the hysteresis term, (ε, γ) is a small 

parameter. Numerically solving the above-

described system for the values α = - 0.5, α1

= 0.5, α2 = 0.5, ω1 = 2, ω2 =1, a = 0.1, μ = 

0.002, ε = γ =0.5 (in practice, it has been 

found that with such a frequency ratio, an 

internal resonance occurs in the system 

[4]). 







t = 0.00 − 450 − 900







Y” = F2(x, y) + a sin(2πt/n) 

a  =  0.0001, n = 12.5, t = 450 - 900





Y” = F2(x, y) + a sin(2πt/n) 

a  =  0.001, n = 12.5, t = 450 - 900





Y” = F2(x, y) + a sin(2πt/n) 

a  =  0.01, n = 12.5, t = 0.0 - 450





Y” = F2(x, y) + a sin(2πt/n) 

a   =   0.01, t = 450 - 900





Y” = F2(x, y) + a sin(2πt/n) 

a   =   0.05





Y” = F2(x, y) + a sin(2πt/n) 

a   =   0.1





Y” = F2(x, y) + a sin(2πt/n) 

a   =   0.5





Y” = F2(x, y) + a sin(2πt/n) 

a   =   1.0





Y” = F2(x, y) + a sin(2πt/n) 

a   =   1.5





Y” = F2(x, y) + a sin(2πt/n) 

a   =   2.0





Using this substitution, the sine model of the 

KAN, for two interconnected nonlinear 

oscillators, we obtain stable hysteresis. The two 

interconnected nonlinear oscillators themselves, 

in the presence of parametric action (ε, γ), in the 

absence of external influence, have hysteresis. 

With small external periodic influences, the 

system has hysteresis. With large external 

periodic influences, the destruction of hysteresis 

occurs in the system.
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Thank you very much for your attention!

I would like to thank the Organizers for the 
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topics.
And report to the sections                                              
• Bifurcations and chaos. 


