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Scheme 1. Synthesis of pyrimidine N-oxide derivatives via the three-co
heterocyclization of bromofluorocyclopropanes.
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The heterocyclization of gem-dichlorocyclopropanes upon treatment with nitronium triflate in organic
nitriles was studied and the influence of the medium on the reaction pathway was shown. While in anhy-
drous solvent 5-chloroisoxazole was the only product, the admixture with water promoted a three-com-
ponent heterocyclization affording 4-chloropyrimidine N-oxides. This phenomenon was rationalized
using DFT calculations.
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Introduction

The pyrimidine and quinazoline rings are frequently encoun-
tered structural units in the design of pharmaceuticals with a wide
range of activities, including anticonvulsant, antibacterial, antifun-
gal, antiviral and anticancer properties.1 1,3-Diazaheterocycles,
which contain halogens at the o- or p-positions in relation to the
nitrogen atoms and, therefore, can be readily modified via SNAr
or cross-coupling processes, represent common synthetic interme-
diates in the construction of heterocyclic compound libraries for
bioactivity screening.2 However, approaches to halogenopyrimidi-
nes are mostly restricted to halogenation of the pyrimidine ring,
while the direct synthesis via heterocyclization is represented by
significantly fewer examples3

Previously, we reported the heterocyclization of gem-bromoflu-
orocyclopropanes I to give 4-fluoropyrimidine N-oxides II upon
treatment with nitrosating or nitrating reagents in the presence
of organic nitriles (Scheme 1), and preparative approaches towards
various pyrimidine derivatives based on this reaction.4
This reactivity was restricted to 1-bromo-1-fluoro substituted
cyclopropanes; the reaction of gem-dichlorocyclopropanes with
reagents such as NOBF4 or NOCl�SO3 in acetonitrile did not afford
products from introduction of the nitrile moiety into the molecule,
instead leading to 5-chloroisoxazoles.5 Therefore, it remained a
challenging task to engage gem-dichlorocyclopropanes into the
three-component heterocyclization with nitrating reagents. This
approach to 4-halogenopyrimidine oxides would be very attractive
since it utilises the most available and least reactive type of
dihalogenocyclopropanes and adheres to the principle of atom
economy by preventing the waste of a bromine atom on the two-
step synthetic pathway from an alkene to a 4-halogenopyrimidine
N-oxide II (Scheme 1).
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Scheme 2. Reaction pathways for the heterocyclization of dichlorobicycloheptane
1 upon treatment with nitrating agents.
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Scheme 3. Two probable pathways for the transformation of carbocation A.

Fig. 1. Minimum energy pathways for the cyclization of carbocation A (left part) and ac
with H2O. The double mark 00 denotes a complex with H3O+.
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Results and discussion

For this purpose, model dichlorocyclopropane 1a was investi-
gated by treatment with nitronium triflate in acetonitrile; this
was previously found to be the most efficient system for the hete-
rocyclization of bromofluorocyclopropanes into pyrimidine deriva-
tives.4b The reaction of 1a with NO2OTf either at r.t. or reflux
exclusively afforded 5-chloroisoxazole 2 in good yield
(Scheme 2), reproducing the literature data5 for various [NO+]
and [NO2

+] sources.
However, the in situ generation of nitronium triflate from fum-

ing nitric and triflic acids altered the reaction pathway towards the
formation of 4-chloropyrimidine N-oxide 3a, representing the first
example of the targeted reactivity of gem-dichlorocyclopropanes
(Scheme 2).6,7 The same result was obtained, when an equimolar
quantity of water was added to the mixture of cyclopropane 1a
and NO2OTf in acetonitrile.

Previously,4a,c we proposed a mechanism for the three-
component heterocyclization, including the formation of
carbocation A and a Ritter-like reaction of A with a molecule of
acetonitrile as the key stages.8 Taking this into account, we carried
out DFT computations for the two competing processes: 1) the
cyclization of carbocation A to give intermediate B, affording isox-
azole 2 via a series of eliminations, and 2) the nucleophilic addition
of acetonitrile to carbocation A leading to C, the precursor of
pyrimidine N-oxide 3a (Scheme 3).
etonitrile addition (right part) in acetonitrile. The single mark 0 denotes a complex



Table 1
Preparation of pyrimidine N-oxides 3b–i.

N R R1 R2 Yield 3 (%)a

3b Et -(CH2)4- 21
3c i-Pr -(CH2)4- 7
3d t-Bu -(CH2)4- 45
3e cy-Pr -(CH2)4- 15
3f cy-Hex -(CH2)4- 52
3g -(CH2)3Cl -(CH2)4- 47
3h Me -(CH2)3- 49
3i t-Bu -(CH2)3- 26

a Isolated yield. Reagents and conditions: 1 (1.0 mmol), HNO3 (2.0 mmol), TfOH
(2.0 mmol), RCN (1 mL), 7 d, r.t.
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All DFT calculations were performed using the B3LYP exchange-
correlation functional,9 together with the standard 6-311+g(d,p)
basis set,10 using the Gaussian 09 package.11 Minimum energy
paths were calculated by IRC method.12

According to the DFT calculations (Fig. 1, also see ESI), the par-
ticipation of a hydroxonium ion in the reaction is crucial for deter-
mining the reaction pathway. In the absence of a proton the
preferable reaction pathway is an intramolecular cyclization of car-
bocations A or A0, requiring to overcome quite low energy barriers
(0.2 or 0.8 kcal�mol�1, respectively). The resulting product of these
transformations is an isoxazole. On the contrary, the coordination
of the hydroxonium ion with the nitro-group oxygen of carboca-
tion A changes the reaction pathway. As a result, the cyclization
of complex A00 requires an activation energy 1.0 kcal�mol�1 higher
than the addition of acetonitrile. Additionally, cyclization product
B00, generated under these conditions, has low kinetic stability
and is destabilized relative to the starting complex A00. Therefore,
it undergoes rapid reverse transformation with the barrier as low
as 0.8 kcal�mol�1. At the same time nucleophilic addition of ace-
tonitrile to complex A00 gives the very stable adduct C00 (stabiliza-
tion energy is 21.1 kcal�mol�1), which undergoes further
transformations affording pyrimidine N-oxide 3a.

To demonstrate the generality of this process we varied the
dichlorocyclopropane and nitrile components and obtained a series
of previously unknown 4-chloropyrimidineN-oxides 3b–i (Table 1).
It should be noted, that dichlorocyclopropane 1a proved to be less
reactive than the analogous bromofluorocyclopropane4c and the
reaction required either high temperature or extended time, and
was accompanied by decomposition of the organic material.
Another side-process observed in the reaction was the formation
of minor quantities of isoxazole 2 and transformation of the
nitrile into the corresponding diamide derivatives under acidic
conditions.13 The product of this reaction with isobutyronitrile,
diisobutyramide, was isolated and its structure determined by sin-
gle-crystal X-ray analysis (ESI).14

Due to the aforementioned processes, the yields of heterocycles
3a-g are lower (Table 1), when compared to the analogous 4-fluo-
ropyrimidine derivatives.4 Nevertheless, taking into account the
exceptional preparative availability of gem-dichlorocyclopropanes,
this approach towards 4-halogenopyrimidine oxides may repre-
sent a reasonable alternative to previously described synthetic
approaches. Thus, heterocyclization of cyclopropane 1b affords
heterocycles 3h,i, containing the previously not described dihy-
dro-5H-cyclopenta[d]pyrimidine motif, in satisfactory yields.15

In conclusion, we have succeeded in shifting the reaction path-
way for the reaction of gem-dichlorocyclopropanes with nitrating
reagents in organic nitriles using a medium effect. This represents
the first example of a three-component heterocyclization of this
class of compounds, which provides a novel approach towards 4-
chloropyrimidine N-oxides employing readily available gem-
dichlorocyclopropanes.
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