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1 Introduction

Inflationary models with several fields have recently become the subject of a growing in-
terest [1–3]. Most of them are based on complicated potentials, which arise in the brane
approach [4, 5], various supersymmetric models [6], and the landscape paradigm, see,
e.g., [7–11].

Multi-field inflation has been thoroughly elaborated, with its influence on CMB fluctu-
ations analyzed in, e.g., [12–15]. An important feature of multi-field inflationary models is a
potential with many minima [16]. It is well-known that a field-theoretical system with such a
potential can admit non-trivial configurations of the scalar field — solitons [17]. After the end
of the inflation such configurations could collapse into black holes [18–20] or form domains
with extra energy density. Remarkably, solitons could be formed even if the model potential
has only one minimum [17]. This work considers the conditions at which this can occur.

As shown in [21], the number of saddle points of the multi-field potential can be much
greater than the number of its minima. Therefore, if the horizon of the Universe was formed
near an appropriate minimum of the potential [22, 23], there is a substantial probability to
have its saddle point(s) which has to be taken into account. This provides additional motiva-
tion to study the saddle point influence on the inflationary dynamics. Of the plethora of the
inflationary models, those with potentials having saddle points have important implications.
They include the models of hybrid inflation [24] and their modifications, and other modern
models. For example, the Aligned Natural Inflation was recently shown to have higher alti-
tude inflationary trajectories passing through the saddle points of the two-field potential [25];
the influence of a nearby saddle point on the inflationary process was also studied in field
spaces of higher dimensions [26].

Our paper considers a system with two real scalar fields, denoted as ϕ and χ. We show
that the domain wall formation is possible even if the potential has only one minimum. We
demonstrate that non-trivial field configurations can occur when the fields reach the same
minimum at different spatial asymptotics. The necessary condition for the realization of this
phenomenon is the existence of a saddle point of the potential. We perform the topological
classification of such configurations, which allows us to divide them into disjoint homotopic
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classes. We also investigate the conditions at which the configurations can move from one
homotopic class to another. Note that such transitions are forbidden if the fields reach
different minima of the potential at different spatial asymptotics; in this case only quantum
transitions due to tunneling are allowed [27].

Our paper is organized as follows. In section 2 we give some qualitative analysis of
how the initial configuration could be formed. In section 3 we describe the model and
the approximations employed by us, and introduce the homotopic classification of the field
configurations. In section 4 we show the results of our numerical simulation of the evolution
of selected initial configurations and discuss the change of the winding number during the
classical field evolution. Section 5 presents a discussion of the primordial black holes (PBHs)
formation within the modern inflationary models. In section 6 we conclude with a brief
discussion of the results and the prospects for future work.

2 Qualitative analysis

The arguments regarding the field dynamics and formation of the initial conditions can be
set out as follows. During the inflation, the fields ϕ and χ undergo both quantum and
classical evolution. At this stage, the quantum fluctuations of ϕ and χ are of the order
of δϕ ' δχ ' HI/2π, where HI is the Hubble parameter during the inflation [28]. These
fluctuations lead to a highly inhomogeneous fields distribution soon after the beginning of
the inflation. This leads to the large scale structure formation after the end of the inflation
if the inflaton potential has an ordinary form like quadratic one or similar to it. The picture
changes drastically if the potential is assumed to be more complex. As was mentioned in the
Introduction, the potentials with several minima lead to the primordial black holes (PBHs)
formation that is topical nowadays. In this section we qualitatively show that the potentials
with one minimum and saddle point(s) can also lead to the PBH formation after the end of
the inflation.

Let us suppose that the space under the modern horizon is filled by the field value near
a saddle point of the potential. The space is split up into many causally disconnected regions,
the number of which depends on a specific e-fold. Due to quantum fluctuations, the fields in
one of these regions, B, could overcome the saddle point, while in the other part of the space,
U , the fields remain on the same side of the saddle point. Later on the fields in the region
B roll down to the potential minimum. The region B is surrounded by the region U , where
the fields are on the other side of the saddle point. Let this fluctuation happens at the e-fold
number N . Then starting from the e-fold number N + 1 internal points of the domains B
and U are causally disconnected because the distance between them becomes larger than the
horizon HI. This means that the fields inside these domains evolve independently.

The potential with a saddle point determines the steepest descent line lsd passing
through the saddle point (ϕs, χs). The space region B contains the fields on the one side
of the saddle point while the fields in another region U are placed on another side of the
saddle point. The space boundary ∂B of the domain B consists of points where ϕ = ϕs,
χ = χs, and therefore the potential is maximal at those points of the line lsd, which belong
to the border ∂B.

In the process of further evolution the fields in B and U will roll down into the potential
minimum (ϕmin, χmin), but their trajectories will lie on the different sides of the saddle point.
As a result, after a long period of independent evolution the fields arrive to a configuration
that encircles a local maximum of the potential. The values of the fields at spatial points x
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far from the boundary ∂B are close to (ϕmin, χmin). The line lsd contains the saddle point
(ϕs, χs) with both its ends arriving at the same minimum (ϕmin, χmin). Therefore, starting
at one end of lsd and moving to the other, the fields’ values have to pass through (ϕs, χs)
that defines the border ∂B, which thus becomes a domain wall. The horizon grows quickly
after the inflation is finished. When the horizon crosses size of the domain wall, the latter
start shrinking finally producing PBHs. This phenomenon was discussed in [19, 20, 29] for
potentials with several minima.

In this paper we discuss a set of potentials with saddle points and one minimum. In this
case the domain walls not only shrink but their energy density is fluctuating and producing
coherent field oscillations. Our numerical simulations, discussed in detail in what follows,
confirm this qualitative picture and reveal the conditions at which these arguments hold.

Initial setup considers the fields evolving in the (3 + 1)-dimensional space-time. Here
we will study a particular solutions in the form of the one-dimensional kinks. Multi-field
inflationary models could thus potentially benefit from connections to (1 + 1)-dimensional
field-theoretical models with potentials with one or more minima, where many interesting and
important results have been obtained recently, in particular, related to interactions of solitary
waves [30–48], solitons and domains stability [49–53], and planar domain walls [54–60], see
also review [61] and books [17, 62].

3 Nontrivial field configurations and their classification

3.1 The model

We consider two models with potentials characterized by one minimum and one saddle point.
It is assumed that classical trajectories pass near a maximum of the potential and its saddle
point even in multifield inflation. One of the potentials, eq. (3.6), has quite general form
with several parameters. The other one, eq. (4.4), represents well known form of the tilted
Mexican hat. Both of them are endowed with a saddle point.

Assume that the inflation is finished and the horizon crosses the size of the domain B.
Consider a model with two real scalar fields ϕ and χ in the (3+1)-dimensional space-time.
The dynamics of the field system is determined by the Lagrangian

L =
1

2
gµν (∂µϕ∂νϕ+ ∂µχ∂νχ)− V (ϕ, χ), (3.1)

where the metric tensor gµν for the Friedmann-Robertson-Walker universe is

gµν = diag
(
1,−a2(t),−a2(t) r2,−a2(t) r2 sin2 θ

)
. (3.2)

The equations of motion following from the Lagrangian (3.1) are

�ϕ = −∂V
∂ϕ

, �χ = −∂V
∂χ

, (3.3)

where � =
1√
−g

∂µ
(√
−g gµν∂ν

)
is the d’Alembert operator. Taking into account the met-

ric (3.2), we obtain: 
ϕtt + 3Hϕt − a−2(t)ϕrr −

2

r
a−2(t)ϕr = −

∂V

∂ϕ
,

χtt + 3Hχt − a−2(t)χrr −
2

r
a−2(t)χr = −

∂V

∂χ
,

(3.4)
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Figure 1. Left panel: one of the possible initial field configurations. Right panel: initial field
configuration (4.2) which is used in our calculations. All numbers are in the HI units.

where the Hubble parameter H = ȧ/a is small after the end of the inflation. The friction
term is not necessary, however, it provides the dumping of long-period oscillations during
the reheating stage. We are looking for a domain B, which is surrounded by the border
∂B with the fields’ values at the saddle point (ϕs, χs). As we show below, a nontrivial field
configuration can be formed even if the vacuum state is the same at both sides of the border.

During the inflation, the size of the domain B significantly increases. Hence, for an
observer near the border ∂B the latter is almost flat, and one can restrict the problem to the
case of flat solutions ϕ(x, t), χ(x, t) depending on one spatial coordinate x. The equations
of motion (3.4) can also be transformed in this case in such a way that they only depend

on t and x. The terms
2

r
a−2(t)ϕr and

2

r
a−2(t)χr can also be omitted as it is usually done

within the thin wall approximation. In the following we use the physical distances R = a(t)r
and assume that the cosmological expansion is small. In this approximation equations (3.4)
become 

ϕtt + 3Hϕt − ϕxx = −∂V
∂ϕ

,

χtt + 3Hχt − χxx = −∂V
∂χ

.
(3.5)

We take the potential V (ϕ, χ) with a saddle point in the form

V (ϕ, χ) = d (ϕ2 + χ2) + a exp [−b (ϕ− ϕ0)
2 − c (χ− χ0)

2], (3.6)

where a > 0, b > 0, c > 0, d > 0 and ϕ0, χ0 are the physical parameters of the model. The
parameters ϕ0 and χ0 fix the position of the maximum of the potential, while a defines the
height of the maximum. The constants b and c describe the shape of the maximum. The
typical shape of the potential (3.6) is shown in figure 1. With exponentially small errors, the
minimum of the potential (3.6) is at the point (0, 0). The value of HI ∼ 1013 GeV ∼ 10−6MPl

gives the natural scale of the initial field configurations. Below we use HI units for numerical
simulation.

3.2 The winding number

Field configuration at any moment of time is a pair of smooth functions ϕ(x), χ(x), which
map the physical space x to the field space (ϕ, χ). We can imagine that the point (ϕ, χ) is
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on the potential surface (3.6). Thus the field configuration at any given time moment can be
visualized as a curve on the potential surface (3.6).

As it has already been mentioned, the initial field configurations are the results of
quantum fluctuations during the inflation. In the post-inflationary period, the initial values
of the fields in causally disconnected domains substantially differ. After the inflation the
horizon starts to grow, and many such domains become causally connected. The initial field
configuration in any space domain is unique and can correspond to an arbitrary smooth curve
in the (ϕ, χ) plane, see, e.g., figure 1 (left panel). The initial curve chosen there as an example
is not closed. Nevertheless, both ends of this curve tend to evolve to the same point — the
potential minimum, resulting in a final configuration represented by a closed curve.

The set of all closed curves in (ϕ, χ) plane can be split into homotopic classes (equiv-
alence classes). The equivalent curves are those having the same winding number N — the
number of turns of the curve around the point (ϕ0, χ0). An explicit formula for N can be
obtained using the residue theorem: the line integral of a function f(ζ) of the complex vari-
able ζ = ϕ+ iχ around the curve is equal to 2πi times the sum of residues of f(ζ) at isolated
singular points, each counted as many times as the curve winds around the point. We use
the following simple function:

f(ζ) =
1

ζ − ζ0
, (3.7)

which has a simple pole at ζ0 = ϕ0 + iχ0, and the residue of f at this point is equal to 1.
This results in

N =
1

2πi

∮
f(ζ)dζ =

1

2πi

∮
dζ

ζ − ζ0
, (3.8)

where the contour integration is performed along the closed curve, which winds N times
around the pole. Substituting ζ = ϕ + iχ, ζ0 = ϕ0 + iχ0 and simplifying the expression,
we obtain

N [ϕ, χ] =
1

2π

+∞∫
−∞

(ϕ− ϕ0)χx − (χ− χ0)ϕx
(ϕ− ϕ0)

2 + (χ− χ0)
2

dx. (3.9)

We have thus separated the set of all closed curves in the (ϕ, χ) plane into homotopic classes,
depending on the number of windings of the curve around the potential maximum (ϕ0, χ0).
Depending on the shape of the potential, one of the following ways could be realized:

1. The height of the maximum of the potential at the point (ϕ0, χ0) is negligible or absent,
and any trajectory contracts to the point (ϕmin, χmin) as the result of the classical
evolution. The evolution of any configuration thus turns it into the trivial configuration,
i.e. ϕ(x, t → +∞) → ϕmin, χ(x, t → +∞) → χmin. In this case the splitting into the
homotopic classes does not make sense.

2. The height of the maximum of the potential at the point (ϕ0, χ0) is infinite, and the
winding number N is conserved during the classical dynamics of any closed trajectory.

3. The maximum of the potential has a moderate height. As we demonstrate below, in
this case the winding number of any configuration can be conserved or can decrease,
depending on the initial conditions and the parameters of the model.
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4 Numerical simulation. Formation of the domain wall(s)

The above qualitative analysis shows that the presence of saddle point(s) could lead to the
formation of the non-trivial field configurations. In this section, we perform numerical sim-
ulation to validate this analysis. We will consider the third scenario from the list above.
Studying the classical evolution of the fields, we show that their dynamics can vary substan-
tially, depending on the initial configuration and the values of the model parameters.

We start from an initial field configuration in the form of a closed loop in the (ϕ, χ)
plane, so that the boundary conditions are the following:

ϕ(−∞, t) = ϕ(+∞, t),
ϕx(−∞, t) = ϕx(+∞, t),
χ(−∞, t) = χ(+∞, t),
χx(−∞, t) = χx(+∞, t).

(4.1)

Furthermore, we specifically consider the following initial configuration which encircles the
local maximum of the potential (3.6):{

ϕ(x) = ϕ0 +R cos θ(x),

χ(x) = χ0 +R sin θ(x),
(4.2)

where the dependence θ(x) is given by

θ(x) = Nπ
(

1 + tanh
(x
l

))
. (4.3)

Our initial trajectory is parameterized by R and l. In our estimates we put l = 1 (remind
that HI = 1).

It is easy to see that θ varies within the interval 0 ≤ θ(x) ≤ 2πN at −∞ ≤ x ≤ +∞.
Note also that this initial trajectory fulfills the boundary conditions (4.1). We show this
trajectory in figure 1 (right panel). Substituting (4.2) and (4.3) in (3.9) gives the correct
answer for the winding number, equal to the coefficient N in (4.3).

Equations (3.5), (4.1), (4.2), and (4.3) form a well-posed problem. Equations (3.5)
are inhomogeneous hyperbolic equations of the second order with the periodic boundary
conditions (4.1), which can be solved by the standard methods. We employed an implicit
version of the finite difference method, complemented with the modified tridiagonal matrix
algorithm, see, e.g., [63]. We used the following values of the parameters of the potential (3.6):
a = 50, b = 5, c = 5, d = 1, ϕ0 = −2, χ0 = 0 (note that the saddle point has coordinates
(−2.9, 0)). Furthermore, we set R =

√
ϕ2
0 + χ2

0, see figure 1 (right panel).

We performed the numerical simulation of the evolution of the initial configuration (4.2),
(4.3) for N = 1, 2, 3, 4 and confirmed possibility of soliton production for all N , which was
shown earlier in [64]. Our results are presented in figures 2 and 3. At all considered winding
numbers we observed the tightening of the loop around the maximum of the potential. This
means that a space trajectory connecting a point of the domain B with a point of U necessarily
goes through a domain wall (at N = 1) or a series of domain walls (at N ≥ 2).

If the height of the potential maximum is small enough, the fields overcome the maxi-
mum and tend to the absolute minimum in the whole space. We obtained that solitons with
the winding number N = 2 survive at a & 84. For example, in figures 2b and 3b we used
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(a) The case of N = 1. (b) The case of N = 2. For N > 2 the number
of turns of the curve around the local maximum is
equal to N .

Figure 2. Steady stationary configuration of the fields ϕ, χ on the potential surface (3.6) at various
winding numbers N .
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increasing proportional to N (see [64] for details).

Figure 3. Spatial distributions of the fields ϕ, χ at the initial (t = 0) and final (t→ +∞) moments
of time for the potential (3.6), corresponding to various winding numbers N .

a = 84. On the other hand, at a . 50 (with the same values of the other parameters) the
solitons are not formed (unwind).

Let us now discuss the conditions under which the change of the winding number be-
comes possible during the classical evolution of the fields. To facilitate the analysis, we
consider the well known tilted Mexican hat potential [65]. For two real scalar fields ϕ and χ
this potential has the form:

V (ϕ, χ) = λ

(
ϕ2 + χ2 − g2

2

)2

+ Λ4

(
1− ϕ√

ϕ2 + χ2

)
. (4.4)

In our calculations below we used g = 8 and Λ = 5 · 10−13, see figure 4. Solving the
equations of motion (3.5) with the boundary conditions (4.1) and the initial conditions (4.2)
with ϕ0 = χ0 = 0 and R = (1 + κ)g/

√
2 for the potential (4.4) (κ = 0 corresponds to the

potential minimum valley; in our calculation we used κ = 0.1 for the initial conditions), we
observed the formation of a soliton analogous to those studied above.
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Figure 4. Initial state of the fields ϕ, χ on the potential surface (4.4). The parameter values are
listed under (4.4).
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(a) λ = 0.1, Λ = 5 · 10−13, g = 7.
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(b) λ = 0.1, Λ = 5 · 10−13, g = 8.

Figure 5. Typical time-dependence of the total surface energy density σ (the total energy of the
field configuration) and the potential surface energy density σp for the potential (4.4) at λ = 0.1,
Λ = 5 · 10−13, g = 7 and g = 8 (in HI units) and the initial conditions (4.2) with R = (1 + κ)g/

√
2.

The parameters are chosen in such a way that the soliton doesn’t overcome the maximum of the
potential (i.e. doesn’t unwind).

As a check of our numerical results, we also calculated the total surface energy density
σ of the field configuration. As expected, it monotonically decreases with time, while the
potential energy density oscillates, see figure 5. If a soliton decays, the final energy tends
to zero due to the friction (left panel). On the contrary, the energy tends to a constant as
it should be for the soliton formation (right panel). The left and the right panels differ by
slight variation of the parameter g.

Thus we conclude that the initial field configuration (4.2) evolves differently depending
on the shape of the potential. If the height of the potential maximum is small, the formation
of the configurations with non-zero winding number is not observed. On the other hand, if the
height of the maximum is bigger than some critical value, the configurations with non-zero
winding numbers can be formed. As is discussed in the next section, the formation of the
topologically non-trivial configurations could substantially affect the process of the Universe
formation.
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5 Large density perturbations in the early Universe

In the previous sections we have considered the potentials (3.6) and (4.4). We have demon-
strated that depending on the height of the potential maximum closed walls could be formed
just after the end of the inflation. In this section we discuss influence of this result on the
processes in the early Universe.

Let us show that the relative density excess δρ/ρ can be of order of unity even for large
scales. In [66] we considered mechanism of formation of closed walls based on the quantum
fluctuations during inflation around a saddle point. As it was shown in [20], these fluctuations
lead to the fractal-like structure of walls. As a result, the surface area and consequently its
mass are increased by a factor ζN where N is the number of e-folds and ζ ∼ 1 ÷ 2. As it
was shown in [67], the crinkles could live long enough to prevent BH formation as it would
be in the case of spherical wall and the Minkowski background. In more realistic case of
FRW universe, the wall crinkles transfer their energy into surrounding media. The produced
excess of the energy density may be considered as non-gaussian fluctuations that influence
the CMB spectrum and the galaxy formation. Let us make some estimations.

The wall energy is approximately Ew ∼ 4πσR2
hζ
N . Here Rh is the scale of the closed

domain wall at the moment th of the horizon crossing. Hence, δρ ∼ Ew/

(
4π

3
R3

h

)
. If the

wall was formed at the e-fold number N then it will be crossed by horizon having the size
Rh ∼ H−1e2N (at the radiation dominated stage). The matter density is ρ ∼ T 4 ∼M2

Pl/R
2
h.

Gathering everything, we obtain:

δρ

ρ
∼ σ

M2
PlH

ζNe2N . (5.1)

After the wall crosses the horizon it starts shrinking that leads with necessity to strong
inhomogeneities in the density distribution. For example, suppose that ζ = 1.2. Then, for

condition
δρ

ρ
' 1 formula (5.1) gives N ' 37 for σ = 4Λ2g ' 1016 GeV3 at the parameter

values Λ and g used in the previous section. This scale is much less than the galaxy scale.

The result is very sensitive to the parameter ζ, which is poorly known. For example,
consider the surface energy density σ = 104 GeV3. The energy density excess (5.1) at the

galaxy scale (N ∼ 45) is negligibly small —
δρ

ρ
∼ 10−8 for ζ = 1 — and of the order of 1,

δρ

ρ
∼ 1, for ζ = 1.5.

The energy of crinkles starts to flow to the surrounding media when the horizon reaches
the scale of the crinkle. The latter is much smaller than the scale of the domain wall. Hence
the crinkle could disappear before the wall starts to evolve as a whole. The estimations

performed in [62, 68] indicate that perturbations of the scales smaller than
√
Gσt

3/2
h are

damped to the moment th of the horizon crossing the scale of the wall. The energy flow
from the crinkles to the ambient media leads to its heating. In turn, the temperature growth
makes the energy flow more intensive. The impact of this effect on the mass of the black hole
and the very fact of its formation are strongly model dependent. First estimates indicate
that the effect is not very prominent. For example, suppose that the average energy density
excess of a wall is δρ ∼ ρ, see the previous paragraph. In this case, the ambient media would
be heated in 21/4 times and this effect can be neglected.
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Therefore the presence of saddle point(s) leads to heated overdensed areas of large
scale. Notice that the role of the crinkles appears to be small if the walls are the result of
the quantum tunneling [69]. The physical explanation is that the fluctuations of their form
are suppressed by the exponential factor e−SE where SE is the Euclidean action.

Another interesting possibility has been discussed since 1984 [70], where it was revealed
that closed domain walls could form black holes after shrinking. At the first glance, a BH
mass should be approximately equal to the mass of the closed wall. In reality, there are

several effects that strongly influence the result [69, 71]. A wall for which th < tσ ≡
M2

Pl

2πσ
is

called “subcritical”, and its gravitational field can be safely neglected before horizon crossing.
If its form is near spherical, it shrinks to a size smaller than the corresponding Schwarzschild
radius, forming a black hole with ordinary internal structure. If the surface energy density
σ is large so that th > tσ, the black holes are also being formed for an exterior observer.
Meanwhile their interior inflates, forming baby universes. The latter are connected to the
exterior FRW Universe by wormholes [72]. The final masses of the black holes depending on
the initial data and parameters of the model are analyzed in [69, 71, 72].

Let us address the question, whether the massive PBHs could be formed in spite of
the wall disappearance after the end of the inflation. To clarify the subject, we perform
some estimations and find conditions that lead to the BHs formation within this scenario.
The gravitational radius of the domain wall is of the order of rg = 2GEw ' 8πσl2h/M

2
Pl for

spherical wall (ζ = 1), where the horizon size lh (' Rh) crosses the domain wall size at the
moment t ∼ lh. The wall energy Ew is emitted in the form of waves of the scalar fields if
the fields overcome the potential maximum and fluctuates near the potential minimum. The
waves are emitted both outside and inside the domain. The latter are concentrated on the
scale of the order of the wavelength lw. Hence the condition for the BH formation is

lw < rg '
8πσl2h
M2

Pl

. (5.2)

This inequality may be used to estimate the horizon size lh. Let us return to the potential (4.4)
with the values of the parameters used in figure 5. Assume that if the fields overcome the
potential maximum then they start to oscillate around the minimum r =

√
ϕ2 + χ2 = 0

in the radial direction. The frequency of such oscillations is of the order of 1/mr where
mr = 2

√
λg is the mass of the radial oscillations. Hence the wavelength emitted during the

oscillations is of the order of lw ∼ 1/mr = (2
√
λ g)−1. The surface energy density of the

domain wall is σ = 4Λ2g. We can estimate the horizon scale using (5.2):

lh &
MPl

λ1/4Λg
∼ 104 GeV−1, (5.3)

that is not very serious restriction. Therefore, the PBHs are intensively produced even if the
domain walls finally disappear emitting radiation according to the second scenario. Accurate
calculation of the PBH mass spectra for disappeared closed walls will be the subject of further
research.

6 Conclusion

We have considered the evolution of the non-trivial field configurations after the end of the
inflation in the model with the potential having saddle point(s). We have shown that there
are substantially different scenarios of the field evolution.
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The first scenario is widely discussed in the framework of the random Gaussian land-
scape [8] and multi-stream inflation [14]. It was shown that the field dynamics during the
inflation leads to inhomogeneities in the CMB radiation temperature fluctuations that could
be observed in future. As we noticed in the Introduction, models with many peak potentials
could contain saddle points that lead to serious consequences discussed above.

The second scenario has been elaborated in this paper. We have shown that the po-
tentials with a saddle point could lead to the closed wall formation even if there is only one
potential minimum.

Realization of the first or the second scenario depends on the parameters of the potential
and on the initial conditions. If the second scenario takes place, strong inhomogeneities in the
CMB spectrum and large energy density fluctuations appear in the early Universe. Possible
formation of the massive PBHs is also discussed in the paper. Our estimations show that
PBHs can be formed even if the domain walls disappear (the second scenario). This result
worths to be thoroughly investigated in future. For example, it would be interesting to check
if the PBHs can also be formed in the multi-stream inflation.

The set of the field configurations that could evolve into BHs can be split into disjoint
equivalence classes that are identified by the winding number of the configuration. We have
provided simple formula for analytical and numerical calculation of the winding number of
arbitrary field configuration. If the height of the potential is not very large, the winding
number could change during the field evolution.

The new type of solitons studied here may be also useful as a mechanism of production
of black holes with complex mass spectra [18–20, 73–76] and could be used as a part of
the solution of a lot of cosmological problems: high-z quasars and supermassive black holes
within galactic nuclei [18–20, 29, 66, 74, 75, 77, 78], dark matter [73, 75, 79–83], as well as
astrophysical problems: unidentified sources of gamma-radiation [73, 84, 85], reionization [73,
86–88], the deficiency of intermediate-mass black holes [78, 89].

The fluctuating mechanism discussed in this paper leads to the PBH formation due to
the closed walls collapse. The PBH mass spectrum is the result of complex processes that
take place just after the inflation is finished and is strongly model dependent. Indeed, most
of the walls are created having the form far from the spherical one. Their small inhomo-
geneities are damped transferring the energy to the surrounding media and heating it. The
larger perturbations of the wall surface survive to the moment of the horizon crossing. The
supercritical walls (th � tσ) form baby universes with wormholes. At the same time, the
nonspherical collapse with the BHs in the final stage has been discussed in [90, 91]. More-
over, as was shown in [19] black holes are created together with substantial amount of BHs
of smaller masses. The consequent evolution of such PBH cluster depends on its space/mass
distribution, parameters of the Lagrangian, and initial conditions.

In conclusion, we emphasize that our consideration is limited to two-dimensional domain
walls in the three-dimensional space, whereas the formation and evolution of, e.g., string-type
configurations would be the subject of future study.

Acknowledgments

The authors would like to thank K. Belotsky for useful discussions. The work fulfilled in the
framework of MEPhI Academic Excellence Project (contract № 02.a03.21.0005, 27.08.2013)
and according to the Russian Government Program of Competitive Growth of Kazan Federal
University. The work of S.G.R. was also supported by the Ministry of Education and Science
of the Russian Federation, Project № 3.4970.2017/BY.

– 11 –



J
C
A
P
0
4
(
2
0
1
8
)
0
4
2

References

[1] M. Dias, J. Frazer and D. Seery, Computing observables in curved multifield models of inflation
— A guide (with code) to the transport method, JCAP 12 (2015) 030 [arXiv:1502.03125]
[INSPIRE].

[2] J. Bramante, Generically large nonGaussianity in small multifield inflation, JCAP 07 (2015)
006 [arXiv:1502.02674] [INSPIRE].

[3] R.R. Abbyazov and S.V. Chervon, Unified dark matter and dark energy description in a chiral
cosmological model, Mod. Phys. Lett. A 28 (2013) 1350024 [arXiv:1404.5836] [INSPIRE].

[4] M. Dias, J. Frazer and A.R. Liddle, Multifield consequences for D-brane inflation, JCAP 06
(2012) 020 [Erratum ibid. 03 (2013) E01] [arXiv:1203.3792] [INSPIRE].
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