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Abstract: A family of strongly nonlinear nonstationary equations of mathematical physics
with three independent variables is investigated, which contain an arbitrary degree of the
first derivative with respect to time and a quadratic combination of second derivatives with
respect to spatial variables of the Monge–Ampère type. Individual PDEs of this family are
encountered, for example, in electron magnetohydrodynamics and differential geometry.
The symmetries of the considered parabolic Monge–Ampère equations are investigated
by group analysis methods. Formulas are obtained that make it possible to construct
multiparameter families of solutions based on simpler solutions. Two-dimensional and
one-dimensional symmetry and non-symmetry reductions are considered, which lead
to the original equation to simpler partial differential equations with two independent
variables or ordinary differential equations or systems of such equations. Self-similar and
other invariant solutions are described. A number of new exact solutions are constructed by
methods of generalized and functional separation of variables, many of which are expressed
in elementary functions or in quadratures. To obtain exact solutions, the principle of the
structural analogy of solutions was also used, as well as various combinations of all
the above-mentioned methods. In addition, some solutions are constructed by auxiliary
intermediate-point or contact transformations. The obtained exact solutions can be used
as test problems intended to check the adequacy and assess the accuracy of numerical
and approximate analytical methods for solving problems described by highly nonlinear
equations of mathematical physics.

Keywords: parabolic Monge–Ampère equations; strongly nonlinear partial differential
equations; group analysis; one- and two-dimensional reductions; exact solutions; self-
similar solutions; solutions with additive, multiplicative and generalized separation of
variables; magnetohydrodynamics
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1. Introduction

1◦. Stationary equations of the Monge–Ampère type with two independent variables
containing quadratic nonlinearity with respect to the highest derivatives of the form
wxxwyy − w2

xy have been considered in many papers (see, for example, [1–8]), where their
qualitative features and applications are described. Exact solutions of such and related
strongly nonlinear PDEs are given in [5,7–11].

2◦. Nonstationary Monge–Ampère equations of the form

wt(wxxwyy − w2
xy) = σ, (1)

where σ < 0 is a constant or a function of spatial variables; and generalizations of this
equation to the case of many variables, when the expression in parentheses is replaced
by det[wxixj ], were considered in the works (see, for example, [12–17]) in which geometric
applications were discussed and questions of existence and uniqueness of solutions for
various internal and external initial-boundary value problems were investigated. Exact
solutions of the nonlinear PDE (1) have not been considered so far.

In this paper, we will analyze the generalized nonstationary equation of magneto-
hydrodynamics with Monge–Ampère type nonlinearity in spatial variables and power
nonlinearity with respect to the time derivative

wxxwyy − w2
xy = σ(wt)

m, σ ̸= 0, (2)

where m and σ are free constants (unless otherwise specified). Equation (2) at m = −1
passes into Equation (1).

Equation (2) in the special case m = 1 extends to the equation of electron mag-
netohydrodynamics [18–20]. Simple exact solutions of this equation with additive and
multiplicative separation of variables are described in [21,22]. In [23,24], a group analysis
of Equation (2) for m = 1 is carried out, where some of its invariant solutions are described,
and a number of non-invariant solutions with generalized separation of variables are
constructed.

The issues of existence and uniqueness of solutions to Equation (2) are discussed
in [25–28].

Equation (2) is strongly nonlinear (quadratic with respect to the highest derivatives).
It belongs to the parabolic Monge–Ampère equations and has properties unusual for
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quasilinear equations, which are linear with respect to the highest derivatives. In particular,
even for the simplest stationary case with m = 0, the qualitative features of Equation (2)
depend on the sign of the constant σ, since for σ > 0, this equation is an equation of
elliptic type, and for σ < 0, it is an equation of hyperbolic type [2,8]. Moreover, unlike the
overwhelming majority of other equations of mathematical physics, which do not depend
explicitly on the independent variables, Equation (2) has no solutions of the traveling wave
type (this fact for the special case m = 1 was noted in [24]).

Table 1 presents some simple multiparameter exact solutions of the nonstationary
Monge–Ampère Equation (2) with m = σ = 1, which are expressed in terms of elementary
functions (according to [23,24]).

Table 1. Multiparameter exact solutions of the nonstationary Monge–Ampère Equation (2) with
m = σ = 1. Notation: A, C1, . . . , C6, µ are arbitrary constants.

No. Exact Solutions of the NonStationary Monge–Ampère Equation (2) with m = σ = 1

1 w = C1y2 + C2xy + C3x2 + (4C1C3 − C2
2)t

2 w = C1y4 + (24C1C2t + C3)y2 + C2x2 + 48C1C2
2 t2 + 4C2C3t

3 w = −At +
1

x + C1

(
C2y2 + C3y +

C2
3

4C2

)
− A

12C2
(x3 + 3C1x2)

4 w = −At ± 2
√

A
3C1C2

(C1x − C2
2y2 + C3)

3/2

5 w = −Axt + C1y2 + C2xy − A
12C1

x3 +
C2

2
4C1

x2

6 w = −Axt + C1
y2

x
+ C2y − A

24C1
x4 + C3x + C4

7 w =
1
2

C1y2 + C2xy +
1
2

C3x2 + (C1C3 − C2
2)t + C4 exp(C1µ2t ± µx)

8 w =
1
2

C1y2 + C2xy +
1
2

C3x2 + (C1C3 − C2
2)t + C4 exp(−C1µ2t) sin(µx)

9 w = − (y + C1x2 + C2)
3

36C1(t + C3)
+ C4x + C5y + C6

10 w = − 1
12(4C1C3 − C2

2)(t + C4)

[
C1x2 + C2xy + C3y2

]2

3◦. In this paper, the main attention is paid to the construction of exact solutions of
Equation (2). Here and below, we understand the term “exact solution” in the same sense
as in [24,29].

Exact solutions of nonlinear partial differential equations are most often constructed
using methods of group analysis [4,7,30], methods of generalized and functional separation
of variables [8,29,31,32], the method of differential relations [8,29,33,34] and some other
analytical methods (see, for example, [8,29,35–39]).

In this paper, to find exact solutions to the generalized equation of magnetohydro-
dynamics (2), various modifications of the method of generalized separation of vari-
ables [8,29,31] and exact solutions of simpler than the original intermediate reduced equa-
tions with a smaller number of independent variables given in [8,9] are mainly used. In
addition, to construct exact solutions of the nonlinear PDE (2), the principle of structural
analogy of solutions was also used, which is formulated as follows: exact solutions of
simpler PDEs can serve as a basis for constructing solutions of more complex related
PDEs [36,37]. Namely, to construct a series of exact solutions of Equation (2) with m ̸= 1,
we used the structure of known exact solutions of the simpler equation with m = 1 [24]. It
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should be noted that we pay special attention to constructing simple exact solutions that
are expressed through elementary functions or quadratures.

2. Symmetries of the Nonstationary Monge–Ampère Equation
2.1. Symmetries of the Equation in the Basic Case for m ̸= 2

We seek the symmetry operators of Equation (2) in the form

X = ξ1(x, y, t, w)
∂

∂x
+ ξ2(x, y, t, w)

∂

∂y
+ ξ3(x, y, t, w)

∂

∂t
+ η(x, y, t, w)

∂

∂w
. (3)

Applying the invariance criterion [4] to the nonlinear PDE (2) for m ̸= 2, we obtain
the following overdetermined linear homogeneous system of defining equations:

ξ1
t = 0 , ξ1

w = 0 , ξ2
t = 0 , ξ2

w = 0 ,

ξ3
x = 0 , ξ3

y = 0 , ξ3
w = 0 ,

ηt = 0 , ηw +
2ξ1

x + 2ξ2
y − mξ3

t

m − 2
= 0 ,

ξ1
xx = 0 , ξ1

xy = 0 , ξ1
yy = 0 ,

(4)

ξ2
xx = 0 , ξ2

xy = 0 , ξ2
yy = 0 ,

ξ3
tt = 0 , ηxx = 0 , ηxy = 0 , ηyy = 0 .

It is easy to show that the solution of system (4) is given by the formulas

ξ1 = α1x + α2y + α3 ,

ξ2 = α4x + α5y + α6 ,

ξ3 = α7t + α8 ,

η =
mc7 − 2(α1 + α5)

m − 2
w + α9x + α10y + α11,

where αj (j = 1, . . . , 11) are arbitrary constants.

Proposition 1. The basis of the Lie algebra of symmetry operators of Equation (2) for m ̸= 2 has
the form

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂t
, X4 =

∂

∂w
,

X5 = y
∂

∂x
, X6 = x

∂

∂y
, X7 = x

∂

∂w
, X8 = y

∂

∂w
,

X9 = x
∂

∂x
− 2w

m − 2
∂

∂w
, X10 = y

∂

∂y
− 2w

m − 2
∂

∂w
,

X11 = t
∂

∂t
+

mw
m − 2

∂

∂w
.

From Proposition 1, the following preposition follows.

Proposition 2. For m ̸= 2, the transformation

x̄ = a1x + b1y + c1, ȳ = a2x + b2y + c2, t̄ = pt + q, p ̸= 0,

w̄ = kw + a3x + b3y + c3,

k = p |p|
2

m−2 |a1b2 − a2b1|−
2

m−2 , a1b2 − a2b1 ̸= 0,

(5)
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where a1, a2, a3, b1, b2, b3, c1, c2, c3, p and q are arbitrary constants, transforms Equation (2) into
itself.

The eleven-parameter transformation (5) allows one to construct more complex exact
solutions of Equation (2) using simpler particular solutions. Namely, if w = Φ(x, y, t) is a
solution of Equation (2) for m ̸= 2, then the function

w =
1
k
[Φ(a1x + b1y + c1, a2x + b2y + c2, pt + q))− (a3x + b3y + c3)] (6)

is also a solution of this equation.

2.2. Symmetries of the Equation in the Special Case for m = 2

The symmetry operators of Equation (2) for m = 2, as before, are searched in For-
mula (3). Using the invariance criterion [4], in this case, we obtain an overdetermined
system of determining equations:

ξ1
t = 0 , ξ1

w = 0 , ξ2
t = 0 , ξ2

w = 0 ,

ξ3
x = 0 , ξ3

y = 0 , ξ3
w = 0 , ξ1

x + ξ2
y − ξ3

t = 0 ,

ηt = 0 , ξ1
xx = 0 , ξ2

xx = 0 , ξ2
xy = 0 , ξ2

yy = 0 ,

ξ3
tt = 0 , ηxx = 0 , ηxy = 0 , ηyy = 0 ,

ηxw = 0 , ηxw = 0 , ηww = 0 .

The solution of this system has the form

ξ1 = α1x + α2y + α3 ,

ξ2 = α4x + α5y + α6 ,

ξ3 = (α1 + α5)t + α7 ,

η = α8x + α9y + α10w + α11,

where αj (j = 1, . . . , 11) are arbitrary constants.

Proposition 3. The basis of the Lie algebra of symmetry operators of Equation (2) for m = 2 has
the form

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂t
, X4 =

∂

∂w
,

X5 = y
∂

∂x
, X6 = x

∂

∂y
, X7 = x

∂

∂w
, X8 = y

∂

∂w
,

X9 = w
∂

∂w
, X10 = x

∂

∂x
+ t

∂

∂t
, X11 = y

∂

∂y
+ t

∂

∂t
.

From Proposition 3, the following proposition follows.

Proposition 4. For m = 2, the transformation

x̄ = a1x + b1y + c1, ȳ = a2x + b2y + c2,

t̄ = pt + q, p = a1b2 − a2b1, a1b2 − a2b1 ̸= 0,

w̄ = kw + a3x + b3y + c3, k ̸= 0,

(7)
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where a1, a2, a3, b1, b2, b3, c1, c2, c3, k and q are arbitrary constants, transforms Equation (2) into
itself.

The eleven-parameter transformation (7) allows for using simpler partial solutions of
Equation (2) to construct its more complex exact solutions. Namely, if w = Φ(x, y, t) is the
solution of Equation (2) for m = 2, then the function

w =
1
k
[Φ(a1x + b1y + c1, a2x + b2y + c2, pt + q)− (a3x + b3y + c3)]

is also the solution of this equation.

3. Two-Dimensional Symmetry Reductions
The regular procedure for constructing two-dimensional symmetric reductions of

partial differential equations is described in [4,30]. In this paper, we restrict ourselves to the
most informative examples of constructing two-dimensional reductions of the parabolic
Monge–Ampère Equation (2) based on the use of the symmetries described above.

1◦. Passing into Equation (2) to variables of the traveling wave type,

w = W(ξ, η), ξ = x + a1t, η = y + a2t, (8)

where a1 and a2 are arbitrary constants, we arrive at a two-dimensional equation of the
Monge–Ampère type:

WξξWηη − W2
ξη = σ(a1Wξ + a2Wη)

m .

The solution of Formula (8) is invariant with respect to a one-parameter group of
transformations defined by the symmetry operator

Y = a1X1 + a2X2 − X3 = a1
∂

∂x
+ a2

∂

∂y
− ∂

∂t
.

2◦. For m ̸= 2, passing into Equation (2) to variables of the self-similar type where α

and β are arbitrary constants, we obtain a two-dimensional equation of the Monge–Ampère
type with variable coefficients at lower derivatives.

For m ̸= 2, passing into Equation (2) to variables of the self-similar type,

w = t
2α+2β+m

m−2 W(ξ, η), ξ = xtα, η = ytβ, (9)

where α and β are arbitrary constants, we obtain a two-dimensional equation of the Monge–
Ampère type with variable coefficients at the lower derivatives:

WξξWηη − W2
ξη = σ

(
αξWξ + βηWη +

2α + 2β + m
m − 2

W
)m

. (10)

The solution of Formula (10) is invariant with respect to a one-parameter group of
transformations defined by the symmetry operator

Y = αX9 + βX10 − X11 = αx
∂

∂x
+ βy

∂

∂y
− t

∂

∂t
− (2α + 2β + m)w

m − 2
∂

∂w
.

Remark 1. Substituting α = β = 0 into (9), we arrive at the multiplicative separable solution

w = t
m

m−2 W(x, y).
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Remark 2. An equivalent form of solution representation can be obtained from (9) by taking,
instead of the second argument, a combination of both arguments ζ = ξ−βηα = x−βyα, which leads
to a two-dimensional solution of the form

w = t
2α+2β+m

m−2 W(ξ, ζ), ξ = xtα, ζ = yαx−β. (11)

3◦. For m ̸= 2, passing into Equation (2) to variables of the limiting self-similar type

w = exp
[2(α + β)

m − 2
t
]
W(ξ, η), ξ = x exp(αt), η = y exp(βt), (12)

where α and β are arbitrary constants, we obtain another two-dimensional Monge–Ampère
type equation with variable coefficients for lower derivatives:

WξξWηη − W2
ξη = σ

(
αξWξ + βηWη +

2(α + β)

m − 2
W

)m
. (13)

The solution of Formula (13) is invariant with respect to a one-parameter group of
transformations defined by the symmetry operator:

Y = αX9 + βX10 − X3 = αx
∂

∂x
+ βy

∂

∂y
− ∂

∂t
− 2(α + β)w

m − 2
∂

∂w
.

Remark 3. An equivalent form of solution representation can be obtained from Equation (12) by
taking, instead of the second argument, a combination of both arguments, ζ = ξ−βηα = x−βyα,
which leads to a two-dimensional solution of the form

w = exp
[2(α + β)

m − 2
t
]
W(ξ, ζ), ξ = x exp(αt), ζ = yαx−β. (14)

4◦. For m ̸= 2, passing into Equation (2) to invariant variables

w = t
m

m−2 W(ξ, η), ξ = x + λ1 ln t, η = y + λ2 ln t, (15)

where λ1 and λ2 are arbitrary constants, we obtain another two-dimensional equation of
the Monge–Ampère type with constant coefficients:

WξξWηη − W2
ξη = σ

(
λWξ + λ2Wη +

m
m − 2

W
)m

.

The solution of Formula (15) is invariant with respect to a one-parameter group of
transformations defined by the symmetry operator

Y = λ1X1 + λ2X2 − X11 = λ1
∂

∂x
+ λ2

∂

∂y
− t

∂

∂t
− mw

m − 2
∂

∂w
.

5◦. Equation (2) for m ̸= 2 using invariant variables

w = x
2

2−m W(ξ, η), ξ = t + α ln x, η = y + β ln x, (16)

where α and β are arbitrary constants, is reduced to a two-dimensional PDE, which is
omitted here.
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The solution of Formula (16) is invariant with respect to a one-parameter group of
transformations defined by the symmetry operator

Y = −βX2 − αX3 + X9 = x
∂

∂x
− β

∂

∂y
− α

∂

∂t
− 2w

m − 2
∂

∂w
.

Remark 4. The values of α = β = 0 correspond to the multiplicative separable solution:

w = x
2

2−m W(y, t).

6◦. Equation (2) for m ̸= 2 using invariant variables

w = exp
(αm − 2β

2 − m
x
)

W(ξ, η), ξ = t exp(αx), η = y exp(βx), (17)

is reduced to a two-dimensional PDE, which is omitted here.
The solution of Formula (17) is invariant with respect to a one-parameter group of

transformations defined by the symmetry operator

Y = X1 − βX10 − αX11 =
∂

∂x
− βy

∂

∂y
− αt

∂

∂t
− (αm − 2β)w

m − 2
∂

∂w
.

7◦. Equation (2) for m ̸= 2 using invariant variables

w = exp
( 2α

m − 2
x
)

W(ξ, η), ξ = t + βx, η = y exp(αx), (18)

is reduced to a two-dimensional PDE, which is omitted here.
The solution of Formula (18) is invariant with respect to a one-parameter group of

transformations defined by the symmetry operator

Y = X1 − βX3 − αX10 =
∂

∂x
− αy

∂

∂y
− β

∂

∂t
+

2αw
m − 2

∂

∂w
.

8◦. For m = 2, there are multiplicative separable solutions of the form

w = eλtW(x, y), (19)

where λ is an arbitrary constant, and the function W = W(x, y) is described by the two-
dimensional equation

WxxWyy − W2
xy = σλ2W2.

The solution of Formula (19) is invariant with respect to a one-parameter group of
transformations defined by the symmetry operator

Y = X3 + λX9 =
∂

∂t
+ λw

∂

∂w
.

9◦. For m = 2, there are other multiplicative separable solutions

w = eγxW(y, t), (20)

where λ is an arbitrary constant, and the function W = W(x, y) is described by the two-
dimensional equation

WWyy − W2
y = σγ−2W2

t .
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The solution of Formula (20) is invariant with respect to a one-parameter group of
transformations defined by the symmetry operator

Y = X1 + γX9 =
∂

∂x
+ γw

∂

∂w
.

Remark 5. More complicated two-dimensional reductions of Equation (2) can be obtained by
replacing in (8), (9), (11), (12), (14), (15), (16)–(20) the spatial variables by their arbitrary linear
combinations according to the rule x =⇒ a1x + b1y and y =⇒ a2x + b2y.

4. One-Dimensional Symmetry Reductions and Exact Solutions
The regular procedure for constructing one-dimensional reductions of partial differ-

ential equations is described in [4]. In this paper, we restrict ourselves to characteristic
examples of constructing one-dimensional reductions and invariant exact solutions by
using symmetries of the Monge–Ampère parabolic Equation (2).

1◦. For m ̸= 2, the simplest invariant solution of Equation (2) that allows for a scaling
transformation is a solution in the form of a product of the corresponding powers of the
independent variables

w = A(xy)−
2

m−2 t
m

m−2 , A =

[
4(m + 2)(m − 2)m−3

σmm

] 1
m−2

. (21)

This formula can be used for those values of parameters m and σ when A is a real number.
Below, we consider several invariant solutions that generalize solution (21) and can be

obtained using simple methods described in [36,37].
Solution (21) is a special case of a wider family of invariant solutions of the form

w = x−
2

m−2 t
m

m−2 f (z), z = y + β ln t, (22)

where β is a free parameter, and the function f = f (z) is described by ODE

2m
(m − 2)2 f f ′′zz −

4
(m − 2)2 ( f ′z)

2 = σ
( m

m − 2
f + β f ′z

)m
.

The solution of Formula (22) is invariant with respect to a two-parameter group of
transformations defined by the symmetry operators

Y1 = X9 = x
∂

∂x
− 2w

m − 2
∂

∂w
,

Y2 = −βX2 + X11 = −β
∂

∂y
+ t

∂

∂t
+

mw
m − 2

∂

∂w
.

Solution (21) is a special case of another, broader family of invariant solutions of the form

w = x−
2

m−2 t
m

m−2 g(ξ), ξ = y + λ ln x, (23)

where λ is a free parameter and the function f = f (z) satisfies the ODE

λg′ξ g′′ξξ −
2m

(m − 2)2 gg′′ξξ +
4

(m − 2)2 (g′ξ)
2 = −σ

( m
m − 2

g
)m

, m ̸= 2.

The solution of Formula (23) is invariant with respect to a two-parameter group of
transformations defined by the symmetry operators
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Y1 = X11 = t
∂

∂t
+

mw
m − 2

∂

∂w
,

Y2 = λX2 − X9 = λ
∂

∂y
− x

∂

∂x
+

2w
m − 2

∂

∂w
.

Solution (21) is also a special case of another broader family of invariant solutions of
the form

w = (xy)−
2

m−2 φ(η), η = t + γ ln y, (24)

where γ is a free parameter, and the function φ = φ(η) satisfies the ODE

2mγ2

(2 − m)2 φφ′′
ηη −

4γ2

(2 − m)2 (φ′
η)

2 +
2γ(m − 6)
(2 − m)3 φφ′

η −
4(m + 2)
(2 − m)3 φ2 = σ(φ′

η)
m.

The solution of Formula (24) is invariant with respect to a two-parameter group of
transformations defined by the symmetry operators

Y1 = X9 = x
∂

∂x
− 2w

m − 2
∂

∂w
,

Y2 = γX3 − X10 = y
∂

∂y
− γ

∂

∂t
− 2w

m − 2
∂

∂w
.

Remark 6. In solutions (22)–(24), the spatial variables x and y can be swapped or Formula (6)
can be used. For example, by applying Formula (6) with a1 = b1 = a2 = p = 1, b2 = −1,
a4 = b4 = c1 = c2 = c4 = q = 0 to the solution (21), we obtain a solution of a more complex form
as follows:

w = B(x2 − y2)
2

2−m t
m

m−2 , B =

[
16(m + 2)(m − 2)m−3

σmm

] 1
m−2

.

2◦. Equation (2) for m ̸= 2 using invariant variables

w = t
2α+m
m−2 x

2(β−1)
m−2 V(ζ) , ζ = tαxβy (25)

is reduced to a second-order ODE, which is not given here due to its bulkiness.
The solution of Formula (25) is invariant with respect to a two-parameter group of

transformations defined by the symmetry operators

Y1 = X9 − βX10 = x
∂

∂x
− βy

∂

∂y
+

2(β − 1)w
m − 2

∂

∂w
,

Y2 = X11 − αX10 = t
∂

∂t
− αy

∂

∂y
+

(2α + m)w
m − 2

∂

∂w
.

3◦. Equation (2) for m ̸= 2 using invariant variables

w = exp
( 2αt

m − 2

)
x

2(β−1)
m−2 V(ζ), ζ = exp(αt)xβy (26)

is reduced to a second-order ODE, which is not given here.
The solution of Formula (26) is invariant with respect to a two-parameter transforma-

tion group defined by symmetry operators
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Y1 = X3 − αX10 =
∂

∂t
− αy

∂

∂y
+

2αw
m − 2

∂

∂w
,

Y2 = X9 − βX10 = x
∂

∂x
− βy

∂

∂y
+

2(β − 1)w
m − 2

∂

∂w
.

4◦. Equation (2) for m ̸= 2 using invariant variables

w = t
2α+m
m−2 exp

( 2βx
m − 2

)
V(ζ), ζ = tα exp(βx)y (27)

is reduced to a second-order ODE, which is not given here.
The solution of Formula (27) is invariant with respect to a two-parameter group of

transformations defined by the symmetry operators

Y1 = X11 − αX10 = t
∂

∂t
− αy

∂

∂y
+

(2α + m)w
m − 2

∂

∂w
,

Y2 = X1 − βX10 =
∂

∂x
− βy

∂

∂y
+

2βw
m − 2

∂

∂w
.

5◦. Equation (2) for m ̸= 2 using invariant variables

w = exp
(2αt + 2βx

m − 2

)
V(ζ), ζ = exp(αt + βx)y (28)

is reduced to a second-order ODE, which is not given here.
The solution of Formula (28) is invariant with respect to a two-parameter group of

transformations defined by the symmetry operators

Y1 = X3 − αX10 =
∂

∂t
− αy

∂

∂y
+

2αw
m − 2

∂

∂w
,

Y2 = X1 − βX10 =
∂

∂x
− βy

∂

∂y
+

2βw
m − 2

∂

∂w
.

6◦. For m = 2, there is a solution of the form

w = exp(a1x + b1y + c1t)W(ξ),

ξ = a2x + b2y + c2t, a1b2 − a2b1 ̸= 0,

where a1, a2, b1, b2, c1, and c2 are arbitrary constants, and the function W = W(ξ) satisfies
the autonomous ODE

WW ′′
ξξ − (W ′

ξ)
2 = σ(a1b2 − a2b1)

−2(c1W + c2W ′
ξ)

2. (29)

The solution of Formula (29) is invariant with respect to a two-parameter group of
transformations defined by the symmetry operators

Y1 =
b1c2 − b2c1

a1b2 − a2b1

∂

∂x
− a1c2 − a2c1

a1b2 − a2b1

∂

∂y
+

∂

∂t
,

Y2 =
b2

a1b2 − a2b1

∂

∂x
− a2

a1b2 − a2b1

∂

∂y
+ w

∂

∂w
.

Equation (29) for c1 = 0 is easily integrated and has a simple solution

W = (Aξ + B)−k, k =
(a1b2 − a2b1)

2

σc2
2

,
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where A and B are arbitrary constants.
For c2 = 0, the general solution of Equation (29) is given by the formula

W = A exp(λξ2 + Bξ), λ = 1
2 σc2

1(a1b2 − a2b1)
−2,

where A and B are arbitrary constants.

Remark 7. In the case m = 2, it is not difficult to construct other examples of two-dimensional
reductions and exact solutions similar to those given above.

5. Reductions with Additive Separation of Variables Leading to
Stationary Monge–Ampère Type Equations

1◦. Equation (2) has additive separable solutions of the form

w = At + u(x, y), (30)

where A is an arbitrary constant, and the function u is described by the inhomogeneous
Monge–Ampère equation with a constant right-hand side:

uxxuyy − u2
xy = σAm. (31)

2◦. It is easy to verify that Equation (2) admits an exact additive separable solution of
Formula (30), which is expressed in elementary functions:

w = C1x2 + C2xy +
1

4C1

(
σAm + C2

2
)
y2 + C4x + C5y + At + C6,

where A, C1, . . . , C5 (C1 ̸= 0) are arbitrary constants.

3◦. Using the results of [8], for example, one can obtain the following exact solutions
of Formula (30) of Equation (2):

w = At ±
√
−σAm

C2
x(C1x + C2y) + φ(C1x + C2y) + C3x + C4y + C5,

w = At +
1

x + C1

(
C2y2 + C3y +

C2
3

4C2

)
+

σAm

12C2
(x3 + 3C1x2) + C4y + C5x + C6,

w = At ± 2
√
−σAm

3C1C2
(C1x − C2

2y2 + C3)
3/2 + C4x + C5y + C6,

where C1, . . . , C6 are arbitrary constants, and φ = φ(z) is an arbitrary function.

Remark 8. For σAm < 0, the general solution of the inhomogeneous Monge–Ampère Equation (31)
can be represented in parametric form [3,8].

4◦. Equation (2) admits more complicated solutions than (30) with generalized sepa-
ration of variables of the form

w = (ax + by + c)t + u(x, y),

where a, b, and c are arbitrary constants, and the function u is described by the inhomoge-
neous Monge–Ampère equation with a variable right-hand side:

uxxuyy − u2
xy = σ(ax + by + c)m. (32)
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For a = 1, b = c = 0, Equation (32) has, for example, the following exact solutions
with generalized separation of variables:

u = ±2
√
−σ

m + 2
x

m+2
2 y + φ(x), m ̸= 2;

u = C1y2 + C2xy +
C2

2
4C1

x2 +
σ

2C1(m + 1)(m + 2)
xm+2, m ̸= −1, −2;

u =
1
x

(
C1y2 + C2y +

C2
2

4C1

)
+

σ

2C1(m + 2)(m + 3)
xm+3, m ̸= −2, −3,

where φ(x) is an arbitrary function and C1 and C2 are arbitrary constants.

6. Reductions with Multiplicative Separation of Variables Leading to
Stationary Monge–Ampère Type Equations

1◦. Equation (2) for m ̸= 2 has the multiplicative separable solution

w = (t + A)
m

m−2 W(x, y),

where A is an arbitrary constant, and the function W = W(x, y) is described by the
stationary Monge–Ampère equation

WxxWyy − W2
xy = σ

( m
m − 2

)m
Wm. (33)

Equation (33), in turn, admits the multiplicative separable solution

W = x
2

2−m θ(y),

where θ = θ(y) satisfies the autonomous ODE

2mθθ′′yy − 4(θ′y)
2 = σ(m − 2)2

( m
m − 2

)m
θm.

Substituting Z(θ) = (θ′y)
2 reduces this equation to the first-order linear ODE

mθZ′
θ − 4Z = σ(m − 2)2

( m
m − 2

)m
θm,

which is easily integrated.

2◦. Equation (2) for m = 2 admits the multiplicative separable solution

w = eλtW(x, y), (34)

where λ is an arbitrary constant, and the function W = W(x, y) is described by the station-
ary Monge–Ampère equation

WxxWyy − W2
xy = σλ2W2. (35)

Equation (35) admits the multiplicative separable solution

W = C1eβxθ(y), θ = exp
[ 1

2 σ(λ/β)2y2 + C2y
]
,

where C1 and C2 are arbitrary constants.
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7. Reductions with Generalized Separation of Variables Leading to
a Two-Dimensional Nonstationary Equation

1◦. Equation (2) allows for solutions with generalized separation of variables of the form

w = 1
2 y2 + axy + 1

2 a2x2 + by + W(x, t),

where a and b are arbitrary constants, and the function W = W(x, t) is described by a
relatively simple nonlinear equation:

Wxx = σWm
t . (36)

For the magnetohydrodynamic equation, which corresponds to m = σ = 1, the
reduced Equation (36) is the linear heat equation.

Some exact solutions of Equation (36) are described below.

2◦. Equation (36) has a simple solution with an additive separation of variables

W = At + 1
2 σAmx2 + Bx + C,

where A, B, and C are arbitrary constants.

3◦. Equation (36) has an exact solution in the form of a product of functions of different
arguments W = T(t)X(x), which includes a simple solution

W = A(t + C1)
m

m−1 (x + C2)
2

1−m , A =

[
2(m + 1)(m − 1)m−2

σmm

] 1
m−1

,

where C1 and C2 are arbitrary constants.

4◦. Equation (36) has the traveling wave solution

W = W(z), z = x + λt,

where λ is an arbitrary constant, and the function W(z) is described by the simple au-
tonomous ODE

W ′′
zz = σλm(W ′

z)
m.

The general solution of this equation for m ̸= 1, 2 is determined by the formula

W =
1

(2 − m)σλm

[
(1 − m)σλmz + C1

] 2−m
1−m + C2,

where C1 and C2 are arbitrary constants.
Equation (36) also has a more general solution of the form

w = ax2 + bx + ct + W(z), z = x + λt,

where a, b, c, and λ are arbitrary constants, and the function W(z) is described by the
autonomous ODE

W ′′
zz = σ

(
λW ′

z + c)m − 2a.

5◦. Equation (36) for m ̸= 1 admits the self-similar solution

W = t
m+2β
m−1 V(ζ), ζ = xtβ,
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where the function V(ξ) is described by the non-autonomous ODE

V′′
ζζ = σ

(m + 2β

m − 1
V + βζV′

ζ

)m
.

6◦. Equation (36) for m ̸= 1 has an invariant solution of the form

W = t
m

m−1 θ(z), z = x + β ln t, (37)

where β is an arbitrary constant, and the function θ = θ(z) is described by the autonomous ODE

θ′′zz = σ
( m

m − 1
θ + βθ′z

)m
.

The general solution of this equation for β = 0, which corresponds to the solution with a
multiplicative separation of variables (37), can be represented in implicit form.

7◦. Equation (36) for m ̸= 1 has another invariant solution of the form

W = exp
( 2β

m − 1
t
)

U(ξ), ξ = x exp(βt),

where β is an arbitrary constant, and the function U = U(ξ) is described by the non-
autonomous ODE

U′′
ξξ = σ

( 2β

m − 1
U + βξU′

ξ

)m
.

8◦. Equation (36) for m = −1 using the Euler transformation [8]

w(x, t) + u(ξ, τ) = xξ, x = uξ , t = −τ/σ,

reduces to the linear heat equation
uτ = uξξ .

8. Reduction to the Stationary Monge–Ampère Equation Using Traveling
Wave Type Variables

1◦. Equation (2) allows for the generalized separable solutions of combined type:

w = C1x2 + C2xy + C3y2 + C4x + C5y + C6t + W(ξ, η),

ξ = a1x + b1y + λ1t, η = a2x + b2y + λ2t,
(38)

where Ci, aj, bj, λj (i = 1, . . . , 6; j = 1, 2) are arbitrary constants, ξ and η are new traveling
wave variables, and the function W = W(ξ, η) is described by the stationary Monge–
Ampère type equation:

(a1b2 − b1a2)
2(WξξWηη − W2

ξη)

+ 2(a2
1C3 + b2

1C1 − a1b1C2)Wξξ + 2(a2
2C3 + b2

2C1 − a2b2C2)Wηη

+ 2[(2a1a2C3 + 2b1b2C1 − (a1b2 + a2b1)C2]Wξη + 4C1C3 − C2
2

= σ(C6 + λ1Wξ + λ2Wη)
m.

(39)

2◦. Consider the special case of (38) and (39), setting

a1 = a, b1 = b, λ1 = λ, a2 = b2 = 0, λ2 = 1, η = t,
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which corresponds to a solution of the form

w = C1x2 + C2xy + C3y2 + C4x + C5y + C6t + W(ξ, t), ξ = ax + by + λt, (40)

where Ci, a, b, λ (i = 1, . . . , 6) are arbitrary constants. In this case, the function W = W(ξ, t)
is described by the nonlinear equation:

2(a2C3 + b2C1 − abC2)Wξξ = σ(C6 + Wt + λWξ)
m − 4C1C3 + C2

2 . (41)

3◦. In particular, taking in (40) and (41), the function W with one argument ξ, we
arrive at a nonlinear ODE of the autonomous form

2(a2C3 + b2C1 − abC2)W ′′
ξξ = σ(C6 + λW ′

ξ)
m − 4C1C3 + C2

2 . (42)

Substituting U(ξ) = W ′
ξ reduces it to a first-order ODE with separable variables. Under

the condition 4C1C3 − C2
2 = 0, m ̸= 1, 2, the general solution of Equation (42) is written as

follows:

W =
1

A(2 − m)

[
A(1 − m)ξ + B1

] 2−m
1−m − C6

λ
ξ + B2, A =

σλm

2(a2C3 + b2C1 − abC2)
,

where B1 and B2 are arbitrary constants.

9. Reduction Using a New Variable, Parabolic in Spatial Coordinates

1◦. In the variables, one of which is time and the other is given by a parabolic function
in spatial variables,

w = W(z, t), z = y + ax2,

where a is an arbitrary constant, Equation (2) is reduced to the two-dimensional PDE:

2aWzWzz = σ(Wt)
m. (43)

Some exact solutions of Equation (43) are described below.

2◦. The reduced Equation (43) admits additive separable solutions

W = C1t ± 2
3

√
σCm

1
a

(z + C2)
3/2 + C3,

where C1, C2, and C3 are arbitrary constants.

3◦. Equation (43) for m ̸= 2 has a simple solution in the form of a product of power
functions of different arguments:

W = A(t + C1)
m

m−2 (z + C2)
3

2−m , A =

[
−18a(m + 1)(m − 2)m−3

σmm

] 1
m−2

.

where C1 and C2 are arbitrary constants.

4◦. Equation (43) has traveling wave solutions:

W = W(ξ), ξ = z + λt ≡ y + ax2 + λt, (44)

where λ is an arbitrary constant, and the function W(z) is described by the autonomous ODE

2aW ′′
ξξ = σλm(W ′

ξ)
m−1,
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whose general solution for m ̸= 2, 3 is determined by the formula

W =
1

κ(3 − m)

[
κ(2 − m)ξ + C1

] 3−m
2−m + C2, κ =

σλm

2a
,

where C1 and C2 are arbitrary constants.

Remark 9. More general than (44), a solution of Equation (43) can be obtained if we look for a
solution in the form

W = Ct + U(ξ), ξ = z + λt ≡ y + ax2 + λt.

5◦. Equation (43) for m ̸= 2 admits self-similar solutions:

W = t
m+3β
m−2 V(ζ), ζ = ztβ,

where β is an arbitrary constant, and the function V = V(ξ) is described by the non-
autonomous ODE

2aV′
ζV′′

ζζ = σ
(m + 3β

m − 2
V + βζV′

ζ

)m
.

6◦. Equation (43) for m ̸= 2 has invariant solutions of the form

W = t
m

m−2 f (η), η = z + λ ln t,

where λ is an arbitrary constant, and the function f = f (η) is described by the autonomous ODE

2a f ′η f ′′ηη = σ
( m

m − 2
f + λ f ′η

)m
.

7◦. Equation (43) for m ̸= 2 also admits other invariant solutions

W = exp
( 3β

m − 2
t
)

g(τ), τ = exp(βt)z,

where β is an arbitrary constant, and the function g = g(τ) is described by the non-
autonomous ODE

2ag′τ g′′ττ = σ
( 3β

m − 2
g + βτg′τ

)m
.

8◦. Equation (43) for m = 2 has simple solutions of the exponential form

W = A exp
[
kz ± (2ak3/σ)1/2t

]
,

where A and k are arbitrary constants. There are also more complex solutions of the form
W = eλt φ(z), where the function φ = φ(z) is described by an autonomous ODE, the
general solution of which can be represented in implicit form.

10. Reduction Using a New Quadratic Variable in Spatial Coordinates

1◦. In the variables, one of which is time and the other is quadratic with respect to
spatial variables,

w = W(z, t), z = ax2 + bxy + cy2 + kx + sy, (45)
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where a, b, c, k, and s are arbitrary constants, Equation (2) is reduced to the two-dimensional
nonstationary PDE:

2(Az + B)WzWzz + AW2
z = σ(Wt)

m;

A = 4ac − b2, B = as2 + ck2 − bks.
(46)

Note that depending on the coefficients of the quadratic terms a, b, and c in (45), the
curve z = const can be an ellipse (for A = 4ac − b2 > 0), a hyperbola (for A < 0), or a
parabola (for A = 0).

Let us consider some classes of exact solutions that Equation (46) admits.

2◦. The reduced Equation (46) admits additive separable solutions:

W = Ct + ζ(z),

where C is an arbitrary constant, and the function ζ = ζ(z) is described by the nonlinear ODE

2(Az + B)ζ ′zζ ′′zz + A(ζ ′z)
2 = σCm,

which is easily integrated, since it admits a reduction in order and is simultaneously
linearized using the substitution u(z) = (ζ ′z)

2. As a result, we obtain

ζ = ± C1

2
√

σA3Cm
ln
[

A2C1

2
+ σA3Cm

(
z +

B
A

)
+ s

√
σA3Cm

]
+ C2 ,

s =

√
σA3Cm

(
z +

B
A

)2
+ A2C1

(
z +

B
A

)
,

where C1 and C2 are arbitrary constants. The first formula above was transformed by
changing C2.

Remark 10. A more general result can be obtained if we seek a solution to Equation (46) in the form

W = Ct + U(ξ), ξ = z − λt,

where λ is an arbitrary constant.

3◦. For 4ac − b2 ̸= 0, m ̸= 2, the reduced Equation (46) admits solutions in the form of
a product of functions of different arguments:

W = t
m

m−2 f (z),

where the function f = f (z) is described by the non-autonomous ODE

2(Az + B) f ′z f ′′zz + A( f ′z)
2 = σ

( m
m − 2

)m
f m,

which has the simple particular solution:

f = k(Az + B)
2

2−m , k =

[
4A3(m + 2)
σ(2 − m)3

(m − 2
m

)m
] 1

m−2
.

4◦. For 4ac − b2 ̸= 0, m ̸= 2 the reduced Equation (46) admits solutions of the quasi-
self-similar form

W = t
m+2β
m−2 V(η), η = (Az + B)tβ,
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where β is an arbitrary constant, and the function V = V(η) satisfies the nonlinear ordinary
differential equation:

2ηV′
ηV′′

ηη + (V′
η)

2 = σA−3
(m + 2β

m − 2
V + βηV′

η

)m
.

5◦. When 4ac − b2 ̸= 0, the transformation

t = t, z =

√
|A|
2

ρ2 − B
A

, W = U(ρ, t),

leads Equation (46) to the canonical form:

signA ρ−1UρUρρ = σ(Ut)
m. (47)

11. Reductions and Exact Solutions in Polar Coordinates
In polar coordinates r, φ, where x = r cos φ and y = r sin φ, the original Equation (2)

takes the form
r−2wrr(wφφ + rwr)− [(r−1wφ)r]

2 = σ(wt)
m. (48)

Remark 11. In elliptical coordinates r, φ, where x = ar cos φ, y = br sin φ (a and b are positive
constants), Equation (2) is written as follows:

r−2wrr(wφφ + rwr)− [(r−1wφ)r]
2 = (ab)2σ(wt)

m. (49)

It can be seen that Equation (49) differs from Equation (48) only by overestimating the coefficient σ.

1◦. Equation (48), written in polar coordinates x = r cos φ, y = r sin φ, allows for
radially symmetric solutions independent of the angular variable, which are described by a
two-dimensional equation:

r−1wrwrr = σ(wt)
m, (50)

which, up to a redesignation of the independent variable, coincides with Equation (47)
for A > 0. Three exact solutions of Equation (50) are obtained using the results given in
paragraphs 2◦–4◦ Section 9.

2◦. Equation (50) has an exact solution with the additive separation of variables

w = At + ζ(r) ,

where

ζ = ±
[

rs
2
− C1

2
√

σAm
ln

(
r
√

σAm + s
)]

+ C2 ,

s =
√

σAmr2 − C1 .

Here, A, C1, and C2 are arbitrary constants.

3◦. Equation (48) for m ̸= 2 admits the self-similar solution

w = t
m+4γ
m−2 F(z), z = rtγ,

where γ is an arbitrary constant, and the function F = F(z) is described by the ODE

z−1F′
zF′′

zz = σ
(m + 4γ

m − 2
F + γzF′

z

)m
.
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4◦. Equation (49) for m ≠ 2 also has exact solutions with separation of variables of the form

w = r
4

2−m v(φ, t), (51)

where the function v = v(φ, t) is described by the two-dimensional PDE

4(2 + m)

(2 − m)2 v
(

vφφ +
4

2 − m
v
)
−

(2 + m
2 − m

)2
v2

φ = σvm
t . (52)

5◦. Since Equation (52) does not depend explicitly on the independent variables, it
has the traveling wave solution

v = v(Z), Z = φ + λt,

where λ is an arbitrary constant, and the function v = v(Z) is described by the autonomous ODE

4(2 + m)

(2 − m)2 v
(

v′′ZZ +
4

2 − m
v
)
−

(2 + m
2 − m

)2
(v′Z)

2 = σλm(v′Z)
m.

6◦. Equation (52) admits the multiplicative separable solution of the form

v = (t + C)
m

m−2 V(φ),

where C is an arbitrary constant, and the function V = V(φ) is described by the autonomous ODE

4(2 + m)

(2 − m)2 V
(

V′′
φφ +

4
2 − m

V
)
−

(2 + m
2 − m

)2
(V′

φ)
2 = σ

( m
m − 2

)m
Vm.

There is also a more complex solution of the form v = (t + C1)
m

m−2 V(ζ), where
ζ = φ + C2 ln(t + C1).

12. Constructing Exact Solutions Using a Special Point Transformation
The special point transformation

x =
ξ

1 + αξ + βη
, y =

η

1 + αξ + βη
, w =

u
1 + αξ + βη

, (53)

where α and β are free parameters, leads the nonlinear PDE (2) to the form

uξξuηη − u2
ξη = σ(1 + αξ + βη)−m−4(ut)

m. (54)

Note that transformation (53) was used in [5,8] to study stationary Monge–Ampère
equations of the form wxxwyy − w2

xy = f (x, y).
Setting β = 0 in (53) and (54), we arrive at the equation

uξξuηη − u2
ξη = f (ξ)(ut)

m. (55)

where f (ξ) = σ(1 + αξ)−m−4.
Let us now describe some exact solutions of Equation (55) for the general case, consid-

ering the function f (ξ) to be arbitrary.

1◦. Equation (55) admits generalized separable solutions

u = (aξ + b)t + Z(ξ, η),
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where a and b are arbitrary constants, and the function Z = Z(ξ, η) is described by the
stationary Monge–Ampère equation

Zξξ Zηη − Z2
ξη = f (ξ)(aξ + b)m. (56)

PDEs of this type were considered in [8]. Equation (56) has the following exact generalized
separable solutions:

Z = ±η
∫ √

− f (ξ)(aξ + b)m dξ + φ(ξ),

Z = C1η2 + C2ξη +
C2

2
4C1

ξ2 +
1

2C1

∫ ξ

0
(ξ − ζ) f (ζ)(aζ + b)m dζ + C3ξ + C4η,

Z =
1

ξ + C1

(
C2η2 + C3η +

C2
3

4C2

)
+

1
2C2

∫ ξ

0
(ξ − ζ)(ζ + C1) f (ζ)(aζ + b)m dζ,

where φ(ξ) is an arbitrary function and C1, . . . , C4 are arbitrary constants.

2◦. Equation (55) for m ̸= 2 admits two-dimensional solutions of the form

u = t
m+2k
m−2 U(ξ, θ), θ = ηtk,

where k is a free parameter, and the function U = U(ξ, θ) is described by the PDE

UξξUθθ − U2
ξθ = f (ξ)

(m + 2k
m − 2

U + kθUθ

)m
.

3◦. Equation (55) for m ̸= 2 admits other two-dimensional solutions of the form

u = exp
( 2γt

m − 2

)
U(ξ, θ), θ = exp(γt)η,

where γ is a free parameter, and the function U = U(ξ, θ) is described by the PDE

UξξUθθ − U2
ξθ = f (ξ)

( 2γ

m − 2
U + γθUθ

)m
.

4◦. Moreover, Equation (55) for m ̸= 2 also admits two-dimensional solutions of the form

u = exp
( mγη

m − 2

)
U(ξ, θ), θ = t exp(γη),

where γ is a free parameter, and the function U = U(ξ, θ) is described by a PDE that is not
given here due to its cumbersomeness.

5◦. Equation (55) for m = 2 has multiplicative separable solutions of the form

u = eλtU(ξ, η),

where λ is a free parameter, and the function U = U(ξ, η) is described by the two-
dimensional PDE

UξξUηη − U2
ξη = λ2 f (ξ)U2.

6◦. Equation (55) for m = 2 has other multiplicative separable solutions,

u = eγηU(ξ, t),

where γ is a free parameter, and the function U = U(ξ, t) is described by the two-
dimensional equation
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UUξξ − U2
ξ = γ−2 f (ξ)U2

t .

7◦. Equation (55) for m ̸= 2 admits the one-dimensional solution

u = t
m

m−2 η
2

2−m φ(ξ),

where the function φ = φ(ξ) is described by the ODE

2m
(m − 2)2 φφ′′

ξξ −
4

(m − 2)2 (φ′
ξ)

2 =
( m

m − 2

)m
f (ξ)φm.

8◦. Equation (55) for m = 2 admits the one-dimensional solution

u = exp(αt + βη)φ(ξ),

where α and β are free parameters, and the function φ = φ(ξ) is described by the ODE

φφ′′
ξξ − (φ′

ξ)
2 = (α/β)2 f (ξ)φ2.

13. Using the Euler–Legendre Contact Transformation
For further analysis of the original Equation (2), we use the Euler–Legendre contact

transformation, which is defined by the following formulas [40]:

Direct transformation:

t = T, x = WX , y = WY, w =XWX + YWY − W. (57)

Inverse transformation:

T = t, X = wx, Y = uy, W = xwx + ywy − w, (58)

where w = w(t, x, y) and W = W(T, X, Y), and the time derivatives are related by the
relation

wt = −WT . (59)

Using (57) and (58), we find the second derivatives

wxx = JWYY, wxy = wyx = −JWXY, wyy = JWXX , (60)

where
J = wxxwyy − w2

xy,
1
J
= WXXWYY − W2

XY. (61)

Replacing the old derivatives in Equation (2) with new ones according to Formulas
(59)–(61) and additionally making the substitution W = −U, we arrive at an equation of a
similar type with a different exponent for the first derivative

UXXUYY − U2
XY = σ−1(UT)

−m. (62)

If W = W(T, X, Y) is a solution of Equation (62), then Formula (57) defines the
corresponding solution of Equation (2) in parametric form.
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From a comparison of Equations (2) and (62), in particular, it follows that to construct
exact solutions of Equation (2) for m = −1, one can use the exact solutions of the simpler
Equation (2) for m = 1 obtained in [24].

14. Brief Conclusions
The generalized equation of electron magnetohydrodynamics with nonlinearity of the

Monge–Ampère type
wxxwyy − w2

xy = σ(wt)
m,

which is also encountered in differential geometry, is investigated. Two-dimensional and
one-dimensional reductions are considered, leading to simpler partial differential equations
with two independent variables (including stationary equations of the Monge–Ampère
type) or ordinary differential equations. Some self-similar and other invariant solutions are
described. A number of more complex solutions with generalized separation of variables
are obtained, many of which are expressed in elementary functions or quadratures.
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