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Blow-up of solutions of an abstract Cauchy problem
for a formally hyperbolic equation with double non-linearity

M. O. Korpusov and A. A. Panin

Abstract. We consider an abstract Cauchy problem for a formally hyper-
bolic equation with double non-linearity. Under certain conditions on the
operators in the equation, we prove its local (in time) solubility and give
sufficient conditions for finite-time blow-up of solutions of the correspond-
ing abstract Cauchy problem. The proof uses a modification of a method
of Levine. We give examples of Cauchy problems and initial-boundary
value problems for concrete non-linear equations of mathematical physics.

Keywords: finite-time blow-up, generalized Klein–Gordon equations,
non-linear hyperbolic equations, non-linear mixed boundary-value prob-
lems, field theory.

§ 1. Introduction

We shall consider an abstract Cauchy problem for a formally hyperbolic equation
with double non-linearity of the following form:

A
d2u

dt2
+
d

dt

(
A0u+

n∑
j=1

Aj(u)
)

+ H′
f (u) = F′f (u). (1.1)

Our main concern is to find conditions for the blow-up of solutions of this problem.
First of all we note that there are three main methods for studying blow-up

phenomena: the energy method of Levine [1]–[7], which was further developed
in [8], the non-linear capacity method of Pokhozhaev and Mitidieri [9]–[12] and the
method of self-model regimes, which is based on various comparison tests and was
developed by Samarskii, Galaktionov, Kurdyumov and Mikhailov in [13], [14].

Concerning the study of Cauchy problems for equations of the form (1.1), we first
of all mention the classical papers [1] and [5], which studied an abstract hyperbolic
equation of the form

Putt = −Au+ F (u)

and obtained sufficient conditions for finite-time blow-up of solutions of the cor-
responding Cauchy problem. Some initial-boundary value problems were consid-
ered as examples. Note that the Cauchy problem exhibits some difficulties for
the method in [1], but they were successfully resolved in [12]. We also mention the
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classical paper [6], which studies problems for an abstract equation of formally
hyperbolic type with dissipation:

Putt = −Au+Bu− aPut + F (t, u). (1.2)

Note that the operator acting on the first derivative with respect to time in (1.2) is
linear and coincides (up to a constant factor) with the operator acting on the second
derivative. Equation (1.1) shows that our situation is different.

We note that we continue to develop the modified method, which was initially
applied only to Sobolev equations (see [8]).

§ 2. A differential inequality

Consider the main differential inequality

ΦΦ′′ − α(Φ′)2 + γΦ′Φ + βΦ > 0, α > 1, β > 0, γ > 0, (2.1)

where
Φ(t) ∈ C(2)([0, T ]), Φ(t) > 0, Φ(0) > 0.

Dividing both sides of (2.1) by Φ1+α and making certain calculations, we obtain
the inequality (

Φ′

Φα

)′
+ γ

Φ′

Φα
+ βΦ−α > 0,

which in its turn means that

1
1− α

(Φ1−α)′′ +
γ

1− α
(Φ1−α)′ + βΦ−α > 0. (2.2)

We introduce the notation

Z(t) = Φ1−α(t). (2.3)

Using this notation, we obtain from (2.2) that

Z ′′ + γZ ′ − β(α− 1)Zα1 6 0, α1 =
α

α− 1
. (2.4)

We also write
Y (t) = eγtZ(t). (2.5)

This enables us to rewrite (2.4) in the form

Y ′′ − γY ′ − β(α− 1)e−δtY α1 6 0, δ =
γ

α− 1
. (2.6)

Note that we have a chain of equalities

Y ′ = (Φ1−αeγt)′ = Φ−α(α− 1)eγt

[
−Φ′(t) +

γ

α− 1
Φ(t)

]
. (2.7)
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Suppose that the following initial condition holds:

Φ′(0) >
γ

α− 1
Φ(0). (2.8)

Then there is a t0 > 0 such that

Φ′(t) >
γ

α− 1
Φ(t), t ∈ [0, t0). (2.9)

We deduce from (2.9) and (2.7) that Y ′(t) < 0 for t ∈ [0, t0). Since −γY ′(t) > 0
for t ∈ [0, t0), it follows from (2.6) that

Y ′′ − β(α− 1)e−δtY α1 6 0, δ =
γ

α− 1
, t ∈ [0, t0). (2.10)

We now multiply both sides of (2.10) by Y ′ and obtain

Y ′Y ′′ − β(α− 1)e−δtY α1Y ′ > 0, δ =
γ

α− 1
, t ∈ [0, t0). (2.11)

It is easy to see that the following equality holds:

e−δtY α1Y ′ =
1

1 + α1

d

dt
[e−δtY 1+α1 ] +

1
1 + α1

δe−δtY 1+α1 . (2.12)

We substitute (2.12) into (2.11) and obtain the inequality

Y ′Y ′′ − β(α− 1)
1 + α1

d

dt
[e−δtY 1+α1 ]− β(α− 1)δ

1 + α1
e−δtY 1+α1 > 0, t ∈ [0, t0),

which yields that

Y ′Y ′′ − β(α− 1)
1 + α1

d

dt
[e−δtY 1+α1 ] > 0, t ∈ [0, t0). (2.13)

Integrating (2.13), we get

(Y ′)2 > A2 +
2β(α− 1)2

2α− 1
e−δtY 1+α1 > A2, (2.14)

where

A2 ≡ (Y ′(0))2 − 2β(α− 1)2

2α− 1
Y 1+α1(0). (2.15)

We now assume that A2 > 0. After some calculations, this condition takes the
form

A2 = (α− 1)2Φ−2α(0)
[(

Φ′(0)− γ

α− 1
Φ(0)

)2

− 2β
2α− 1

Φ(0)
]
> 0. (2.16)

Hence the condition A2 > 0 is equivalent to the condition(
Φ′(0)− γ

α− 1
Φ(0)

)2

>
2β

2α− 1
Φ(0). (2.17)
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We now conclude from (2.14) and (2.16) that

Y ′(t) 6 −A < 0 =⇒ Φ′(t0) >
γ

α− 1
Φ(t0).

Then Y ′(t0) < 0. Therefore, using the algorithm of continuation in time, we get

Y ′(t) < 0 ∀ t ∈ [0, T ].

Hence the following inequalities hold:

|Y ′| > A > 0 =⇒ Y ′(t) 6 −A =⇒ Y (t) 6 Y (0)−At

=⇒ Φ1−α(t) 6 e−γt[Φ1−α(0)−At] =⇒ Φ(t) >
eγt/(α−1)

[Φ1−α(0)−At]1/(α−1)
.

We state the result as a theorem.

Theorem 2.1. Suppose that Φ(t) ∈ C(2)([0, T ]) and the following conditions hold :

Φ′(0) >
γ

α− 1
Φ(0), (2.18)(

Φ′(0)− γ

α− 1
Φ(0)

)2

>
2β

2α− 1
Φ(0) (2.19)

and, moreover, Φ(t) > 0, Φ(0) > 0. Then T > 0 cannot be arbitrarily large.
Namely, we have

T 6 T∞ 6 Φ1−α(0)A−1,

A2 ≡ (α− 1)2Φ−2α(0)
[(

Φ′(0)− γ

α− 1
Φ(0)

)2

− 2β
2α− 1

Φ(0)
]
,

where

Φ(t) >
eγt/(α−1)

(Φ1−α(0)−At)1/(α−1)
.

§ 3. Statement of the problem

The classical statement of the problem under consideration is

A
d2u

dt2
+
d

dt

(
A0u+

n∑
j=1

Aj(u)
)

+ H′
f (u) = F′f (u), (3.1)

u(0) = u0, u′(0) = u1, (3.2)

where H′
f and F′f are the Fréchet derivatives of the corresponding functionals. To

state our assumptions on the operator coefficients, we introduce some notation.
Consider Banach spaces V, V0, Vj , Wi for j = 1, . . . , n and i = 1, 2 with norms

‖ ·‖, ‖ ·‖0, ‖ ·‖j , | · |i respectively. Let V∗, V∗0, V∗j , W∗
i be the spaces conjugate to V,

V0, Vj , Wi with respect to the duality brackets 〈 · , · 〉, 〈 · , · 〉0, 〈 · , · 〉j , ( · , · )i, with
norms ‖ · ‖∗, ‖ · ‖∗0, ‖ · ‖∗j , | · |∗i respectively.
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Suppose that the Banach spaces V0, V, Vj , Wi are reflexive and separable for
j = 1, . . . , n and i = 1, 2. Suppose also that

A : V → V∗, A0 : V0 → V∗0, Aj : Vj → V∗j .

Moreover, we assume that

H(u) : W1 → R, F(u) : W2 → R.

The Banach spaces W1 and V are assumed to be uniformly convex (this will be
used in § 6).

We now state conditions on the operator-valued coefficients in (3.1).
Conditions AAAAAAA.

(i) The operator A : V → V∗ is linear, continuous and symmetric. We have
‖Au‖∗ 6 M‖u‖ for all u ∈ V.

(ii) The operator A is coercive and we have 〈Au, u〉 > m‖u‖2 for all u ∈ V.
(iii) The expression 〈Au, u〉1/2 is a norm on V inducing the original topology of

the Banach space V.
Conditions AAAAAAA0.

(i) The operator A0 : V0 → V∗0 is linear, continuous, symmetric and non-negative
definite. We have ‖A0u‖∗0 6 M0‖u‖0 for all u ∈ V0.

(ii)∗ The operator A0 is coercive and we have 〈A0u, u〉0 > m0‖u‖2
0 for all u ∈ V0.

(iii)∗ The expression 〈A0u, u〉1/2
0 is a norm on V0 inducing the original topology

of the Banach space V0.
Conditions AAAAAAAj .

(i) The operator Aj : Vj → V∗j is continuous.
(ii) The operator Aj is Fréchet differentiable and its Fréchet derivative A′jf (u) ∈

Cb(Vj ;L(Vj ,V∗j )) is a continuous, bounded, symmetric, monotone, and non-
negative definite operator for a fixed u∈Vj . We have A′jf (0)= θ and 〈Aj(v), v〉j > 0
for v ∈ Vj .

(iii) The operator Aj is positive homogeneous:

Aj(ru) = rpj−1Aj(u) for pj > 2, r > 0, u ∈ Vj .

(iv) We have upper bounds

‖Aj(u)‖∗j 6 Mj‖u‖
pj−1
j , ‖A′jf (u)‖Vj→V∗j 6 M j‖u‖

pj−2
j , Mj > 0.

(v)∗ We have lower bounds

〈Aj(u), u〉j > mj‖u‖
pj

j , mj > 0.

(vi)∗ The expression 〈Aj(u), u〉
1/pj

j is a norm on the Banach space Vj inducing
the original topology of Vj .
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Remark 3.1. The first estimate in condition Aj , (iv) follows from the second. To
prove this, we consider the functional G(u) = 〈Aj(u), y〉j , where y ∈ Vj is an
arbitrary fixed element with ‖y‖j = 1. Then the functional G(u) = 〈Aj(u), y〉j is
Fréchet differentiable and its derivative is given by

G′
f (u)h = 〈A′jf (u)h, y〉j .

Indeed,

|〈Aj(u+ h), y〉j − 〈Aj(u), y〉j − 〈A′jf (u)h, y〉j |
‖h‖j

=
|〈Aj(u+ h)− Aj(u)− A′jf (u)h, y〉j |

‖h‖j

6
‖Aj(u+ h)− Aj(u)− A′jf (u)h‖∗j

‖h‖j
→ 0

because the operator Aj(u) is Fréchet differentiable. Furthermore, by condition
Aj , (iii) we have Aj(θVj

) = θV∗j . Then Lagrange’s formula for Fréchet-differentiable
functionals yields that

|〈Aj(u), y〉j | = |〈A′jf (λu)u, y〉j | 6 M j‖λu‖
pj−2
j ‖u‖j‖y‖j , λ ∈ (0, 1).

Taking the supremum over all y ∈ Vj with ‖y‖j = 1, we obtain the first estimate
in conditions Aj , (iv).

Remark 3.2. When we say that a linear operator D : B → B∗ is symmetric, we mean
that 〈Du, v〉 = 〈Dv, u〉 for all u, v ∈ B, where 〈 · , · 〉 are the duality brackets between
B and B∗.

Conditions HHHHHHH.
(i) The functional H : W1 → R is non-negative and Fréchet differentiable. The

Fréchet derivative H′
f is boundedly Lipschitz continuous, that is, we have

|H′
f (u1)−H′

f (u2)|∗1 6 µ1(R)|u1 − u2|1 ∀u1, u2 ∈ W1,

where the function µ1 = µ1(R) is bounded on every compact set and non-decreasing,
and R = max{|u1|1, |u2|1}.

(ii) The Fréchet derivative of H satisfies the upper bound

|H′
f (u)|∗1 6 MH |u|p−1

1 ∀u ∈ W1, p > 2.

(iii) There is a constant µ > 0 such that for all u ∈ W1 we have (H′
f (u), u)1 6

µH(u).
(iv)∗ For all u ∈ W1 we have c1|u|p1 6 (H′

f (u), u)1.
Conditions FFFFFFF.

(i) The functional F : W2 → R is Fréchet differentiable. The Fréchet deriva-
tive F′f is boundedly Lipschitz continuous, that is, we have

|F′f (u1)− F′f (u2)|∗2 6 µ2(R)|u1 − u2|2 ∀u1, u2 ∈ W2,

where the function µ2 = µ2(R) is bounded on every compact set and non-decreasing,
and R = max{|u1|2, |u2|2}.
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(ii) The Fréchet derivative of F satisfies the upper bound

|F′f (u)|∗2 6 MF |u|q+1
2 ∀u ∈ W2, q > 0.

(iii) There is a constant θ > 2 such that θF(u) 6 (F′f (u), u)2 for all u ∈ W2.

The starred conditions A–F (for example, (iii)∗) are used only in theorems on
weak generalized solubility. The non-starred conditions are required for strong
generalized solubility.

We now state conditions imposed on the Banach spaces V, V0, Vj , Wi for
j = 1, . . . , n and i = 1, 2.
Conditions LLLLLLL. There is a Hilbert space L (identified with its conjugate) such that
we have continuous embeddings

V ⊂ L ⊂ V∗, Vj ⊂ L ⊂ V∗j , Wi ⊂ L ⊂ W∗
i , j = 0, . . . , n, i = 1, 2.

Let
W = V ∩

(⋂
Vj

)
∩

(⋂
Wi

)
be the reflexive separable Banach space possessing the property of density of the
embeddings

W
ds
⊂ V

ds
⊂ V∗

ds
⊂ W∗, W

ds
⊂ Vj

ds
⊂ V∗j

ds
⊂ W∗, W

ds
⊂ Wi

ds
⊂ W∗

i

ds
⊂ W∗

for all i = 1, 2 and j = 0, . . . , n.

Definition 3.3. A strong generalized solution of the problem (3.1), (3.2) is a func-
tion

u(t) ∈ C(2)([0, T ]; W), u(0) = u0 ∈ W, u′(0) = u1 ∈ W, (3.3)

such that for all t ∈ (0, T ) we have

〈〈D(u), w〉〉 = 0 ∀w ∈ W, (3.4)

where

D(u) = A
d2u

dt2
+
d

dt

(
A0u+

n∑
j=1

Aj(u)
)

+ H′
f (u)− F′f (u)

and 〈〈 · , · 〉〉 are the duality brackets between W and W∗.

Definition 3.4. A weak generalized solution of the problem (3.1), (3.2) is a function

u(t) ∈ L∞(0, T ; W1), u′ ∈ L∞(0, T ; V) ∩ L2(0, T ; V0), (3.5)
d

dt
Aj(u) ∈ Lp′j (0, T ; V∗j ), j = 1, . . . , n,

d

dt
A0(u) ∈ L2(0, T ; V∗0), (3.6)

such that the equality〈〈
d

dt
〈Au′, w〉+

n∑
j=0

〈
d

dt
Aj(u), w

〉
j

+ (H′
f (u), w)1 − (F′f (u), w)2, ψ(t)

〉〉
D

= 0 (3.7)
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holds for all w ∈ W1 and all ψ(t) ∈ D(0, T ), where 〈〈 · , · 〉〉D are the duality brackets
between the space D(0, T ) of test functions and the corresponding space D′(0, T ) of
distributions and, moreover, the following initial conditions hold: u(0) = u0 ∈ W1,
u′(0) = u1 ∈ V.

§ 4. Auxiliary results

In this section, some results that are used in the main text will be proved in the
required general form.

Lemma 4.1. If an operator A : X → X∗ is Fréchet differentiable and has a sym-
metric Fréchet derivative

A′u(u) : X → L(X,X∗),

and if A(su) = sp−1A(u) for all s > 0 and some p > 2, where X is a Banach space
with conjugate X∗ and duality brackets 〈 · , · 〉, then the functional

ψ(u) ≡ 〈A(u), u〉 : X → R

is continuously Fréchet differentiable and its Fréchet derivative is

ψ′f (u) = pA(u) ∀u ∈ X.

Proof. Let us prove the operator identity

A′u(u)u = (p− 1)A(u).

On one hand, we have (by condition Aj , (iii)),

d

ds
A(su) =

d

ds
(sp−1A(u)) = (p− 1)sp−2A(u) =

p− 1
s

sp−1A(u) =
p− 1
s

A(su).

(4.1)
On the other hand, by the chain rule for Fréchet derivatives,

d

ds
A(su) = A′u(su)u. (4.2)

Combining (4.1) and (4.2), we have

p− 1
s

A(su) = A′u(su)u.

Putting s = 1, we get the required identity,

(p− 1)A(u) = A′u(u)u ∀u ∈ X.

We make the following calculations:

ψ(u+ h)− ψ(u) = 〈A(u+ h), u+ h〉 − 〈A(u), u〉
= 〈A(u) + A′u(u)h+ ω(u, h), u+ h〉 − 〈A(u), u〉
= 〈A(u), h〉+ 〈A′u(u)h+ ω(u, h), u+ h〉
= 〈A(u), h〉+ 〈A′u(u)h, u〉+ 〈A′u(u)h, h〉+ 〈ω(u, h), u+ h〉
= 〈A(u) + A′u(u)u, h〉+ ω(u, h),
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where ω(u, h) = 〈A′u(u)h, h〉+ 〈ω(u, h), u+ h〉. Moreover,

|ω(u, h)| 6 ‖A′u(u)h‖∗‖h‖+ ‖ω(u, h)‖∗(‖u‖+ ‖h‖)

6 c1‖h‖2 + ‖ω(u, h)‖∗(‖u‖+ ‖h‖).

Finally,

lim
‖h‖→0

|ω(u, h)|
‖h‖

= 0.

Hence the Fréchet derivative of the functional ψ(u) is given by

ψ′f (u) = A(u) + A′u(u)u = A(u) + (p− 1)A(u) = pA(u).

It follows that ψ(u) is continuously Fréchet differentiable. �

Lemma 4.2. Under the hypotheses of Lemma 4.1 suppose that u(t)∈C(1)([0, T ]; X)
for some T > 0. Then

ψ(u)(t) ≡ 〈A(u), u〉 ∈ C(1)([0, T ]).

Proof. We first note that, by Lemma 4.1 and the chain rule for Fréchet derivatives,

dψ

dt
= 〈ψ′f (u), u′〉 = p〈A(u), u′〉.

Consider the function f(t) ≡ 〈A(u), u′〉. We claim that f(t) ∈ C([0, T ]). Indeed,
fix any t ∈ [0, T ] and suppose that t+ s ∈ [0, T ]. Then

f(t+ s)− f(s) = 〈A(u(t+ s)), u′(t+ s)〉 − 〈A(u(t)), u′(t)〉
= 〈A(u(t)) + A′u(u(t))[u(t+ s)− u(t)] + ω(t, s), u′(t+ s)〉

− 〈A(u(t)), u′(t)〉 = 〈A(u(t)), u′(t+ s)− u′(t)〉
+ 〈A′u(u(t)) [u(t+ s)− u(t)] , u′(t+ s)〉+ 〈ω(t, s), u′(t+ s)〉.

Using this chain of equalities, we arrive at the inequality

|f(t+ s)− f(t)| 6 ‖A(u(t))‖∗‖u′(t+ s)− u′(t)‖
+ ‖A′u(u(t))‖L(X;X∗)‖u(t+ s)− u(t)‖ ‖u′(t+ s)‖+ ‖ω(t, s)‖∗‖u′(t+ s)‖.

Note that
‖u′(t+ s)‖ 6 ‖u′(t)‖+ ‖u′(t+ s)− u′(t)‖ 6 c1,

where c1 > 0 is independent of t, s ∈ [0, T ]. Thus we get a bound

|f(t+ s)− f(t)| 6 c2‖u′(t+ s)− u′(t)‖+ c3‖u(t+ s)− u(t)‖+ c4‖ω(t, s)‖∗,

where c2, c3, c4 ∈ (0,+∞) depend only on t ∈ [0, T ]. Moreover,

lim
‖u(t+s)−u(t)‖→0

‖ω(t, s)‖∗ = 0.

It follows that
lim
s→0

f(t+ s) = f(t).

Thus f(t) ∈ C([0, T ]), as required. �
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Lemma 4.3. Under the hypotheses of Lemma 4.1 suppose that u(t)∈C(1)([0, T ]; X)
for some T > 0. Then

〈(A(u))′, u〉 =
p− 1
p

d

dt
〈A(u), u〉.

Proof. By Lemma 4.1 we have

d

dt
〈A(u), u〉 = p〈A(u), u′〉. (4.3)

Moreover,

p〈A(u), u′〉 =
d

dt
〈A(u), u〉 = 〈(A(u))′, u〉+ 〈A(u), u′〉,

whence
(p− 1)〈A(u), u′〉 =

d

dt
〈A(u), u〉 = 〈(A(u))′, u〉. (4.4)

Comparing (4.3) and (4.4), we get the required result. �

§ 5. Blow-up of solutions

Let T > 0 be such that a strong generalized solution of the problem (3.1), (3.2)
exists on [0, T ]. We introduce the following notation:

Φ(t) =
1
2
〈Au, u〉+

∫ t

0

(
1
2
〈A0u, u〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u), u〉j
)
ds

+
1

2p0
〈A0u0, u0〉0 +

1
p0

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j , (5.1)

J(t) = 〈Au′, u′〉+
∫ t

0

(
〈A0u

′, u′〉0 +
n∑

j=1

〈(Aj(u))′, u′〉j
)
ds

+
1
2
〈A0u0, u0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j , (5.2)

where p0 = maxj=1,...,n pj .

Lemma 5.1. We have

(Φ′)2 6 p0ΦJ ∀ t ∈ [0, T ]. (5.3)

Proof. The following equality holds:

Φ′ = 〈Au, u′〉+
1
2
〈A0u, u〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u), u〉j (5.4)

and, by the generalized Schwartz inequality, we have

|〈Au, u′〉| 6 〈Au, u〉1/2〈Au′, u′〉1/2. (5.5)
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Finally, there is a chain of equalities

pj − 1
pj

〈Aj(u), u〉j =
pj − 1
pj

∫ t

0

d

ds
〈Aj(u), u〉j ds+

pj − 1
pj

〈Aj(u0), u0〉j

=
∫ t

0

〈(Aj(u))′, u〉j ds+
pj − 1
pj

〈Aj(u0), u0〉j

=
∫ t

0

〈A′jf (u)u′, u〉j ds+
pj − 1
pj

〈Aj(u0), u0〉j , (5.6)

where we have used Lemma 4.3. We again use Schwartz’ inequality and get

|〈A′jf (u)u′, u〉j | 6 〈A′jf (u)u′, u′〉1/2
j 〈A′jf (u)u, u〉1/2

j . (5.7)

Note that A′jf (u)u = (pj − 1)Aj(u). Therefore (5.7) yields the inequality

|〈A′jf (u)u′, u〉j | 6 〈A′jf (u)u′, u′〉1/2
j (pj − 1)1/2〈Aj(u), u〉1/2

j . (5.8)

Thus it follows from (5.6) and (5.8) that

pj − 1
pj

〈Aj(u), u〉j 6
∫ t

0

〈A′jf (u)u′, u′〉1/2
j (pj − 1)1/2〈Aj(u), u〉1/2

j ds

+
pj − 1
pj

〈Aj(u0), u0〉j

6

(∫ t

0

〈A′jf (u)u′, u′〉j ds
)1/2

(pj − 1)1/2

(∫ t

0

〈Aj(u), u〉j ds
)1/2

+
(
pj − 1
pj

)1/2

〈Aj(u0), u0〉1/2
j

(
pj − 1
pj

)1/2

〈Aj(u0), u0〉1/2
j . (5.9)

We now obtain from (5.4), (5.5) and (5.9) that

(Φ′)2 6

(
〈Au, u〉1/2〈Au′, u′〉1/2

+
(∫ t

0

〈A0u
′, u′〉0 ds

)1/2(∫ t

0

〈A0u, u〉0 ds
)1/2

+
n∑

j=1

(∫ t

0

〈A′jf (u)u′, u′〉j ds
)1/2

(pj − 1)1/2

(∫ t

0

〈Aj(u), u〉j ds
)1/2

+
1√
2
〈A0u0, u0〉1/2

0

1√
2
〈A0u0, u0〉1/2

0

+
n∑

j=1

(
pj − 1
pj

)1/2

〈Aj(u0), u0〉1/2
j

(
pj − 1
pj

)1/2

〈Aj(u0), u0〉1/2
j

)2

.

(5.10)

Note that we have ( m∑
k=1

akbk

)2

6

( m∑
k=1

a2
k

)( m∑
k=1

b2k

)
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for all ak, bk > 0, k = 1, . . . ,m. Therefore for an appropriate choice of ak and bk
we get

(Φ′)2 6

(
〈Au, u〉+

∫ t

0

[
〈A0u, u〉0 +

n∑
j=1

(pj − 1)〈Aj(u), u〉j
]
ds

+
1
2
〈A0u0, u0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j
)

×
(
〈Au′, u′〉+

∫ t

0

[
〈A0u

′, u′〉0 +
n∑

j=1

〈(Aj(u))′, u′〉j
]
ds

+
1
2
〈A0u0, u0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j
)

6 p0Φ(t)J(t), (5.11)

where we have used the notation (5.1) and (5.2). �

We now proceed to deduce the first and second energy equalities. To do this, we
put w = u in (3.4) and integrate by parts:

1
2
d2

dt2
〈Au, u〉 − 〈Au′, u′〉

+
d

dt

(
1
2
〈A0u, u〉+

n∑
j=1

pj − 1
pj

〈Aj(u), u〉j
)

+ (H′
f (u), u)1 = (F′f (u), u)2, (5.12)

whence by the definition of the functional Φ(t) we obtain the first energy equality

d2Φ
dt2

+ (H′
f (u), u)1 = 〈Au′, u′〉+ (F′f (u), u)2. (5.13)

We now put w = u′ in (3.4) and integrate by parts:

d

dt

[
1
2
〈Au′, u′〉+

∫ t

0

(
〈A0u

′, u′〉0 +
n∑

j=1

〈(Aj(u))′, u′〉j
)
ds+H(u)

]
=

d

dt
F(u). (5.14)

Integrating (5.14) with respect to time, we see that

1
2
〈Au′, u′〉+

∫ t

0

(
〈A0u

′, u′〉0 +
n∑

j=1

〈(Aj(u))′, u′〉j
)
ds−E(0)+ H(u) = F(u), (5.15)

where
E(0) =

1
2
〈Au1, u1〉+ H(u0)− F(u0).

By condition F, (iii) we have θF(u) 6 (F′f (u), u)2. Therefore (5.13) and (5.15) yield
the inequality

d2Φ
dt2

+ (H′
f (u), u)1 > 〈Au′, u′〉+

θ

2
〈Au′, u′〉

+ θ

∫ t

0

(
〈A0u

′, u′〉0 +
n∑

j=1

〈(Aj(u))′, u′〉j
)
ds− θE(0) + θH(u), (5.16)
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whence in view of the notation (5.2) we get

d2Φ
dt2

+ θE(0) > θH(u)− (H′
f (u), u)1 +

(
1 +

θ

2

)
J

−
(

1 +
θ

2

)(
1
2
〈A0u0, u0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j
)
. (5.17)

We now observe that by conditions H, (i), (iii) we have

(H′
f (u), u)1 6 µH(u), H(u) > 0.

Therefore it follows from (5.17) under the assumption θ > µ that

d2Φ
dt2

+ E(0) >

(
1 +

θ

2

)
J, (5.18)

where

E(0) =
θ

2
〈Au1, u1〉+ θH(u0)

+
(

1 +
θ

2

)(
1
2
〈A0u0, u0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j
)
− θF(u0). (5.19)

Therefore we obtain the following inequality from (5.3) and (5.18):

ΦΦ′′ − α(Φ′)2 + βΦ > 0, (5.20)

where

α =
1
p0

(
1 +

θ

2

)
, β = E(0).

Thus by Theorem 2.1 we arrive at the following blow-up result.

Theorem 5.2. Suppose that

Φ′(0) > (δΦ(0))1/2, Φ(0) > 0, θ > 2(p0 − 1), θ > µ, (5.21)

δ =


2E(0)
2α− 1

for E(0) > 0,

0 for E(0) 6 0,
α =

1
p0

(
1 +

θ

2

)
, p0 = max

j=1,...,n
pj .

Then T > 0 cannot be arbitrarily large. Namely, we have

T 6 T∞ 6 Φ1−α(0)A−1,

A2 ≡ (α− 1)2Φ−2α(0)[(Φ′(0))2 − δΦ(0)],

and
Φ(t) >

1
(Φ1−α(0)−At)1/(α−1)

,
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where

Φ(t) =
1
2
〈Au, u〉+

∫ t

0

(
1
2
〈A0u, u〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u), u〉j
)
ds

+
1

2p0
〈A0u0, u0〉0 +

1
p0

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j ,

Φ(0) =
1
2
〈Au0, u0〉+

1
2p0

〈A0u0, u0〉0 +
1
p0

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j ,

Φ′(0) = 〈Au0, u1〉+
1
2
〈A0u0, u0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j ,

E(0) =
θ

2
〈Au1, u1〉+ θH(u0)

+
(

1 +
θ

2

)(
1
2
〈A0u0, u0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j
)
− θF(u0).

Remark 5.3. The hypotheses of Theorem 5.2 impose no restrictions on the num-
ber E(0) > 0. This is essential since, as a rule, the requirement that the initial
energy be positive, also imposes two further conditions. Therefore our problem is
to prove the consistency of the resulting hypotheses of the theorem.

Assertion 5.4. The hypotheses of Theorem 5.2 are consistent.

Proof. Clearly, the consistency must be verified only in the case when E(0) > 0.
By the conditions on the operators A, A0, Aj , j=1, . . . , n, we have Φ′(0) > 0 for
all (u0, u1) provided only that u0 6= 0. Hence the hypothesis (5.21) will hold if
u0 6= 0 and

0 <
δΦ(0)

(Φ′(0))2
< 1. (5.22)

Clearly, to prove the consistency, it suffices to consider the case when n = 1. In
this case, p0 = p1. We now adopt the following scheme.

1) Fix the operators A, A0, A1.
2) Put H(u) = |u|p1, p = µ > 2.
3) Choose any θ > µ = p, θ > 2(p1 − 1). Note that then θ > p1 + p1 − 2 > p1

because p1 > 2.
4) Put F (u) = |u|r2, where r > θ. Then Steps 1–3 yield that, first, condi-

tion F, (iii) holds, second, r > p = µ, whence the order of growth of the func-
tional F(u) is higher than that of H(u) and, third, r > p1 (this will be used below).

5) Fix any non-zero u0, u1. Introduce the notation

Ψ(R) = Φ[Ru0, Ru1](0), Ψ1(R) = Φ′[Ru0, Ru1](0), δ(R) = δ[Ru0, Ru1].

Consider the following function of R:

Γ(R) =
δ(R)Ψ(R)

Ψ2
1(R)

.
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Writing it out explicitly and factoring out an appropriate power of R in each factor,
we obtain the following explicit expression for Γ(R) if we use the linearity of linear
operators and condition A1(iii) along with the explicit forms of F(u) and H(u) and
divide by R2:

Γ(R) =
1
2 〈Au0, u0〉+ 1

2p1
〈A0u0, u0〉+Rp1−2 p1−1

p2
1
〈A1(u0), u0〉1

1
p1

(2 + θ)− 1

× 2E(0)[
〈Au0, u1〉+ 1

2 〈A0u0, u0〉0 +Rp1−2 p1−1
p1

〈A1(u0), u0〉1
]2 , (5.23)

where

2E(0) = θ〈Au1, u1〉+ (2 + θ)
(

1
2
〈A0u0, u0〉0 +Rp1−2 p1 − 1

p1
〈A1u0, u0〉1

)
+ 2θ(Rp−2H(u0)−Rr−2F(u0)).

(5.24)

The numerator 2E(0) of the second quotient in (5.23) is positive since E(0) > 0.
Note that the first numerator and denominator in (5.23) are positive by the condi-
tions imposed on the operators. We need to show that

0 < Γ(R) < 1. (5.25)

We easily see that Γ(R) tends to a positive limit Γ0 as R → +0, and that Γ0 is
determined only by the linear operators (we recall that u0, u1 are fixed). It is also
clear that the limit of Γ(R) as R→ +∞ is equal to −∞ because the highest growth
exponent has a negative summand −2θRr−2F(u0) in (5.24). Since the denominator
never vanishes on the interval R ∈ (0,+∞), the function Γ(R) is continuous and,
therefore, assumes all values in the interval (−∞,Γ0), including arbitrarily small
positive values. This guarantees that (5.25) holds. The condition E(0) > 0 also
holds since otherwise we would have Γ(R) < 0. �

§ 6. Local solubility in the sense of weak generalized solutions

We prove the local solubility of the Cauchy problem (3.1), (3.2) in several steps,
using Galerkin’s method along with the methods of compactness and monotonicity.

Step 1. Statement of the problem for Galerkin approximants. Let {wk} be

a Galerkin basis in the separable Hilbert space W
ds
⊂ W. We introduce the notation

um =
m∑

l=1

cml(t)wl, cml ∈ C(2)([0, Tm]), Tm > 0.

The function um is called a Galerkin approximant to the exact solution u of the
problem (3.3), (3.4) if it is a classical solution of the following system of ordinary
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differential equations:
n1∑
l=1

〈〈fl, wk〉〉lW = 0, k = 1, . . . ,m, n1 = 4 + n, (6.1)

f1 =
d

dt
A
dum

dt
, f2 =

d

dt
A0um,

fj =
d

dt
Aj−2(um), j = 3, . . . , 2 + n, f3+n = H′

f (um), f4+n = −F′f (um),

where the choice of the various duality brackets 〈〈fl, wk〉〉lW between the Hilbert
spaces W and W∗

is described by the equalities (arising from the corresponding
dense embeddings of W in the spaces V, V0, Vj , W1 and W2):

〈〈f1, wk〉〉1W = 〈f1, wk〉, 〈〈f2, wk〉〉2W = 〈f2, wk〉0,

〈〈f3+j , wk〉〉(3+j)W = 〈f3+j , wk〉j , 〈〈f4+n, wk〉〉(4+n)W = (f4+n, wk)1,

〈〈f5+n, wk〉〉(5+n)W = (f5+n, wk)2.

We also add the initial conditions

um0 = um(0) =
m∑

l=1

cml(0)wl → u0 strongly in W1, (6.2)

um1 = u′m(0) =
m∑

l=1

c′ml(0)wl → u1 strongly in V. (6.3)

Step 2. Local solubility for Galerkin approximants. We rewrite the system
(6.1)–(6.3) for Galerkin approximants in the form

m∑
l=1

〈Awl, wk〉
d2cml

dt2
+
dcml

dt

( m∑
l=1

〈A0wl, wk〉0 +
m∑

l=1

n∑
j=1

〈A′jf (um)wl, wk〉j
)

+ (H′
f (um), wk)1 − (F′f (um), wk)2 = 0

(6.4)

for k = 1, . . . ,m. Consider the quadratic form generated by the matrix with entries

akl = 〈Awl, wk〉.

By conditions A, (ii) we have the following chain of equalities:

m∑
k,j=1

akjξ
kξj = 〈Aξ, ξ〉 > m‖ξ‖2, ξ =

m∑
k=1

ξkwk.

Using the embedding W ⊂ V, we conclude from this that the matrix (akj) of our
quadratic form is non-degenerate by Sylvester’s criterion. Hence the matrix in front
of the second derivative with respect to time in (6.4) is invertible. By the conditions
introduced above, we have

A′jf ( · ) ∈ C(Vj ;L(Vj ,V∗j )), H′
f ( · ) ∈ C(W1; W∗

1), F′f ( · ) ∈ C(W2; W∗
2).
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Therefore, by Peano’s theorem, the system of ordinary differential equations (6.4)
with initial conditions (6.2) and (6.3) has at least one classical solution cml(t) ∈
C(2)([0, Tm]) for some Tm > 0. Generally speaking, the number Tm depends
on m ∈ N. But a priori estimates (see below) will enable us to prove that
cmk(t) ∈ C(2)([0, T ]) for some T > 0, where T is independent of m.
Step 3. A priori estimates. To deduce these, we multiply both sides of (6.1) by
c′mk(t) and sum over k = 1, . . . ,m to obtain the equality

d

dt

[
1
2
〈Au′m, u′m〉+ H(um)

]
+ 〈A0u

′
m, u

′
m〉0 +

n∑
j=1

〈A′jf (um)u′m, u
′
m〉j = (F′f (um), u′m)2. (6.5)

Note that by conditions Aj we have

〈A′jf (um)u′m, u
′
m〉j > 0, j = 0, . . . , n.

Integrating (6.5) with respect to time, we obtain

1
2
〈Au′m, u′m〉+ H(um) +

∫ t

0

〈A0u
′
m, u

′
m〉0 ds

+
n∑

j=1

∫ t

0

〈A′jf (um)u′m, u
′
m〉j ds = Em(0) +

∫ t

0

(F′f (um), u′m)2 ds, (6.6)

Em(0) =
1
2
〈Au1m, u1m〉+ H(um0).

Suppose that we have
|(F′f (v), w)2| 6 c2‖w‖|v|q+1

1 (6.7)

and continuous embeddings

v, w ∈ W1 ⊂ W2 ⊂ V. (6.8)

Remark 6.1. Let us give an example of spaces W1, W2, V and an operator F
for which inequality (6.7) holds. We put

W1 = W1,p
0 (Ω), W2 = Lq+2(Ω), V = L2(Ω),

where Ω ⊂ RN is a bounded domain with sufficiently smooth boundary, and the
functional F(u) is given by

F(u) =
1

q + 2

∫
Ω

|u|q+2 dx.

Clearly,

(F′f (v), w)2 =
∫

Ω

|v|qvw dx.
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Assuming that 2q + 2 6 p∗, we have a chain of inequalities

|(F′f (v), w)2| 6
(∫

Ω

|v|2q+2 dx

)1/2(∫
Ω

|w|2 dx
)1/2

6 c2‖|∇v|‖q+1
Lp ‖w‖L2 .

Thus (6.7) holds in this case.

Hence it follows from (6.6) and (6.7) that

1
2
〈Au′m, u′m〉+ H(um) +

∫ t

0

〈A0u
′
m, u

′
m〉0 ds+

n∑
j=1

∫ t

0

〈A′jf (um)u′m, u
′
m〉j ds

6 Em(0) + c2

∫ t

0

‖u′m‖ |um|q+1
1 ds, (6.9)

and by conditions A and H we have

〈Au′m, u′m〉 > m‖u′m‖2, H(um) >
c1
µ
|um|p1.

Redenoting c1 := c1/µ and using this and (6.9), we arrive at the inequality

m
2
‖u′m‖2 + c1|um|p1 +

∫ t

0

〈A0u
′
m, u

′
m〉0 ds+

n∑
j=1

∫ t

0

〈A′jf (um)u′m, u
′
m〉j ds

6 Em(0) +
c2
2

∫ t

0

[‖u′m‖2 + |um|2q+2
1 ] ds. (6.10)

Arguing in the standard way using Young’s arithmetical inequality

ab 6
aq1

q1
+
bq2

q2
,

1
q1

+
1
q2

= 1,

and the Gronwall–Bellman–Bihari inequality in the two cases p > 2q + 2 and p <
2q + 2, we conclude that the following a priori estimates hold:

‖u′m‖ 6 c3(T ), |um|1 6 c4(T ),
∫ T

0

‖u′m‖2
0 dt 6 c5(T ), (6.11)∫ T

0

〈A′jf (um)u′m, u
′
m〉j dt 6 c6(T ) (6.12)

for all t ∈ [0, T ), where the constants c3, . . . , c6 are independent of m ∈ N and
we have T = +∞ when p > 2q + 2, and T < +∞ when p < 2q + 2. Note that
by conditions H we have

|H′
f (v)|∗1 6 MH |v|p−1

1 ∀ v ∈ W1, p > 2.

Combining this with the a priori estimates (6.11), we get another a priori estimate:

|H′
f (um)|∗1 6 c7(T ) ∀ t ∈ [0, T ), (6.13)
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where, as above, we have either T = +∞ or T < +∞ depending on which case
we are in.

We now aim at obtaining a second-order a priori estimate for the sequence {u′′m}.
To do this, we choose the Galerkin basis {wj}⊂W in a more concrete way. Suppose
that the eigenvalue/eigenfunction problem

Awk = λkwk

has a countable set of linearly independent solutions {wk} ⊂ V. Now suppose that
{wk} is an orthonormal basis in W. We introduce the projector onto the linear
span (to be denoted by Wm) of the elements {wk}m

k=1:

Pmz =
m∑

k=1

(z, wk)Wwk.

Clearly, Pmwk = wk for k = 1, . . . ,m. It is easy to see that

PmAz = APmz = Az, z ∈ Wm.

Using the projector Pm, we rewrite (6.1) in the form

n1∑
l=1

〈〈fl,Pmz〉〉lW = 0, z ∈ W,

which in its turn yields that

n1∑
l=1

〈〈Pt
mfl, z〉〉lW = 0, z ∈ W,

where the transposed operator Pt
m and the conjugate operator P∗m are related by

the standard formula
P∗m = JPt

mJ−1,

J : W∗ → W being the (linear, continuous and invertible) Riesz–Fréchet embedding
operator. Hence we have

Pt
mD(um) = ϑ ∈ W∗

.

As above, it is easy to see that

P∗mAz = PmAz, z ∈ Wm.

We now obtain sufficient conditions for the following equality to hold:

Pt
mAz = PmAz, z ∈ Wm.

Assume that the operators Pm and J commute on the space Wm:

PmJwk = JPmwk, k = 1, . . . ,m. (6.14)
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Remark 6.2. We now give examples of spaces and operators for which (6.14) holds.
1) Suppose that W = H1

0(Ω), A = I,

−∆wk = λkwk, wk ∈ H1
0(Ω).

Then
J = (−∆)−1 : H−1(Ω) → H1

0(Ω).

Clearly, Jwk = wk

λk
, Pmwk = wk. Therefore the commutation formula (6.14) holds.

2) Suppose that W = H2
0(Ω), A = I,

∆2wk = λkwk, wk ∈ H2
0(Ω).

Then
J = (∆)−2 : H−2(Ω) → H2

0(Ω).

Clearly, Jwk = wk

λk
, Pmwk = wk. Hence the commutation formula (6.14) also holds

in this case.

As a result, we arrive at the operator equality〈〈
d

dt
A
dum

dt
, z

〉〉
1W

= −
n1∑
l=2

〈〈Pt
mfl, z〉〉lW. (6.15)

To get the desired second-order a priori estimate, it suffices to take the supremum
of both sides of (6.15) over z ∈ W, ‖z‖W = 1. The uniform boundedness of Pm

with respect to m ∈ N implies that the transposed operators

Pt
m : W∗ → W∗

are also uniformly bounded with respect to m ∈ N. By the conditions on the
operators stated above and the a priori estimates (6.11) we have the inequalities∫ T

0

(‖A0u
′
m‖∗0)2 dt 6 M2

0

∫ T

0

‖u′m‖2
0 dt 6 c7(T ). (6.16)

We now note that if W1 ⊂ Vj for j = 1, . . . , n, then we have

‖A′jf (um)u′m‖∗j = sup
‖v‖j=1

|〈A′jf (um)u′m, v〉j |

6 sup
‖v‖j=1

〈A′jf (um)u′m, u
′
m〉

1/2
j 〈A′jf (um)v, v〉1/2

j

6 M j‖um‖
pj/2−1
j 〈A′jf (um)u′m, u

′
m〉

1/2
j sup

‖v‖j=1

‖v‖j

6 M jcj |um|
pj/2−1
1 〈A′jf (um)u′m, u

′
m〉

1/2
j . (6.17)

By the a priori estimates (6.11) and (6.12), we obtain from (6.17) the a priori
estimate ∫ T

0

(‖A′jf (um)u′m‖∗j )2 dt 6 c8(T ). (6.18)
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Finally, the following a priori estimates hold:

|H′
f (um)|∗1 6 MH |um|p−1

1 6 c9(T ), (6.19)

|F′f (um)|∗2 6 MF |um|q+1
2 6 c10|um|q+1

1 6 c11(T ) (6.20)

because W1 ⊂ W2. Thus, using the a priori estimates (6.16)–(6.20), we obtain
from (6.15) the second-order a priori estimate∫ T

0

(∥∥∥∥ ddtAu′m
∥∥∥∥∗

W

)2

dt 6 c12(T ), (6.21)

where either T = +∞ or T < +∞ (depending on the conditions). We now suppose
that

‖Av‖B 6 a〈A0v, v〉1/2
0 , v ∈ V0. (6.22)

Remark 6.3. A model realization of the Hilbert space B is given by the Hilbert
space H1

0(Ω). Here, for example,

A = I, A0 = −∆, V0 = H1
0(Ω),

and the inequality (6.22) takes the form

‖v‖H1
0(Ω) 6 a‖|∇v|‖L2(Ω), v ∈ H1

0(Ω).

By the a priori estimate (6.11) we arrive at the a priori estimate∫ T

0

‖Au′m‖2
B dt 6 c13(T ). (6.23)

We introduce the Banach space

Q ≡
{
v(t) | v ∈ L2(0, T ; B), v′ ∈ L2(0, T ; W∗

)
}
.

Assuming that there is a completely continuous embedding B ↪→↪→ V∗ ⊂ W∗
,

we obtain from the well-known Lyons–Aubin compactness theorem that there is
a completely continuous embedding Q ↪→↪→ L2(0, T ; V∗).

It follows from the a priori estimates (6.21) and (6.23) that the sequence {Au′m}
is uniformly bounded with respect to m ∈ N in the Banach space Q. Since the
operator A : V → V∗ is bounded, we get the following a priori estimate from (6.11):

‖Au′m‖∗ 6 c14(T ). (6.24)

Step 4. Passage to the limit. The resulting a priori estimates (6.11)–(6.13), (6.21)
and (6.23) enable us to conclude that the sequence {um} has a subsequence with
the following limit properties:

um
∗
⇀ u ∗ -weakly in L∞(0, T ; W1), (6.25)

u′m
∗
⇀ u′ ∗ -weakly in L∞(0, T ; V), (6.26)

u′m ⇀ u′ weakly in L2(0, T ; V0), (6.27)

H′
f (um) ∗

⇀ χ(t) ∗ -weakly in L∞(0, T ; W∗
1), (6.28)

Au′m → Au′ strongly in L2(0, T ; V∗). (6.29)
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Since the linear operator A is coercive, it follows from the limit property (6.29)
that

u′m → u′ strongly in L2(0, T ; V). (6.30)

We now consider all terms subordinate to H′
f (um), starting with F′f (um). We

require that there are completely continuous and continuous embeddings W1 ↪→↪→
W2 ⊂ V. We introduce the Banach space

Q1 ≡
{
v(t) | v ∈ Lr(0, T ; W1), v′ ∈ L2(0, T ; V)

}
, r > 1.

By the Lyons–Aubin theorem we have a completely continuous embedding

Q1 ↪→↪→ Lr(0, T ; W2).

It follows from the a priori estimate (6.11) that the sequence {um} is uniformly
bounded with respect to m ∈ N in the Banach space Q1. Hence some subsequence
of {um} has the limit property

um → u strongly in Lr(0, T ; W2) for every fixed r > 1. (6.31)

Since the operator F′f (v) is boundedly Lipschitz continuous, we arrive at the limit
equation

F′f (um) → F′f (u) strongly in Lr(0, T ; W∗
2), r > 1. (6.32)

We now consider the terms A0u
′
m, A′jf (um)u′m. To treat them, we require that

there are completely continuous and continuous embeddings

W1 ↪→↪→ Vj ⊂ V, j = 0, . . . , n.

As above, by the Lyons–Aubin compactness theorem we have a completely contin-
uous embedding

Q1 ↪→↪→ Lr(0, T ; Vj), j = 0, . . . , n, r > 1. (6.33)

Hence the sequence {um} has a subsequence with the limit property

um → u strongly in Lr(0, T ; Vj), j = 0, . . . , n. (6.34)

By the properties of the operators Aj for j = 1, . . . , n we have

A′jf (um) → A′jf (u) strongly in Lr(0, T ;L(Vj ,V∗j )). (6.35)

It now follows from the properties of Aj that

Aj(um) → Aj(u) strongly in Lr(0, T ; V∗j ), r > 1.

On one hand, this yields that

d

dt
Aj(um) ∗

⇀
d

dt
Aj(u) ∗-weakly in D′(0, T ; V∗j ). (6.36)
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On the other hand, it follows from the a priori estimate (6.18) that

d

dt
Aj(um) ⇀ ϕ(t) weakly in L2(0, T ; V∗j ), j = 0, . . . , n. (6.37)

Comparing (6.36) and (6.37) and taking into account that the weak* topology
on D′(0, T ; V∗j ) is separable, we conclude that

d

dt
Aj(um) ⇀

d

dt
Aj(u) weakly in L2(0, T ; V∗j ), j = 0, . . . , n. (6.38)

Regarding both sides of (6.1) as elements of D′(0, T ), we act by them on an
arbitrary function ψ(t) ∈ D(0, T ) and obtain the equality〈〈

d

dt
〈Au′m, wk〉+

n∑
j=0

〈
d

dt
Aj(um), wk

〉
j

+ (H′
f (um), wk)1 − (F′f (um), wk)2, ψ(t)

〉〉
D

= 0, (6.39)

where 〈〈 · , · 〉〉D are the duality brackets between D(0, T ) and D′(0, T ). Using the
limit properties obtained above, we can now pass to the limit as m→ +∞ in (6.39)
and obtain〈〈

d

dt
〈Au′, w〉+

n∑
j=0

〈
d

dt
Aj(u), w

〉
j

+ (χ(t), w)1 − (F′f (u), w)2, ψ(t)
〉〉

D
= 0 (6.40)

for all w ∈ W1 and all ψ(t) ∈ D(0, T ). We want to prove that in fact χ(t) = H′
f (u).

Step 5. The monotonicity method. To use the monotonicity method, we require
that

(H′
f (v1)−H′

f (v2), v1 − v2)1 > 0 (6.41)

for all v1, v2 ∈ W1. Hence for all v ∈ Lp(0, T ; W1) we have

0 6 Xm =
∫ T

0

(H′
f (um)−H′

f (v), um − v)1 dt. (6.42)

The following equality holds:∫ T

0

(H′
f (um), um)1 dt =

∫ T

0

(F′f (um), um)2 dt

−
∫ T

0

〈Au′′m, um〉 dt+
1
2
〈A0um0, um0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(um0), um0〉j

− 1
2
〈A0umT , umT 〉0 −

n∑
j=1

pj − 1
pj

〈Aj(umT ), umT 〉j , (6.43)
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where umT = um(T ). Note also that

−
∫ T

0

〈Au′′m, um〉 dt = −
∫ T

0

d

dt
〈Au′m, um〉 dt+

∫ T

0

〈Au′m, u′m〉 dt

= 〈Aum0, um1〉 − 〈AumT , u
′
mT 〉+

∫ T

0

〈Au′m, u′m〉 dt. (6.44)

By what was proved above, the sequence {um(T )} is bounded in W1 uniformly
with respect to m ∈ N, and the sequence {u′m(T )} is bounded in V uniformly with
respect to m ∈ N. Since the embedding W1 ↪→↪→ V is completely continuous, there
is a subsequence of {um} such that

um(T ) → ξ1 strongly in V, (6.45)

u′m(T ) ⇀ ξ2 weakly in V. (6.46)

Since we have proved that

u(t) ∈ L∞(0, T ; W1), u′(t) ∈ L2(0, T ; V0),
d

dt
Au′(t) ∈ L2(0, T ; W∗

),

it follows that, after a possible alteration of u(t) on a subset of Lebesgue measure 0
in [0, T ], we have

u(t) ∈ C([0, T ]; V0), Au′(t) ∈ C([0, T ]; W∗
).

Therefore u(0), u(T ), Au′(0) and Au′(T ) are well defined. By what was proved
above,

u′m → u′ strongly in L2(0, T ; V)

and, therefore, for a subsequence of {um} we have

u′m(t) → u′(t) strongly in V for almost all t ∈ [0, T ].

Therefore ξ2 = u′(T ) if we slightly decrease T > 0. Moreover, the following limit
property holds by (6.34):

um → u strongly in L2(0, T ; V0).

Therefore for a subsequence we have

um(t) → u(t) strongly in V0 ⊂ V for almost all t ∈ [0, T ].

Hence ξ1 = u(T ) if we slightly decrease T > 0. Using the limiting relations obtained
above and the continuity of the linear operator A, we arrive at the following limit
property for a certain subsequence (which we regard for the moment as finalized)
of {um}:

− lim
m→+∞

∫ T

0

〈Au′′m, um〉 dt = 〈Au0, u1〉 − 〈Au(T ), u′(T )〉+
∫ T

0

〈Au′, u′〉 dt. (6.47)



Blow-up of solutions of an abstract Cauchy problem 961

By our overall conditions, the expression 〈Aj(v), v〉
1/pj

j , j = 0, . . . , n, is a norm
on the Banach space Vj inducing its original topology. Combining this with the
a priori estimate |um|1 6 c4(T ) and the completely continuous embedding
W1 ↪→↪→ Vj , we have, as above,

um(T ) → u(T ) strongly in Vj . (6.48)

Moreover, for some subsequence of {um} we have

lim
m→+∞

〈Aj(um(T )), um(T )〉1/pj

j = 〈Aj(u(T )), u(T )〉1/pj

j , j = 0, . . . , n.

On the other hand, the following limit property holds because of the initial condi-
tions (6.2) and (6.3):

lim
m→+∞

〈Aj(um0), um0〉
1/pj

j = 〈Aj(u0), u0〉
1/pj

j , j = 0, . . . , n.

Combining all these limit properties, we finally get

lim
m→+∞

∫ T

0

(H′
f (um), um)1 dt =

∫ T

0

(F′f (u), u)2 dt

+ 〈Au0, u1〉 − 〈Au(T ), u′(T )〉+
∫ T

0

〈Au′, u′〉 dt+
1
2
〈A0u0, u0〉0

+
n∑

j=1

pj − 1
pj

〈Aj(u0), u0〉j −
1
2
〈A0u(T ), u(T )〉0 −

n∑
j=1

pj − 1
pj

〈Aj(u(T )), u(T )〉j .

(6.49)

We now let m→ +∞ in (6.42) and obtain that

0 6 −
∫ T

0

(H′
f (v), u− v)1 dt−

∫ T

0

(χ, v)1 dt+
∫ T

0

(F′f (u), u)2 dt

+ 〈Au0, u1〉 − 〈Au(T ), u′(T )〉+
∫ T

0

〈Au′, u′〉 dt+
1
2
〈A0u0, u0〉0

+
n∑

j=1

pj − 1
pj

〈Aj(u0), u0〉j −
1
2
〈A0u(T ), u(T )〉0 −

n∑
j=1

pj − 1
pj

〈Aj(u(T )), u(T )〉j .

(6.50)

We multiply both sides of (6.1) by a function ϕ(t) ∈ C(1)([0, T ]) and integrate
over t ∈ [0, T ]. Note that we have∫ T

0

〈Au′′m, ϕ(t)w〉 dt

= −
∫ T

0

〈Au′m, ϕ′w〉 dt− 〈Au1m, ϕ(0)w〉+ 〈Au′Tm, ϕ(T )w〉 (6.51)
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for all w ∈ Wm (we recall that Wm is the linear span of the functions w1, . . .
. . . , wm). Integrating by parts in (6.51) and passing to the limit, we obtain that

−
∫ T

0

〈Au′, ϕ′w〉 dt− 〈Au1, ϕ(0)w〉+ 〈Au′(T ), ϕ(T )w〉

+
∫ T

0

n∑
j=0

〈
d

dt
Aj(u), ϕ(t)w

〉
j

dt+
∫ T

0

(χ(t), ϕ(t)w)1 dt

−
∫ T

0

(F′f (u), ϕ(t)w)2 dt = 0. (6.52)

We introduce the space

D ≡
{
v(t) | v ∈ L2(0, T ; W1), v′ ∈ L2(0, T ; V)

}
, (6.53)

which is a reflexive Banach space with norm

‖v‖D =
(∫ T

0

(|v|21 + ‖v′‖2) dt
)1/2

.

Note that the sets of the form{ m∑
k=1

ϕk(t)wk, ϕk(t) ∈ C(1)([0, T ]), wk ∈ W1

}
(6.54)

are dense in D. Indeed, the following theorem holds.

Theorem 6.4. Let L1, L2 be Banach spaces with a dense continuous embedding
L1

ds
⊂ L2. We define a Banach space D as the set{

v | v ∈ L2(0, T ;L1), v′ ∈ L2(0, T ;L2)
}

with norm
‖v‖2

D = ‖v‖2
L2(0,T ;L1)

+ ‖v′‖2
L2(0,T ;L2)

.

Then the set C1 of elements of the form
∑m

k=1 ϕk(t)wk, where wk ∈ L1 and
ϕk ∈ C(1)([0, T ]), is dense in D.

Proof. Clearly, it suffices to show that for every element of D one can find an
element of C1 arbitrarily close to it in the norm of D. This will be done in several
steps.

1. We first prove the following lemma.

Lemma 6.5. The set C([0, T ];L2) is dense in L2(0, T ;L2).

Proof. It is known [15] that the piecewise-constant functions are dense in
L2(0, T ;L2). Furthermore, linear interpolation in a sufficiently small neighbour-
hood of the boundary of the set of discontinuity enables us to approximate every
piecewise-constant function within any desired accuracy in L2(0, T ;L2) by a con-
tinuous function. Indeed, let w1 (resp. w2) be the value of a piecewise-constant
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function w(t) in some left (resp. right) half-neighbourhood of t0. The correspond-
ing linear interpolant w0(t) on the interval [t0 − δ, t0 + δ] is given by

w0(t) = w1 +
t− (t0 − δ)

2δ
(w2 − w1) ≡ w2 −

(t0 + δ)− t

2δ
(w1 − w2).

Then we have∫ t0+δ

t0−δ

‖w0(t)− w(0)‖2
L2
dt

=
∫ t0

t0−δ

∥∥∥∥w1 +
t− (t0 − δ)

2δ
(w2 − w1)− w1

∥∥∥∥2

L2

dt

+
∫ t0+δ

t0

∥∥∥∥w2 −
t0 + δ − t

2δ
(w1 − w2)− w2

∥∥∥∥2

L2

dt 6
δ2

3
‖w2 − w1‖2

L2
.

Summing such terms over all points of discontinuity (there are finitely many of
them) and choosing a sufficiently small δ, we get the desired result. �

2. Let v be an arbitrary element of D. We put w = v′. Then w ∈ L2(0, T ;L2).
For brevity we put

L3 = L2(0, T ;L1), L4 = L2(0, T ;L2).

We can write

v(t) = v(0) +
∫ t

0

w(τ) dτ.

3. In view of Lemma 6.5, for every ε> 0 there is a w1(t)∈C([0, T ];L2) such that

‖w(t)− w1(t)‖L4 < ε.

It is known [15] that w1 can be approximated arbitrarily closely in the norm
of C([0, T ];L2) (and, therefore, in the norm of L4 ≡ L2(0, T ;L2)) by a polyno-
mial with coefficients in L2, that is, by an element of the form

P1(t) =
k∑

j=0

ajt
j , aj ∈ L2.

4. Since the embedding L1

ds
⊂ L2 is dense, the coefficients of P1(t) (we recall

that they belong to L2) can be approximated arbitrarily closely by elements of L1.
The resulting polynomial P2(t) will be arbitrarily close to P1(t) in the norm of
C([0, T ];L2) and, therefore, in the norm of L4. The same dense embedding enables
us to find an element v01 ∈ L1 arbitrarily close to v(0). We put

v1(t) = v(t) + (v01 − v1).

Clearly,
v′1(t) = v′(t) = w(t).
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5. We define the element

v2(t) = v01 +
∫ t

0

P2(τ) dτ.

Our previous argument enables us to make the function w′2(t) = P2(t) arbitrarily
close to v′(t) = w(t) in the norm of L4. We also have

‖v1(t)− v2(t)‖2
L3

=
∫ T

0

‖v1(t)− v2(t)‖2
L1
dt =

∫ T

0

∥∥∥∥∫ t

0

(w(τ)− P2(τ)) dτ
∥∥∥∥2

L1

dt

6
∫ T

0

(∫ t

0

‖w(τ)− P2(τ)‖L2 dτ

)2

dt =
∫ T

0

(∫ t

0

1 · ‖w(τ)− P2(τ)‖L2 dτ

)2

dt

6
∫ T

0

T

∫ t

0

‖w(τ)− P2(τ)‖2
L2
dτ dt 6 T 2‖w(t)− P2(t)‖2

L4
.

This bound shows that ‖v1(t) − v2(t)‖L3 can be made arbitrarily small provided
that ‖w(t)− P2(t)‖L4 is sufficiently small. Furthermore,

‖v(t)− v1(t)‖L3 ≡ ‖v(0)− v01‖L1

can also be made arbitrarily small by what was said above. By parts 1–4, for every
ε > 0 one can choose P2(t) such that ‖w(t) − P2(t)‖L4 < ε. Therefore we obtain
that every element v(t) ∈ D can be approximated within any given accuracy by an
element

v01 +
∫ t

0

P2(τ) dτ = v01 +
k∑

j=0

aj

j + 1
tj+1, v01, aj ∈ L1.

This proves the theorem. �

By Step 4 (see (6.25), (6.30)) we have

u(t) ∈ L∞(0, T ; W1) ⊂ L2(0, T ; W1), u′(t) ∈ L2(0, T ; V).

Then u ∈ D. There is also a sequence

{ul}, ul =
l∑

k=1

ϕkl(t)wk, ϕkl ∈ C(1)[0, T ],

with the limit property∫ T

0

(
|u− ul|21 + ‖u′ − u′l‖2

)
dt→ +0 as l→ +∞. (6.55)

We now prove an auxiliary assertion.

Lemma 6.6. There is a subsequence of {ul} such that

lim
l→+∞

‖ul(t)− u(t)‖ = 0 uniformly with respect to t ∈ [0, T ]. (6.56)
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Proof. We use the technique in [16]. By what was proved at Step 4 (see (6.25),
(6.30)) we have u ∈ L∞(0, T ; W1), u′ ∈ L2(0, T ; V). Then the following chain of
inequalities holds:

‖u(t1)− u(t2)‖ 6
∫ t2

t1

‖u′‖ dt 6

(∫ t2

t1

‖u′‖2 dt

)1/2√
|t1 − t2| 6 c(T )

√
|t1 − t2|.

(6.57)
Hence the function u(t) is uniformly continuous on [0, T ] with values in V.

We note from (6.55) that the sequence {ul} is uniformly bounded in L2(0, T ; W1)
while the sequence {u′l} is uniformly bounded in L2(0, T ; V). Since W1 is compactly
embedded in V, the Lyons–Aubin theorem enables us to find a subsequence of {ul}
such that

ul(t) → u(t) strongly in L2(0, T ; V),

ul(t) → u(t) strongly in V

for almost all t ∈ [0, T ]. Hence there is a countable everywhere-dense set E =
{tk}∞k=1 ⊂ [0, T ] such that ul(t) → u(t) strongly in V on E. We claim that then

ul(t) → u(t) strongly in V

uniformly on [0, T ]. Indeed, we first of all deduce from the boundedness of the
sequence {u′l} in L2(0, T ; V) (see above) and the estimate

‖ul(t)−ul(t∗)‖ 6
∫ t

t∗
‖u′l‖ ds 6

(∫ t

t∗
‖u′l‖2 ds

)1/2√
|t− t∗| 6 c(T )

√
|t− t∗| (6.58)

that {ul} is an equicontinuous sequence of functions on [0, T ] with values in V.
Given any ε > 0, we shall now construct an L(ε) such that for all l > L(ε) we

have
‖ul(t)− u(t)‖ < ε ∀ t ∈ [0, T ]. (6.59)

This is nothing other than the desired uniform convergence. Using the equiconti-
nuity of {ul} and (6.57), we choose δ = δ(ε/3) such that for |t̄− ¯̄t | < δ we have

‖ul(t̄ )− ul(¯̄t )‖ <
ε

3
, ‖u(t̄ )− u(¯̄t )‖ < ε

3
. (6.60)

Then we choose K = K(δ) in such a way that all pairwise distances between the
points {tk}K

k=1 ⊂ E are less than δ (this is possible since E is dense on [0, T ]). We
further choose L = L(ε/3) in such a way that

‖ul(tk)− u(tk)‖ < ε

3

for all tk, k=1, . . . ,K (finitely many points), and all l > L (this is possible because
ul(t) → u(t) in V on E). This is the desired L. Indeed, consider the inequality

‖ul(t)− u(t)‖ 6 ‖ul(t)− ul(tk)‖+ ‖ul(tk)− u(tk)‖+ ‖u(tk)− u(t)‖,
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where t ∈ [0, T ], l > L, and the point tk is chosen using the conditions |t− tk| < δ,
k ∈ {1, . . . ,K} (this is possible by the construction of K). Then, by the choice of δ,

‖ul(t)− ul(tk)‖ < ε

3
, ‖u(t)− u(tk)‖ < ε

3
.

By the choice of L we get
‖ul(tk)− u(tk)‖ < ε

3
.

This proves (6.59). �

Using Lemma 6.6, we conclude that there is a subsequence of {ul} possessing
the following limit properties in addition to (6.55):

‖u(0)− ul(0)‖ → +0, l→ +∞, (6.61)

‖u(T )− ul(T )‖ → +0, l→ +∞. (6.62)

Since the duality brackets are linear with respect to their second arguments, one
can rewrite (6.52) in the form

−
∫ T

0

〈Au′, u′l〉 dt− 〈Au1, ul(0)〉+ 〈Au′(T ), ul(T )〉

+
∫ T

0

n∑
j=0

〈
d

dt
Aj(u), ul

〉
j

dt+
∫ T

0

(χ(t), ul)1 dt−
∫ T

0

(F′f (u), ul)2 dt = 0.

(6.63)

Using the limit properties (6.55), (6.61) and (6.62), we can pass to the limit
as l→ +∞ in (6.63) and obtain

−
∫ T

0

〈Au′, u′〉 dt− 〈Au1, u0〉+ 〈Au′(T ), u(T )〉

+
∫ T

0

n∑
j=0

〈
d

dt
Aj(u), u

〉
j

dt+
∫ T

0

(χ(t), u)1 dt−
∫ T

0

(F′f (u), u)2 dt = 0.

(6.64)

We now deal with the terms∫ T

0

〈
d

dt
Aj(u), u

〉
j

dt, j = 0, . . . , n.

To do this, we deduce from the property

‖A′jf (u)‖Vj→V∗j 6 M j‖u‖
pj−2
j

that
‖Aj(v1)− Aj(v2)‖∗j 6 µj(R)‖v1 − v2‖j , (6.65)

where
µj(R) = cjR, R = max{‖v1‖

pj−2
j , ‖v2‖

pj−2
j }.
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Hence there is a chain of inequalities∫ T

0

(‖Aj(v1)− Aj(v2)‖∗j )p′j dt

6 c
p′j
j

∫ T

0

max
{
‖v1‖

(pj−2)pj/(pj−1)
j , ‖v2‖

(pj−2)pj/(pj−1)
j

}
‖v1 − v2‖

pj/(pj−1)
j dt

6 c
p′j
j

(∫ T

0

max
{
‖v1‖

pj

j , ‖v2‖
pj

j

}
dt

)(pj−2)/(pj−1)

×
(∫ T

0

‖v1 − v2‖
pj

j dt

)1/(pj−1)

, p′j =
pj

pj − 1
. (6.66)

Consider the resulting sequence {um} ⊂ C(1)([0, T ]; Vj) of Galerkin approxi-
mants (we regard it as finalized for the moment). By the limit property (6.34),∫ T

0

‖u− um‖
pj

j dt→ +0, m→ +∞, (6.67)

but then (6.66) yields that∫ T

0

(‖Aj(u)− Aj(um)‖∗j )p′j dt→ +0, m→ +∞. (6.68)

We note that the following equality holds by Lemma 4.3:∫ T

0

〈
d

dt
Aj(um), um

〉
j

dt =
pj − 1
pj

∫ T

0

d

dt
〈Aj(um), um〉j dt

=
pj − 1
pj

[
〈Aj(um)(T ), um(T )〉j − 〈Aj(um(0)), um(0)〉j

]
, j = 0, . . . , n.

(6.69)

Moreover, by the initial condition (6.2) and the limit property (6.48) we have

lim
m→+∞

〈
Aj(um)(T ), um(T )

〉
j

= 〈Aj(u)(T ), u(T )〉j , (6.70)

lim
m→+∞

〈
Aj(um)(0), um(0)

〉
j

= 〈Aj(u0), u0〉j . (6.71)

We note that if a sequence converges weakly in L2(0, T ; V∗j ), then it also converges
weakly in Lp′j (0, T ; V∗j ) for pj > 2 (since p′j 6 2). Using this and the limit property
(6.38), we finally conclude that there is a subsequence of {um} such that

d

dt
Aj(um) ⇀

d

dt
Aj(u) weakly in Lp′j (0, T ; V∗j ), j = 0, . . . , n. (6.72)

Therefore, using the limit properties (6.67) and (6.70)–(6.72), we can pass to the
limit as m → +∞ in the subsequence {um} (finalized at the moment) and obtain∫ T

0

〈
d

dt
Aj(u), u

〉
j

dt

=
pj − 1
pj

[
〈Aj(u(T )), u(T )〉j − 〈Aj(u0), u0〉j

]
, j = 0, . . . , n.

(6.73)
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Using this and (6.64), we arrive at the equality

−
∫ T

0

〈Au′, u′〉 dt− 〈Au1, u0〉+ 〈Au′(T ), u(T )〉

+
n∑

j=0

pj − 1
pj

[
〈Aj(u(T )), u(T )〉j − 〈Aj(u0), u0〉j

]
+

∫ T

0

(χ(t), u)1 dt−
∫ T

0

(F′f (u), u)2 dt = 0. (6.74)

This and (6.50) in their turn yield the inequality

0 6
∫ T

0

(χ−H′
f (v), u− v)1 dt, v ∈ Lp(0, T ; W1). (6.75)

The following argument is standard in the monotonicity method, but we give it
for completeness. Put v = u− λw, where w ∈ Lp(0, T ; W1), λ > 0. Then

0 6
∫ T

0

(χ−H′
f (u− λw), w)1 dt.

Letting λ → +0 (this is possible since the operator H ′
f ( · ) is boundedly Lipschitz

continuous), we get the inequality

0 6
∫ T

0

(χ−H′
f (u), w)1 dt, w ∈ Lp(0, T ; W1).

This is a contradiction if χ(t) 6= H′
f (u).

Thus the local solubility is proved. In what follows we need another result on
the strong convergence of the sequence of Galerkin approximants. To state it, we
require that the following additional condition holds:(

H′
f (v1)−H′

f (v2), v1 − v2
)
1

> a|v1 − v2|p1, v1, v2 ∈ W1. (6.76)

Since the sequence um is bounded in W1 (see (6.11)), we have (after choosing
a subsequence)

um ⇀ u weakly in Lp(0, T ; W1), H′
f (um) ⇀ H′

f (u) weakly in Lp′(0, T ; W∗
1),

(6.77)
and, moreover,

lim
m→+∞

∫ T

0

(H′
f (um), um)1 dt =

∫ T

0

(H′
f (u), u)1 dt. (6.78)

Thus we have the limit relation

0 = lim
m→+∞

∫ T

0

(H′
f (u)−H′

f (um), u− um)1 dt > a lim
m→+∞

∫ T

0

|u− um|p1 dt. (6.79)
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We conclude that
um → u strongly in Lp(0, T ; W1) (6.80)

and, clearly (up to choosing a subsequence),

um → u strongly in W1 for almost all t ∈ [0, T ].

Step 6. Continuation of solutions in time. We now require the operator A to be
coercive in the following weak sense:

‖Aw‖∗W > d‖w‖∗W, w ∈ V ⊂ W∗
. (6.81)

Then it follows from (6.21) that u′′ ∈ L2(0, T ; W∗
).

We introduce two classes of functions with values in Banach spaces:

R1 = {v : v(t) ∈ W1, v
′(t) ∈ V}, R2 = {v : v(t) ∈ V, v′(t) ∈ W∗}.

By definition of a weak generalized solution u(t) we have u(t) ∈ L∞(0, T ;R1).
Changing u(t), if necessary, on a set of Lebesgue measure 0 in [0, T ], we get

u(t) ∈ C([0, T ];R2). (6.82)

Clearly, R1 ⊂ R2. By (6.82), the trace of the function u(t) exists at every point
t ∈ [0, T ]. We introduce two functions,

ψ1(T ) = ess.sup
t∈[0,T ]

(
|u|1(t)+‖u′‖(t)

)
, ψ2(T ) = sup

t∈[0,T ]

(
‖u‖(t)+‖u′‖W∗(t)

)
. (6.83)

Let T0 > 0 be such that the weak generalized solution of the problem exists for all
T < T0. Then either T0 = +∞, or T0 < +∞ and, in the latter case,

lim
T↑T0

ψ1(T ) = +∞. (6.84)

Indeed, if (6.84) does not hold, then T0 < +∞ and

lim
T↑T0

ψ1(T ) < +∞. (6.85)

However,
lim
T↑T0

ψ2(T ) 6 b lim
T↑T0

ψ1(T ) < +∞.

Hence,
sup

t∈[0,T0]

(
‖u‖(t) + ‖u′‖W∗(t)

)
< +∞. (6.86)

First of all we note that for almost every t ∈ [0, T ] we can pass to the limit in (6.10)
and obtain that

m
2
‖u′‖2 + c1|u|p1 +

∫ t

0

〈A0u
′, u′〉0 ds 6 E(0) +

c2
2

∫ t

0

(
‖u′‖2 + |u|2q+2

1

)
ds. (6.87)

Combining this with (6.85) and the coercivity of A0, we see that u′ ∈ L2(0, T0; V0).
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The a priori estimate (6.21) takes the form∫ T

0

(∥∥∥∥ ddtAu′m
∥∥∥∥∗

W

)2

dt 6 c12(T ) < +∞. (6.88)

We see from this that the sequence {um} has a subsequence with the limit property

d

dt
Au′m ⇀

d

dt
Au′ weakly in L2(0, T ; W∗

).

Then, using (6.88) and the weak sequential semicontinuity of the norm in a reflexive
Banach space, we get the estimate∫ T

0

(∥∥∥∥ ddtAu′
∥∥∥∥∗

W

)2

dt 6 lim inf
m→+∞

∫ T

0

(∥∥∥∥ ddtAu′m
∥∥∥∥∗

W

)2

dt 6 c12(T ) < +∞. (6.89)

We shall prove that c12(T ) < +∞ for all T ∈ [0, T0]. To do this, we consider
equation (6.15). The main difficulty in getting a uniform a priori estimate for the
expression on the left-hand side stems from the summand

Pt
m

n∑
j=1

d

dt
Aj(um).

The other summands are much easier to study once this one is understood. Now,
by (6.17) and (6.6) we have the a priori estimates∫ T

0

∥∥∥∥Pt
m

d

dt
Aj(um)

∥∥∥∥2

W∗
dt 6

∫ T

0

∥∥∥∥ ddtAj(um)
∥∥∥∥2

W∗
dt 6 dj

∫ T

0

∥∥∥∥ ddtAj(um)
∥∥∥∥2

V∗j

dt

6 cj ess.sup
s∈[0,T ]

|um(s)|pj−2
1

∫ T

0

〈A′jf (um)u′m, u
′
m〉j dt

6 cj ess.sup
s∈[0,T ]

|um(s)|pj−2
1

[
Em(0) +

∫ T

0

(F′f (um), u′m)2 dt
]
. (6.90)

Hence we get the estimate∫ T

0

∥∥∥∥ ddtAj(um)
∥∥∥∥2

W∗
dt

6 cj ess.sup
s∈[0,T ]

|um(s)|pj−2
1

[
Em(0) +

∫ T

0

(F′f (um), u′m)2 dt
]
. (6.91)

By (6.10) we also have

ess.sup
s∈[0,T ]

|um(s)|pj−2
1 6 dj

(
Em(0) +

c2
2

∫ T

0

(
‖u′m‖2 + |um|2q+2

1

)
dt

)(pj−2)/p

. (6.92)
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Therefore (6.91) and (6.92) yield the desired estimate∫ T

0

∥∥∥∥ ddtAj(um)
∥∥∥∥2

W∗
dt 6 dj

(
Em(0) +

c2
2

∫ T

0

(
‖u′m‖2 + |um|2q+2

1

)
dt

)(pj−2)/p

×
[
Em(0) +

∫ T

0

(F′f (um), u′m)2 dt
]

= I1jm. (6.93)

The other summands in (6.15) can be estimated in a similar way, and we finally
get the estimate∫ T

0

(∥∥∥∥ ddtAu′m
∥∥∥∥∗

W

)2

dt 6
n∑

j=1

I1jm + I2m + I3m + I4m.

We now let m → +∞ in both sides of this inequality. In particular, for I1jm we
use (6.27) and the continuous embedding V0 ⊂ W2 (along with the other limit
properties obtained in this section by taking the lower limit as m → +∞ in the
definition of I1jm) to conclude that

lim
m→+∞

I1jm = dj

(
E(0) +

c2
2

∫ T

0

(
‖u′‖2 + |u|2q+2

1

)
ds

)(pj−2)/p

×
[
E(0) +

∫ T

0

(F′f (u), u′)2 dt
]

6 dj

(
E(0) +

c2
2

∫ T

0

(
‖u′‖2 + |u|2q+2

1

)
ds

)(pj−2)/p

×
[
E(0) +

(∫ T

0

|F′f (u)|∗2 dt
)1/2(∫ T

0

‖u′‖2
0 dt

)1/2]
. (6.94)

Since u(t) ∈ L∞(0, T0;R1) and (by what was proved above) we have u′(t) ∈
L2(0, T0; V0), we obtain from (6.94) that

lim
m→+∞

I1jm 6 c(T0) < +∞ (6.95)

for all T ∈ [0, T0]. We similarly consider all other terms in the operator equal-
ity (6.15). Thus we arrive at the uniform bound∫ T0

0

(∥∥∥∥ ddtAu′
∥∥∥∥∗

W

)2

dt 6 c(T0) < +∞. (6.96)

It follows that

‖Au′(t1)− Au′(t2)‖∗W

6
∫ t2

t1

∥∥∥∥ ddtAu′
∥∥∥∥∗

W
dt 6 |t1 − t2|1/2

(∫ T0

0

(∥∥∥∥ ddtAu′
∥∥∥∥∗

W

)2

dt

)1/2

(6.97)

for all t1, t2 ∈ [0, T0). Hence we see from (6.97) and (6.81) that u′(t) is a uniformly
continuous W∗

-valued function on the half-open interval [0, T0) and, by the proof
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of Lemma 6.6, u(t) is a uniformly continuous V-valued function on [0, T0). Thus
there is a continuous extension of u(t) such that u(T0) ∈ R2. As a result, we obtain
that

u(t) ∈ L∞(0, T0;R1), u(t) ∈ C([0, T0];R2).

The second inclusion implies that there is an element u(T0) ∈ R2. We claim that
u(T0) ∈ R1. Indeed, we put

E =
{
t ∈ [0, T0] | u(t) ∈ R1, ‖u(t)‖R1 6 ‖u‖L∞(0,T0;R1)

}
.

It follows from the first inclusion that E = [0, T0]. Consider an arbitrary sequence

tn → T0 − 0, tn ∈ E.

Then the sequence {u(tn)} is bounded in R1 and, therefore, contains a subsequence
{u(tnk

)} weakly convergent to x in R1. Since the embedding operator R1 → R2 is
continuous and every continuous operator is also continuous in the sense of weak
convergence, we have u(tnk

) → x weakly in R2. On the other hand, since u(t) ∈
C([0, T0];R2), it follows that u(tnk

) → u(T0) strongly (and, therefore, weakly)
in R2. Thus x = u(T0). Since x belongs to R1 (being the weak limit of a sequence
of elements of R1), we have u(T0) ∈ R1, as required. Hence,

u(T0) ∈ R1. (6.98)

Remark 6.7. A modification of our proof of (6.98) shows that the function u(t) :
[0, T ] → R1 is weakly continuous on [0, T ]. (Although not necessary for our purposes
here, this fact is of interest in itself.) Indeed, take an arbitrary point t0 ∈ [0, T ] and
suppose that tn → t0, tn ∈E. Using the continuity of the function u(t) : [0, T ]→R2

and arguing as above, we obtain a subsequence {tnk
} such that u(tnk

) → u(t0) ∈ R1

weakly in R1. (In particular, it follows that ‖u(t0)‖R1 6 ‖u(t)‖L∞(0,T ;R1).) We
claim that the same limit property holds for the whole sequence {tn}. Indeed,
otherwise there would be a subsequence {tnl

} and an element f ∈ R∗1 such that
〈f, u(tnl

)〉R1 6→ 〈f, u(t0)〉R1 . Hence we would have a subsequence {tnlp
} and a num-

ber c > 0 such that
|〈f, u(tnlp

)〉R1 − 〈f, u(t0)〉R1 | > c.

On the other hand, it was proved above that every sequence {u(tk)} with tk → t0
contains a subsequence weakly converging to u(t0). Applying this assertion to
{u(tnlp

)}, we arrive at a contradiction.

Take any T ′ ∈ (0, T0). By our result on local solubility in the weak generalized
sense, there is a T ∗ = T ∗(T ′) > 0 such that the solution of the problem (3.1), (3.2)
exists for t ∈ (T ′, T ′ + T ∗). Note that condition (6.98) holds. Hence there is an
exact lower bound

T ∗∗ = inf
T ′∈[0,T0]

T ∗ > 0.

Putting

T ′ = T0 −
T ∗∗

2
,
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we get the following continuation of the solution:

û =
{
u(t), t ∈ [0, T ′]; u(t− T ′), t ∈ [T ′, T ′ + T ∗∗]

}
.

Thus we obtain that

û =
{
u(t), t ∈ [0, T ′]; u(t− T ′), t ∈ [T ′, T0 + T ∗∗/2]

}
.

Hence we are able to continue the solution beyond the time T0 > 0, a contradiction.
Therefore the limit property (6.84) holds.

Thus we have proved the following theorem.

Theorem 6.8. In addition to the conditions on the operator-valued coefficients
stated above, we now adopt conditions (6.7), (6.14), (6.22) (where, moreover,
B ↪→↪→ V∗), condition (6.81) and the conditions

W1 ↪→↪→ W2 ⊂ V, W1 ↪→↪→ Vj ⊂ V, V0 ⊂ V, V0 ⊂ W2, j = 0, . . . , n,

(H′
f (v1)−H′

f (v2), v1 − v2)1 > a|v1 − v2|p1, v1, v2 ∈ W1.

Suppose that the Hilbert space W
ds
⊂ W has an orthonormal basis of eigenvectors wj

of the operator A. Then the following assertions hold. If p > 2q + 2, then a weak
generalized solution exists for all T ∈ (0,+∞). If p < 2q + 2, then there is
a T0 > 0 such that a weak generalized solution exists for all T ∈ (0, T0). Here
either T0 = +∞, or T0 < +∞ and, in the latter case, we have

lim sup
t↑T0

(
|u|1(t) + ‖u′‖(t)

)
= +∞. (6.99)

§ 7. Blow-up of weak generalized solutions

Sufficient conditions for the finite-time blow-up of weak generalized solutions
cannot be obtained from the original statement of the problem since such solu-
tions are not sufficiently smooth. However, the Galerkin approximants constructed
in § 6 possess the required smoothness: um(t) ∈ C(2)([0, T ]; W1).

We introduce the following notation:

Φm(t) =
1
2
〈Aum, um〉+

∫ t

0

[
1
2
〈A0um, um〉0 +

n∑
j=1

pj − 1
pj

〈Aj(um), um〉j
]
ds

+
1

2p0
〈A0um0, um0〉0 +

1
p0

n∑
j=1

pj − 1
pj

〈Aj(um0), um0〉j , (7.1)

Jm(t) = 〈Au′m, u′m〉+
∫ t

0

[
〈A0u

′
m, u

′
m〉0 +

n∑
j=1

〈(Aj(um))′, u′m〉j
]
ds

+
1
2
〈A0um0, um0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(um0), um0〉j , (7.2)

where p0 = maxj=1,...,n pj . As in the proof of Lemma 5.1, we obtain that

(Φ′m)2 6 p0ΦmJm, t ∈ [0, T ]. (7.3)
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Regarding the Galerkin approximation problem (6.1)–(6.3) as the original problem
for um and arguing as in § 5, we obtain the differential inequality

Φm(t) >
1

[Φ1−α
m (0)−Amt]1/(α−1)

, (7.4)

where

A2
m = (α− 1)2Φ−2α

m (0)
[
(Φ′m(0))2 − δmΦm(0)

]
> 0,

δm =


2Em(0)
2α− 1

for E(0) > 0,

0 for E(0) 6 0,
α =

1
p0

(
1 +

θ

2

)
, p0 = max

j=1,...,n
pj ,

Φm(0) =
1
2
〈Aum0, um0〉+

1
2p0

〈A0um0, um0〉0 +
1
p0

n∑
j=1

pj − 1
pj

〈Aj(um0), um0〉j ,

Φ′m(0) = 〈Aum0, um1〉+
1
2
〈A0um0, um0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(um0), um0〉j ,

Em(0) =
θ

2
〈Aum1, um1〉+ θH(um0)

+
(

1 +
θ

2

)(
1
2
〈A0um0, um0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(um0), um0〉j
)
− θF(um0).

We now let m→ +∞ in (7.4). First, by Lemma 6.6 we have

lim
m→+∞

〈Aum, um〉 = 〈Au, u〉 uniformly with respect to t ∈ [0, T ]. (7.5)

Moreover, by what was proved above,

um → u strongly in Lpj (0, T ; Vj), (7.6)

Aj(um) → Aj(u) strongly in Lp′j (0, T ; V∗j ) (7.7)

for j = 0, . . . , n. It follows that

〈Aj(um), um〉j → 〈Aj(u), u〉j for almost all t ∈ [0, T ], (7.8)

and the sequence of numbers {〈Aj(um), um〉j} is bounded uniformly with respect
to m ∈ N. Using (7.5)–(7.8) and the initial conditions (6.2), (6.3), we conclude that
the following limit property holds pointwise for t ∈ [0, T ]:

Φm(t) → Φ(t), t ∈ [0, T ], (7.9)

where

Φ(t) =
1
2
〈Au, u〉+

∫ t

0

(
1
2
〈A0u, u〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u), u〉j
)
ds

+
1

2p0
〈A0u0, u0〉0 +

1
p0

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j .
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The initial conditions (6.2) and (6.3) enable us to obtain that

Am → A, (7.10)

A2 = (α− 1)2Φ−2α(0)
[
(Φ′(0))2 − δΦ(0)

]
> 0,

δ =


2E(0)
2α− 1

for E(0) > 0,

0 for E(0) 6 0,
α =

1
p0

(
1 +

θ

2

)
, p0 = max

j=1,...,n
pj ,

Φ(0) =
1
2
〈Au0, u0〉+

1
2p0

〈A0u0, u0〉0 +
1
p0

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j ,

Φ′(0) = 〈Au0, u1〉+
1
2
〈A0u0, u0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j ,

E(0) =
θ

2
〈Au1, u1〉+ θH(u0)

+
(

1 +
θ

2

)(
1
2
〈A0u0, u0〉0 +

n∑
j=1

pj − 1
pj

〈Aj(u0), u0〉j
)
− θF(u0).

Therefore in the limit we obtain from (7.4) that

Φ(t) >
1

[Φ1−α(0)−At]1/(α−1)
. (7.11)

Thus we have proved the following theorem.

Theorem 7.1. Suppose that p < 2q + 2 and the hypotheses of Theorem 6.8 hold.
If the following conditions hold :

Φ′(0) > (δΦ(0))1/2, Φ(0) > 0, θ > 2(p0 − 1), θ > µ, (7.12)

δ =


2E(0)
2α− 1

for E(0) > 0,

0 for E(0) 6 0,
α =

1
p0

(
1 +

θ

2

)
, p0 = max

j=1,...,n
pj ,

then the time T > 0 cannot be arbitrarily large. Namely, we have

T 6 T∞ 6 Φ1−α(0)A−1,

A2 ≡ (α− 1)2Φ−2α(0)[(Φ′(0))2 − δΦ(0)],

and (7.11) holds for all t ∈ [0, T∞).

Remark 7.2. We claim that T0 < +∞ under the hypotheses of Theorem 7.1.
Indeed, assume that T0 = +∞. Then

|u|1(t) + ‖u′‖ 6 c(T ) < +∞, t ∈ [0, T ],

for all T ∈ (0,+∞). Since there are embeddings

W1 ⊂ V, W1 ⊂ Vj , j = 0, . . . , n,
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we conclude that
Φ(t) 6 c(T ) < +∞, t ∈ [0, T ],

for all T ∈ (0,+∞). This contradiction shows that T0 < +∞ under the hypotheses
of Theorem 7.1. Hence the limit equality (6.99) also holds.

§ 8. Local solubility in the sense of strong
generalized solutions, and their blow-up

First of all we make a basic assumption: suppose that W = V. We understand
solutions of the problem (3.1), (3.2) in the weak generalized sense of Definition 3.3.
For convenience we reproduce the problem here:

A
d2u

dt2
+
d

dt

(
A0u+

n∑
j=1

Aj(u)
)

+ H′
f (u)− F′f (u) = θ ∈ V∗, (8.1)

u(0) = u0 ∈ V, u′(0) = u1 ∈ V. (8.2)

By conditions A and the Browder–Minty theorem, there is an inverse operator

A−1 : V∗ → V, ‖A−1v1 − A−1v2‖∗ 6
1
m
‖v1 − v2‖, v1, v2 ∈ V.

We put v = Au. Then the problem (8.1), (8.2) for a function u(t) in the class
C(2)([0, T ]; V) (the operators d2/dt2 and A commute on this class of functions)
becomes a Cauchy problem of the form

d2v

dt2
+
d

dt

(
A0A−1v +

n∑
j=1

Aj(A−1v)
)

+ H′
f (A−1v)− F′f (A−1v) = θ ∈ V∗, (8.3)

v0 = v(0) = Au0, v1 = v′(0) = Au1. (8.4)

Note that in the class C(2)([0, T ]; V∗) equation (8.3) can be written as

v = H(v) ≡ v0 + v1t+
(

A0A−1v0 +
n∑

j=1

Aj(A−1v0)
)
t

+
∫ t

0

(t− s)[F′f (A−1v)−H′
f (A−1v)] ds−

∫ t

0

[
A0A−1v +

n∑
j=1

Aj(A−1v)
]
ds.

(8.5)

We now introduce the following closed, bounded and convex subset of the Banach
space L∞(0, T ; V∗):

Vr ≡
{
v ∈ L∞(0, T ; V∗) : |||v||| ≡ ess.sup

t∈[0,T ]

‖v‖∗ 6 r
}
.

We claim that if r > 0 is sufficiently large, T > 0 is sufficiently small, and

‖v0‖∗ 6
r

2
, (8.6)
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then the operator H( · ) maps Vr to itself. Indeed, the following estimate holds:

|||H(v)||| 6 ‖v0‖∗ + T

[
M0

m
‖v0‖∗ +

n∑
j=1

Mj

mpj−1
(‖v0‖∗)pj−1 + ‖v1‖∗

]

+ T 2

[
MF

mq+1
|||v|||q+1 +

MH

mp−1
|||v|||p−1

]
+ T

[
M

m
|||v|||+

n∑
j=1

Mj

mpj−1
|||v|||pj−1

]
.

(8.7)
We fix r > 0 so large that (8.6) holds. Let T > 0 be so small that

|||H(v)||| 6 r, v ∈ Vr.

ThenH( · ) : Vr → Vr, as required. We now claim that this operator is a contraction
mapping on Vr. Indeed, the following estimate holds:

|||H(v̄)−H(¯̄v)||| 6
[
a1T

2

m
µ1(R1) +

a2T
2

m
µ2(R2) +

a3TM

m

+ T
n∑

j=1

M ja4j

mpj−1
(R∗j )

pj−2

]
|||v̄ − ¯̄v|||, (8.8)

where
R1 =

a1

m
max{|||v̄|||, |||¯̄v|||}, R2 =

a2

m
max{|||v̄|||, |||¯̄v|||},

R∗j = a4j max{|||v̄|||, |||¯̄v|||}

and a1 is the constant in the continuous embedding W∗
2 ⊂ V∗, a2 is the constant in

the continuous embedding W∗
1 ⊂ V∗, a3 is the constant in the continuous embed-

ding V∗0 ⊂ V∗ and a4j is the constant in the continuous embedding V∗j ⊂ V∗. Thus,
for sufficiently large r > 0 and sufficiently small T > 0, (8.8) yields the desired
inequality

|||H(v̄)−H(¯̄v)||| 6 1
2
|||v̄ − ¯̄v||| ∀ v̄, ¯̄v ∈ Vr.

By the contraction mapping theorem, the integral equation (8.5) has a unique
solution v(t) ∈ Vr. Continuing this solution in time by the standard method, we
obtain a maximal T0 > 0 such that for all T ∈ (0, T0) there is a solution of class
L∞(0, T ; V∗). Here either T0 = +∞, or T0 < +∞ and, in the latter case, we have

lim
T↑T0

sup
t∈[0,T ]

‖v‖∗(t) = +∞.

Using the ‘bootstrap’ method in the standard way, we obtain from (8.5) that
v(t) ∈ C(2)([0, T0); V∗).

Finally, we conclude from the Lipschitz continuity of A−1 that u(t) ∈
C(2)([0, T0); V). This proves the following theorem.

Theorem 8.1. For all u0, u1 ∈ V there is a unique strong generalized solution u(t)
of the problem (8.1), (8.2) of class C(2)([0, T0); V) for some T0 > 0. Here either
T0 = +∞ or T0 < +∞ and, in the latter case, we have

lim
T↑T0

sup
t∈[0,T ]

‖Au‖(t) = +∞. (8.9)
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Sufficient conditions for the blow-up of the strong generalized solution of the
problem (8.1), (8.2) were obtained in Theorem 2.1.

Theorem 8.2. Suppose that the hypotheses of Theorem 2.1 hold. Then the time
T0 > 0 in Theorem 8.1 is bounded and, therefore, the limit property (8.9) holds.

Proof. Suppose that the hypotheses of Theorem 2.1 hold. Then that theorem yields
that T0 < +∞. Hence it follows from Theorem 8.1 that the second case of the
alternative holds. �

§ 9. Examples

First of all we note that the procedure of obtaining sufficient conditions for
the blow-up of solutions does not depend on the boundedness of the domain and,
therefore, is applicable to the corresponding Cauchy problems. But local solubility
is often available only for bounded domains. In all the examples below, the proof of
blow-up works for the Cauchy problems. Let Ω ⊂ RN be a bounded domain with
sufficiently smooth boundary. As usual, we write

p∗ =


Np

N − p
for N > p,

+∞ for N 6 p.

In the examples below we also put

L = L2(Ω), aj(x) ∈ L∞(Ω), 0 < a0 6 aj(x).

Example 9.1. Consider the problem

∂2u

∂t2
+
∂

∂t

(
−∆u+

n∑
j=1

aj(x)|u|pj−2u

)
− div(|∇u|p−2∇u) = |u|qu, (9.1)

u(x, 0) = u0(x) ∈ W1,p
0 (Ω), u′(x, 0) = u1(x) ∈ L2(Ω), (9.2)

u|∂Ω = 0. (9.3)

In this case we have

A = I, A0 = −∆, Aj(u) = aj(x)|u|pj−2u,

H(u) =
1
p

∫
Ω

|∇u|p dx, F(u) =
1

q + 2

∫
Ω

|u|q+2 dx.

Here and in what follows, I is the identity operator. Moreover, suppose that

V = L2(Ω), V0 = H1
0(Ω), Vj = Lpj (Ω),

W1 = W1,p
0 (Ω), W2 = Lq+2(Ω), B = H1

0(Ω),

W = Hs
0(Ω) for sufficiently large s > 1 and {wk} ⊂ W are solutions of the problem

(−∆)swk = λkwk, J = (−∆)−s : H−s(Ω) → Hs
0(Ω).
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Therefore condition (6.14) holds. Thus, assuming that

q + 2 < p∗, pj < p∗, j = 1, . . . , n,

we have completely continuous embeddings

W1 ↪→↪→ W2, W1 ↪→↪→ Vj , j = 1, . . . , n.

Clearly,
W2 = Lq+2(Ω) ⊂ L2(Ω) = V

for q > 0 and Vj = Lpj (Ω) ⊂ L2(Ω) = V. Moreover,

V0 = H1
0(Ω) ⊂ L2(Ω) = V.

Finally, if q + 2 6 2∗, then we have the embedding

V0 = H1
0(Ω) ⊂ Lq+2(Ω) = W2.

In the case when 2q + 2 6 2∗, property (6.7) holds. Properties (6.22) and (6.81)
also hold. Therefore Theorem 6.8 is applicable, and the blow-up of solutions occurs
under the hypotheses of Theorem 7.1.

Example 9.2. Consider the following problem:

∂2u

∂t2
+
∂

∂t

(
∆2u−

n∑
j=1

div(aj(x)|∇u|pj−2∇u)
)

+ ∆(|∆u|p−2∆u) = −div(|∇u|q∇u), (9.4)

u(x, 0) = u0(x) ∈ W2,p
0 (Ω), u′(x, 0) = u1(x) ∈ L2(Ω), (9.5)

u|∂Ω = 0,
∂u

∂nx

∣∣∣
∂Ω

= 0. (9.6)

In this case we have

A = I, A0 = ∆2, Aj(u) = −div(aj(x)|∇u|pj−2∇u),

H(u) =
1
p

∫
Ω

|∆u|p dx, F(u) =
1

q + 2

∫
Ω

|∇u|q+2 dx.

Here

V = L2(Ω), V0 = H2
0(Ω), Vj = W1,pj

0 (Ω),

W1 = W2,p
0 (Ω), W2 = W1,q+2

0 (Ω), B = H2
0(Ω).

Moreover, W = Hs
0(Ω) for sufficiently large s > 0, and {wk} ⊂ W are solutions of

the problem

(−∆)swk = λkwk, J = (−∆)−s : H−s(Ω) → Hs
0(Ω).

Therefore property (6.14) holds.
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Thus, assuming that
q + 2 < p∗, pj < p∗

for j = 0, . . . , n, we have completely continuous embeddings

W1 ↪→↪→ W2, W1 ↪→↪→ Vj , j = 0, . . . , n.

Clearly,
V0 = H2

0(Ω) ⊂ L2(Ω) = V.

If
q + 2 6 2∗,

then there is a continuous embedding

V0 = H2
0(Ω) ⊂ W1,q+2

0 (Ω) = W2.

Finally, if
2q + 2 6 2∗,

then property (6.7) holds. Properties (6.22) and (6.81) also hold. Therefore The-
orem 6.8 is applicable, and the blow-up of solutions occurs under the hypotheses
of Theorem 7.1.

Example 9.3. Consider the following problem:

−∆
∂2u

∂t2
+
∂

∂t

(
∆2u−

n∑
j=1

div(aj(x)|∇u|pj−2∇u)
)

+ ∆2u

= −div(|∇u|q∇u), (9.7)

u(x, 0) = u0(x) ∈ H2(Ω) ∩H1
0(Ω), u′(x, 0) = u1(x) ∈ H1

0(Ω), (9.8)

u|∂Ω = 0, ∆u|∂Ω = 0. (9.9)

In this case we have

A = −∆, A0 = ∆2, Aj(u) = −div(aj(x)|∇u|pj−2∇u),

H(u) =
1
2

∫
Ω

|∆u|2 dx, F(u) =
1

q + 2

∫
Ω

|∇u|q+2 dx.

Here

V = H1
0(Ω), V0 = {u ∈ H2(Ω) ∩H1

0(Ω): u|∂Ω = ∆u|∂Ω = 0},

Vj = W1,pj

0 (Ω), W1 = {u ∈ H2(Ω) ∩H1
0(Ω): u|∂Ω = ∆u|∂Ω = 0},

W2 = W1,q+2
0 (Ω), B = L2(Ω).

Thus, if q + 2 < 2∗ and pj < 2∗ for j = 1, . . . , n, then we have completely
continuous embeddings

W1 ↪→↪→ W2, W1 ↪→↪→ Vj , j = 1, . . . , n.
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Moreover,

W2 = W1,q+2
0 (Ω) ⊂ H1

0(Ω) = V, Vj = W1,pj

0 (Ω) ⊂ H1
0(Ω) = V,

V0 ⊂ H1
0(Ω) = V, V0 ⊂ W2, q + 2 6 2∗.

Finally, if 2q + 2 6 2∗, then property (6.7) holds. Property (6.22) also holds.
The following remark shows that the operator A possesses all the properties that
were used in our proof of local solubility in the weak generalized sense.

Remark 9.4. It is known that the space H1
0(Ω)∩H2(Ω) admits a basis (in the sense

of convergence in the H2
0(Ω)-norm) of eigenvectors of the Laplace operator pro-

vided that the boundary of Ω is sufficiently smooth (see, for example, [17], Russian
pp. 132–133). It is also known (see [17], Russian p. 119, or [18], Russian p. 44) that
the expression ‖∆u‖L2(Ω) is a norm on H1

0(Ω) ∩ H2(Ω) equivalent to the standard
H2

0-norm. By choosing (∆u,∆v)L2(Ω) as the scalar product in H1
0(Ω) ∩H2(Ω) and

appropriately normalizing the system {vn} (orthogonal in L2(Ω)) of eigenfunctions
of the Laplace operator in Ω, we get the required orthogonal basis because

(∆vn,∆vm)L2(Ω) = λnλm(vn, vm)L2(Ω) = 0.

We now prove property (6.81). First, there is a chain of continuous embeddings,
one of which is dense:

H1
0(Ω) ∩H2(Ω)

ds
⊂ H1

0(Ω) ⊂ H−1(Ω) ⊂ (H1
0(Ω) ∩H2(Ω))∗. (9.10)

In the case under consideration,

W = H1
0(Ω) ∩H2(Ω).

Note that
∆: H1

0(Ω) → H−1(Ω). (9.11)

We denote the duality brackets between W and W∗
by 〈〈 · , · 〉〉W. Using the dense

embedding in (9.10) along with (9.11), we conclude that there is an equation of
duality brackets:

〈−∆u, u〉 = 〈〈−∆u, u〉〉W, (9.12)

where 〈 · , · 〉 are the duality brackets between V = H1
0(Ω) and V∗ = H−1(Ω). Note

that the following chain of equalities holds for every z ∈ V ⊂ W∗
:

‖∆z‖∗W = sup
‖∆w‖L2(Ω)=1

|〈〈∆z, w〉〉W| = sup
‖∆w‖L2(Ω)=1

|〈∆z, w〉|

= sup
‖∆w‖L2(Ω)=1

∣∣∣∣∫
Ω

(∇w,∇z) dx
∣∣∣∣ = sup

‖∆w‖L2(Ω)=1

∣∣∣∣∫
Ω

z∆w dx
∣∣∣∣ = ‖z‖L2(Ω) (9.13)

for all
w ∈ W = H2(Ω) ∩H1

0(Ω)
ds
⊂ L2(Ω).

The last equality in (9.13) is justified in the following way. It suffices to take w
equal to a solution (up to normalization) of the homogeneous Dirichlet problem for
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the Poisson equation with right-hand side z. Since the boundary of Ω is sufficiently
smooth (see Remark 9.4), this solution belongs to H2(Ω)∩H1

0(Ω). Clearly, there is
a continuous embedding

L2(Ω) ⊂ (H2(Ω) ∩H1
0(Ω))∗.

This proves that property (6.81) holds.
We now verify that condition (6.14) holds. Note that

W ≡
{
u ∈ H2(Ω) ∩H1

0(Ω): u|∂Ω = ∆u|∂Ω = 0
}

and the dualizing map J between W∗
and W is an integral operator whose kernel

is the Green function of the following problem:

∆2G( · , y) = δ( · − y) in Ω, G( · , y) = −∆G( · , y) = 0 on ∂Ω.

It is known that the solution of this problem exists and can be written out explicitly.
By our choice of the system of functions {wk}, they are solutions of the problem

−∆wk = λkwk =⇒ ∆2wk = λ2
kwk, wk|∂Ω = ∆wk|∂Ω = 0.

Then the dualizing map J possesses the property

Jwk =
wk

λ2
k

.

It follows that condition (6.14) holds.

Example 9.5. Consider the problem

(I −∆)
∂2u

∂t2
+
∂

∂t

(
u+

n∑
j=1

aj(x)|u|pj−2u

)
= |u|qu, aj(x) ∈ L∞+ (RN ), (9.14)

u(0) = u0 ∈ H1(RN ), u′(0) = u1 ∈ H1(RN ). (9.15)

In this case we have

A = I −∆, A0 = I, Aj(u) = aj(x)|u|pj−2u,

F(u) =
1

q + 2

∫
RN

|u|q+2 dx, H(u) = 0,

where

V = H1(RN ), V0 = L2(RN ), Vj = Lpj (RN ), W2 = Lq+2(RN ).

We now require that the following conditions hold: pj ∈ (2, 2∗], q + 2 ∈ (2, 2∗].
This guarantees that the basic assumption in § 8 is satisfied:

W = V = H1(RN ).

Thus all the hypotheses of Theorem 8.1 hold, and blow-up of solutions occurs under
the hypotheses of Theorem 8.2.
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Example 9.6. Consider the problem

(I + ∆2)
∂2u

∂t2
− ∂

∂t

(
∆u+

n∑
j=1

div(aj(x)|∇u|pj−2∇u)
)

= −div(|∇u|q∇u), aj(x) ∈ L∞+ (RN ), (9.16)

u(0) = u0 ∈ H2(RN ), u′(0) = u1 ∈ H2(RN ). (9.17)

In this case we have

A = I + ∆2, A0 = −∆, Aj(u) = −div(aj(x)|∇u|pj−2∇u),

F(u) =
1

q + 2

∫
RN

|∇u|q+2 dx, H(u) = 0,

where

V = H2(RN ), V0 = H1(RN ), Vj = W1,pj (RN ), W2 = W1,q+2(RN ).

We now require that the following conditions hold: pj ∈ (2, 2∗], q + 2 ∈ (2, 2∗].
This guarantees that the basic assumption in § 8 is satisfied:

W = V = H2(RN ).

Thus all the hypotheses of Theorem 8.1 hold, and blow-up of solutions occurs under
the hypotheses of Theorem 8.2.

Example 9.7. Consider the following problem:

(I + ∆2)
∂2u

∂t2
− ∂

∂t

(
∆u+

n∑
j=1

div(aj(x)|∇u|pj−2∇u)
)

= −∆u
(∫

RN

|∇u|2 dx
)q/2

, aj(x) ∈ L∞+ (RN ), (9.18)

u(0) = u0 ∈ H2(RN ), u′(0) = u1 ∈ H2(RN ). (9.19)

In this case we have

A = I + ∆2, A0 = −∆, Aj(u) = −div(aj(x)|∇u|pj−2∇u),

F(u) =
1

q + 2

(∫
RN

|∇u|2 dx
)(q+2)/2

, H(u) = 0,

where

V = H2(RN ), V0 = H1(RN ), Vj = W1,pj (RN ), W2 = H1(RN ).

Suppose that the following conditions hold: pj ∈ (2, 2∗], q > 0. Then we obtain
that the basic assumption in § 8 is satisfied:

W = V = H2(RN ).

Thus all the hypotheses of Theorem 8.1 hold, and blow-up of solutions occurs under
the hypotheses of Theorem 8.2.
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