DOI: 10.35102/cbg.2024.19.90.051

СОСТОЯНИЕ ЛИПЫ МЕЛКОЛИСТНОЙ (TILIA CORDATA MILL.) В РАЗНЫХ ЭЛЕМЕНТАРНЫХ ГОРОДСКИХ ЛАНДШАФТАХ

THE CONDITION OF THE SMALL-LEAVED LINDEN (TILIA CORDATA MILL.) IN DIFFERENT ELEMENTARY URBAN LANDSCAPES

Стома Г.В., Кузнецов В.А.

(Московский государственный университет имени М.В. Ломоносова, г. Москва, РФ)

Stoma G.V., Kuznetsov V.A.

(Faculty of Soil Science, Moscow State University, Moscow, Russian Federation)

По отношению к природным экосистемам состояние лип и качество среды их функционирования в г. Москве ухудшилось в 2.7-3 раза. Минимально в лесопарках на окраине города, а максимально — в его центре в селитебных и селитебно-транспортных ландшафтах.

In relation to natural ecosystems, the condition of lime trees and the quality of their functioning environment in Moscow deteriorated 2.7-3 times. Minimally in forest parks on the outskirts of the city, and maximally in its center in residential and residential—transport landscapes.

Ключевые слова: урбанизированные территории, элементарные городские ландшафты, флуктуирующая асимметрия листовой пластинки, качество среды

Keywords: urbanized territories, elementary urban landscapes, fluctuating asymmetry of the leaf blade, environmental quality

Введение

Роль древесных насаждений в городской среде исключительно велика. Они регулируют тепловой режим, создают комфортный микроклимат, защищают от пыли, ветра и шума, сохраняют почвенный покров, создают основу озелененных территорий – объектов повседневного отдыха горожан [4, 11].

Разноинтенсивная и разнонаправленная деятельность человека в городах влияет на природную среду, изменяя все ее компоненты. Ландшафты загрязняются городской пылью, содержащей комплекс минеральных и органических соединений. Происходит техногенное загрязнение почв, изменение их свойств и режимов, наблюдается нерегулируемая рекреация, появление вредителей и болезней растений. Длительное воздействие перечисленных факторов способствует снижению устойчивости растений к антропогенному воздействию и, в конце концов, их гибели [4,7,10-11].

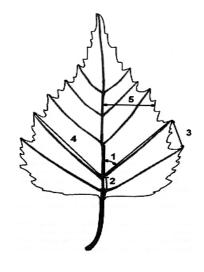
На основании приуроченности территории к функциональной зоне, уровня техногенного загрязнения и нарушенности биологического круговорота веществ, на урбанизированных территориях выделяются пять порядков

элементарных ландшафтов: парково-рекреационный, агротехногенный, селитебный, селитебно-транспортный и промышленный [10].

Растительность служит весьма чувствительным индикатором воздействие человека. Запыленность и загазованность атмосферного воздуха, переуплотнение почв при рекреации, эфемерное засоление, загрязнение тяжелыми металлами, высокая плотность коммунальных сооружений в корнеобитаемом слое и т.д. оказывают негативное влияние на состояние зеленых насаждений в городе [3,4,7-12]. Совокупность физиолого-биохимических процессов (фотосинтез, дыхание, минеральное, водное питание и т.д.) отражает степень оптимальности условий среды для их роста и развития. По степени риска неблагоприятные факторы роста древесных насаждений следующим образом: засоление, уплотнение, подтопление почв, загрязнение атмосферного воздуха и почв, инфекционные заболевания [11].

Имеются сведения, что состояние древесных насаждений менее чем на 25% связано с изменением почвенных свойств [8]. Обусловлен этот факт большей чувствительностью древесной растительности на изменение условий окружающей среды; но наряду с почвенными свойствами не нее негативно влияют другие факторы.

Объекты и методы исследования


Объектами исследования послужили 89 участков в разных элементарных городских ландшафтах (ЭГЛ) и в разных районах города (на окраине, в середине, центре). Это парково-рекреационные ландшафты (ПРЛ): 2 лесопарка («Лосиный остров», «Битцевский лес» с 1-5 стадиями дигрессии БГЦ); 7 парков (Екатерининский, Измайлово, Лефортово и др.); 22 сквера (на Болотной площади, у посольства Китая, больницы Алексеева и др.), 11 селитебнотранспортных (СТЛ) и 18 селитебных ландшафтов (СЛ). В скверах и в селитебно-транспортных ландшафтах участки выбраны на разном расстоянии от автомагистралей, а в селитебных выделены 3 «микрозоны»: около подъездов (палисадники, газоны), вблизи детских площадок, гаражей и автостоянок. За фон принята территория Московской области в 5 км от МКАД за районом Ясенево. Почвы диагностированы как естественные, урбо-дерново-подзолистые, урбо-аллювиальные, убраноземы и реплантаземы [5].

Учет состояния липы мелколиственной (*Tilia cordata* Mill.) осуществляли по методике В.М.Захарова, А.Т.Чубинишвили [1]. Для ее применения из нижней части кроны с разных сторон деревьев отобрано по 50 листовых пластинок. По величине их флуктуирующей асимметрии на основании пяти морфометрических измерений определены: 1) интегральный показатель стабильности развития липы (ПСРЛ), высокочувствительный к широкому спектру антропогенных факторов и 2) качество окружающей среды (БЭБ — балл экологического бонитета, оцениваемый по 5-ти бальной шкале), под которым понимается степень отклонения среды от нормы (рис. 1).

Результаты и их обсуждение

Средние величины ПСРЛ и БЭБ, возросшие по сравнению с естественными условиями в 2.7-3 раза, являются следствием негативных последствий

деятельности человека на урбанизированной территории (табл. 1). В целом по городу ПСРЛ колеблется от 0,024 до 0,069, соответствуя всем градациям экологического бонитета (от 1 до 5). Условия произрастания лип в 40% случаев характеризуется как «норма», а 25% - как критические.

Оценка качества среды по показателю стабильности развития

<u></u>			
Величина ПСР	БЭБ		
< 0,040	1 - условная норма		
	2 - слабое влияние		
0,040 - 0,044	неблагоприятных		
	факторов		
0,045 - 0,049	3 и 4 - наблюдается в		
0,050 - 0,054	загрязненных районах,		
	угнетенное состояние		
	растений		
> 0,054	5 - сильно угнетенное		
	состояние растений		

Рисунок 1 — Схема морфологических признаков, используемых для оценки показателя стабильности развития древесных растений [1]

Примечание: 1- угол между главной жилкой и второй от основания листа жилкой второго порядка, 2- расстояние между концами этих же жилок, 3- расстояние между основаниями первой и второй жилок второго порядка, 4- длина жилки второго порядка, второй от основания листа, 5- ширина левой и правой половинок листа.

Наиболее комфортно липы функционируют на окраине г. Москвы, а к центральной его части качество среды снижается (БЭБ возрастает с 2.4 до 3.7), при этом ПСРЛ увеличивается от 0.041 до 0.051. Варьирование этих показателей постепенно снижается к центру города. Обусловлено это, в первую очередь, высокой длительностью и степенью антропогенного воздействия, а также запечатанности территории в центре урбанизированной территории.

Весьма благоприятные условия для роста лип создаются в ПРЛ, особенно в лесопарках, сосредоточенных в основном на окраине Москвы. Ведущим видом непосредственного влияния человека здесь является рекреация. При отдыхе населения в результате механического воздействия у деревьев повреждаются стволы, что не только влияет на их жизнедеятельность, но и способствует развитию болезней и заселению вредителями. Вытаптывание приводит к деградации подстилки, уплотнению почвы, и, как следствие, к изменению ее водного и воздушного режимов и условий питания растений. От оголения и повреждения корней особенно сильно страдают деревья с поверхностной корневой системой. В городской среде изменяются условия лесовозобновления, в результате чего может измениться динамика экосистемы в целом. Нарушается их структурная устойчивость — происходит упрощение структуры лесной экосистемы, строения и породного состава насаждений [4,9-12].

От рекреации страдают и нижние ярусы растительности лесопарков: в подлеске уменьшается количество растений, изменяется видовой состав; очень уязвим травяно-кустарничковый ярус и моховой покров. Преобразуются не только отдельные компоненты экосистемы, НО И системообразующие Нарушается целостность биогеоценоза, взаимосвязи между ними. пространственная континуальность травяного покрова, подстилки и почв. Развивается сетчатая структура дорожно-тропиночной сети [6].

Таблица 1 – Показатель стабильности развития лип (ПСРЛ) и балл

экологического бонитета (БЭБ) в городских ландшафтах

Объект,	ПСРЛ	БЭБ	
положение в городе	средний (мин. – макс.)	средний (мин. – макс.)	
Контроль	0.017	1	
Парково-рекреационные ландшафты			
Лесопарки			
Окраина	0.038 (0.028 - 0.049)	1.6 (1-3)	
Парки			
Окраина	0.040 (0.032 - 0.045)	2.1 (1-3)	
Середина	0.046 (0.041 - 0.051)	3 (2-4)	
Центр	0.052 (0.048 - 0.062)	4 (3-5)	
Скверы			
Окраина	0.033(0.025 - 0.039)	1 (1-1)	
Середина	0.032 (0.025 - 0.042)	1.1 (1-2)	
Центр	0.044 (0.041 - 0.045)	2.2 (2-3)	
	Селитебные ландшафты		
Окраина	0.047 (0.024 - 0.069)	3 (1-5)	
Середина	0.054 (0.037 - 0.069)	4 (1-5)	
Селитебно-транспортные ландшафты			
Окраина	0.050 (0.048 - 0.050)	4.4 (3-4)	
Середина	0.055 (0.052 - 0.060)	4.4 (4-5)	
Центр	0.055 (0.051 - 0.058)	4.5 (4-5)	
По городу			
Окраина	0.041 (0.025 - 0.069)	2.4 (1-4)	
Середина	0.047 (0.025 - 0.069)	3.1 (1-5)	
Центр	0.051 (0.041 - 0.062)	3.7 (2-5)	
В целом по городу	0.045 (0.024 - 0.069)	3 (1-5)	

Прямое влияние рекреации дополняется общим атмотехногенным загрязнением лесопарков карбонат-содержащей пылью локальным углеродосодержащими соединениями и легкорастворимыми солями. Наряду с отмеченными выше параметрами почв изменяются и другие ее свойства: содержание органического вещества, биологическая активность разнонаправленно, реакция среды сдвигается В нейтральную повышается электропроводность и т.д. [2,3,5,7,10].

Парково-рекреационные городские ландшафты отличаются функциями, размером, видом благоустройства и продолжительностью отдыха населения. Состояние древесной растительности в лесопарках и скверах лучше (ПСРЛ –

0.037 и 0.036), условия произрастания лип соответствуют норме (БЭБ 1), а в парках не такие благоприятные (ПСРЛ 0.046, а БЭБ колеблется от 1 до 5). В лесопарках оно детерминируется стадией дигрессии: на первых трех, несмотря на повышение ПСРЛ относительно контроля в 1,5-2 раза, растения развиваются нормально (БЭБ = 1). Повышение рекреационной нагрузки (разрастание тропиночной сети, значительное увеличение открытого пространства с высоким уровнем атмотехногенного загрязнения) определяет ухудшение условий функционирования лип. На 4 стадии дигрессии растения испытывают слабое влияние неблагоприятных факторов (БЭБ = 2, а ПСРЛ = 0.041), а на 5 стадии – условия роста и развития лип резко ухудшаются (ПСРЛ = 0.045-0,049, а БЭБ = 3-4). Устойчивость древесных насаждений к рекреации связана и с устойчивостью почв, зависящей от их гранулометрического состава. Несмотря на одинаковое качество среды, ПСРЛ в «Лосином острове» выше (0.039) по сравнению с «Битцевским лесом» (0.036) вследствие развития почв в первом случае на флювиогляциальных песках, а во-втором – на покровных суглинках.

Существует мнение, что устойчивость городских экосистем прямо зависит от их размера. Казалось бы, в парках, имеющих по сравнению со скверами большую площадь, должны создаваться более комфортные условия для роста лип. Но выявлена обратная тенденция: в парках липы «чувствуют» себя хуже: ПСРЛ соответственно равен 0.046 и 0.034 (БЭБ = 4 и 2). Обусловлено это особенностями организации пространства в скверах (для кратковременного отдыха населения и использования в качестве транзита), разнообразием способов благоустройства и ухода, о чем косвенно свидетельствует больший размах исследуемых параметров. На окраине и в середине города установлена тенденция улучшения состояния лип от окраины вглубь скверов (35-100 м): ПСРЛ снижается на 0.002-0.007 при условии произрастания - «норма». В центре мегаполиса отмечено общее ухудшение качества среды (БЭБ=2-3).

Максимально по сравнению с фоном величина ПСРЛ повышается в селитебных (в 3 раза) и селитебно-транспортных ландшафтах (в 3.1 раза). Эти значения соответствуют 3-5 БЭБ, характеризуя неблагоприятные условия произрастания лип (загрязнение окружающей среды и сильно угнетенное состояние древесных пород). Варьирование величин ПСРЛ в селитебнотранспортных ландшафтах низкое, а в селитебных значительное (1.2-2.8), а БЭБ, характеризующий качество среды, колеблется существенно (от 3 до 5 и от 1 до 5, соответственно). Это следствие разного уровня и вида антропогенной нагрузки. В первом случае (СТЛ) основная причина – загрязнение почвы и растений пылеватыми частицами, содержащими различные поллютанты. Во втором случае (СЛ) на этот процесс накладывается рекреационная нагрузка, хранение и вывоз бытовых отходов. Немаловажная роль в этих ландшафтах принадлежит высокой плотности коммунальных сооружений в корнеобитаемом слое почв. Аналогично скверам на территориях, расположенных на разном удалении от магистралей (0,5-5 м), по мере приближение к ним ПСРЛ повышается, но несущественно (на 0.002), лишь на пересечении дорог он значительно выше (на 0.008).

В селитебных ландшафтах наблюдаются определенные различия по «микрозонам». Около подъездов (в палисадниках и на газонах) состояние лип и качество среды более благоприятное, чем вблизи детских площадок и около гаражей. В первом случае средняя величина ПСРЛ равна 0.046, во втором и третьем выше -0.054, а БЭБ -3 и 4 при снижении размаха варьирования ПСРЛ, и общей высокой вариабельности БЭБ, характеризуя в большинстве случаев (50%) критические условия для функционирования лип.

Заключение.

Оценка показателя асимметрии листовой пластинки лип и балла экологического бонитета в разных районах г. Москвы и в разных элементарных ландшафтах раза по отношению к природным экосистемам показала ухудшение состояния древесных насаждений и качества среды для их функционирования в 2.7-3 раза. Факторами, приводящими к этим процессам, являются вид, уровень и длительность антропогенного воздействия, сложное их сочетание. Наиболее благоприятные условия для функционирования лип создаются на окраине города в лесопарках, а максимальный стресс они испытывают в центре и в селитебных и селитебно-транспортных ландшафтах.

Список использованных источников

- 1. Захаров В.М., Чубинишвили А.Т. Мониторинг здоровья среды на охраняемых природных территориях. М., 2001. 148 с.
- 2. Кузнецов В.А., Стома Г.В. Влияние рекреации на лесные городские ландшафты (на примере национального парка «Лосиный остров» г.Москвы) // Вестн. Моск. ун-та. Сер. 17. Почвоведение. 2013. № 3. С. 27-33.
- 3. Кузнецов В.А., Рыжова И.М., Телеснина В.М., Стома Г.В. Количественная оценка влияния рекреации на растительность, подстилку и плотность почв лесопарков Москвы // Вест. Моск. ун-та. Серия 17 Почвоведение. 2015. №1. С.21-29.
- 4. Рысин Л.П., Рысин С.Л. Урболесоведение. М.: Товарищество научных изданий МКК. 2012. 240 с.
- 5. Почва, город, экология / Под ред. Г.В. Добровольского. М., 1997. 320 с.
- 6. Соколов Л.А. Изменение физических свойств почв и роста насаждений под влиянием рекреационных нагрузок в парках и лесопарках Подмосковья. Диссертация канд. биол. наук. Изд. МГУ, 1983. 168 с.
- 7. Состояние зеленых насаждений и городских лесов в Москве / Под ред. Х.Г. Якубова. М., 2000. 227 с.
- 8. Стома Г.В., Романова Л.В. Экологическое состояние почв и древесной растительности в городских парково-рекреационных ландшафтах (на примере Екатерининского парка г. Москвы) // Вест. Моск. ун-та. Серия Почвоведение. 2019. №4. С.11-18.
- 9. Шапочкин М.С., Киселева В.В., Обыденников В.И. и др. Комплексная методика изучения влияния на экосистемы городских и пригородных лесов // Науч. тр. национального парка «Лосиный остров». Вып.1. М., 2003. С.12-29.
- 10. Экология города / Под ред. А.С. Курбатовой, В.Н. Башкина, Н.С. Касимова. М., 2004. 624 с.
- 11. Якубов Х.Г. Экологический мониторинг зеленых насаждений в Москве. М., 2005. 264 с.
- 12. Dong-sheng G., Yu-juan C. Status of urban vegetation in Guangzhou City // J. Forest. Res. 2003. Vol. 14. Is. 3. P.249-252.