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Software-de�ned networking (SDN) is an approach to building computer net-

works that separate and abstract data planes and control planes of these systems.

In a SDN a centralized controller manages a distributed set of switches. A set of

open commands for packet forwarding and �ow-table updating was de�ned in the

form of a protocol known as OpenFlow. In this paper we describe an abstract formal

model of SDN, introduce a tentative language for speci�cation of SDN forwarding

policies, and set up formally model-checking problems for SDN.

1. Software De�ned Networks and OpenFlow protocol

Since the very beginning of computer-based telecommunication engineering networks
have been built out of special-purpose devices (routers, switches, �rewalls, gateways).
Each of these units runs sophisticated distributed algorithms to provide such functionali-
ties as topological discovering, routing, tra�c monitoring and balancing, access control,
etc. A typical enterprise network might include hundreds or thousands of such devices,
and in the most of them hardware and software components are closed and proprietary.
These networks are managed through a set of complex heterogeneous interfaces that
are used to con�gure separately the network devices. As the size of networks increases
and network protocols become more involved, management of traditional networks tends
to be remarkably complex and error-prone activity. The di�culty of tuning coherently
a considerable amount of network devices operating independently is one of the most
severe obstacle in the development of novel network technologies such as data centers
and cloud computing.
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To cope with these principal di�culties a new kind of network architecture referred to
as Software De�ned Networks (SDNs) has emerged recently. SDNs have two distinguished
features: 1) data �ows (data plane) are separated from control �ows (control plane),
and 2) multiple network units can be managed by the same control program that
regulates data �ow propagation. Therefore, a network becomes far more susceptible to
the outside control which leads to a more coordinated behavior of its components. In
a SDN data �ows are forwarded by the switches via communication channels just as in
traditional networks. But, unlike traditional networks, control �ows are transmitted via
dedicated channels that connect switches and controllers. In fact, such a control �ow
channel may be virtual in the case when it shares the same communication link with
some data �ow channel. A controller is a general purpose machine (server) capable of
performing application programs that manage packet switching and routing in a network.
In 2011 the Open Networking Foundation de�nes OpenFlow protocol [1] as the �rst
standard communications interface between the control and forwarding layers of an SDN
architecture. The key points of this protocol are described below.

SDN is a real-time distributed system whose main components are divided into two
classes � switches and controllers.

A switch is a network unit supplied with a number of ports ; each port has its ingress
and output bu�ers. Some ports of a switch are linked with ports of other switches by
data �ow channels. Data packets are transmitted through these channels. Every port of
a switch has its unique identi�er � port name. In addition, the control �ow channel joins
some distinguished port of a switch to the controller. A switch sends packets and statistic
data to the controller and receives commands in response. Every switch is supplied with
a �ow table which is a list of packet forwarding rules (they are also called �ow entries).
After arriving to the ingress bu�er of a switch port a data packet is processed by a �ow
table. The packet is matched against the the forwarding rules to select an appropriate
rule. When a forwarding rule is selected then it either forwards the packet to the output
bu�er of a certain port, or drops the packet. If the packet is passed to the output bu�er
of a data �ow port then it will be transmitted through the data �ow channel to the
corresponding ingress port on the other side of the channel. If the packet is passed to
the output bu�er of the control �ow port then it will be sent to the controller.

A packet is an elementary formatted unit of data carried by a packet-switched
network. Every packet carries two kinds of information: header (control information)
and payload (user data). When packets are processed by switches and controllers their
payloads are not taken into account and remain intact. A header of a packet may be
divided into several �elds. These �elds contain source and destination addresses, the
information about network protocol, type of service, etc. Packet forwarding rules are
able to modify some �elds, but when packets are transmitted through the channels their
headers are not changed.

Each forwarding rule consists of a list of match �elds, a list of actions, a priority,
timeouts, and a counter.

A match �eld is a pair (field, pattern), where field is an identi�er of a header �eld,
and pattern is a string composed of 0,1 (binary symbols) and * (the wildcard symbol). A
packet header matches a pair (field, pattern) if all binary symbols of the string pattern
are the same as the corresponding bits in the �eld field of the header. A forwarding rule
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is applicable only to those packets whose header matches all match �elds of the rule.
An action is a basic operation that processes a packet. Two kinds of actions are

possible: forwarding actions and header modi�cation actions. A forwarding action passes
a packet to the output bu�er of a certain port of the switch. A header modi�cation
action changes a speci�ed �eld of a packet header. The actions are applied in the order
speci�ed by the list. If the list of actions includes a forwarding action then a copy of the
packet processed by the previous header modi�cation actions is passed immediately to
the corresponding port of the switch. If the list of actions does not end with a forwarding
action then a packet is dropped after processing by this rule.

A priority indicates subordination level of a rule.
Timeouts indicate maximum amount of time before the forwarding rule is expired by

the switch. Each rule has an idle timeout and a hard timeout associated with it. An idle
timeout causes the rule to be removed when it has matched no packets within a certain
time. A hard timeout causes the rule to be removed after a certain time regardless of
how many packets it has processed.

A counter is updated whenever the rule is applied to a packet.
Every open �ow table consists of forwarding rules. It is supplied with an algorithm

(procedure) for selecting appropriate rule to process the packets that arrive to the ingress
bu�ers of the switch ports. On receipt of a packet the switch starts by performing the
table look-up. Packet match �elds are extracted from the packet. In addition to packet
headers, matches can also be performed against the ingress port. When several forwarding
rules match some packet header only the highest priority rule is selected. The counter
associated with the selected forwarding rule must be updated and the list of actions
included in the selected forwarding rule must be applied to the packet. OpenFlow does
not specify explicitly how to resolve the case when there are multiple matching rules with
the same highest priority. Every �ow table must support a table-miss rule; it speci�es
how to process those packets that do not match any forwarding rule of the table.

A �ow table can be changed in the following cases.

1. Expiration of a timeout of some forwarding rule. In this case the rule is deleted
from the table and the controller is noti�ed about this event.

2. A switch receives a command to add a new rule to the �ow table. In this case the
rule which is the parameter of this command is inserted to the table. If the table
already contains the rule to be added then the counter of the rule is dropped and
its timers are reset.

3. A switch receives a command to delete all rules that includes certain match �elds.
In this case all such forwarding rules are excluded from the table.

A controller manages all those switches that are connected with it by control �ow
channels. Through this channel the control sends commands to switches. OpenFlow
standard admits the following types of messages and commands.

• Read-State commands are used by the controller to collect various information
from a switch, such as current con�guration, statistics (the number of packets that
match speci�ed rules) and capabilities.



Models for Software De�ned Networks 3

• Modify-State commands are sent by the controller to add, delete and modify
forwarding rules in OpenFlow tables of switches.

• Packet-out commands are used by the controller to send a certain packet out of a
speci�ed port of a switch; this command must contain a full packet and a list of
action to be applied to this packet.

By turn, a switch sends asynchronous messages to a controller in the following cases:

• to denote a packet arrival to the control �ow port of the switch; the control of this
packet is transferred to the controller,

• to inform the controller about the removal of a forwarding rule from a �ow table
as the result of a controller �ow delete command, or the expiring of a forwarding
rule time-out.

SDNs can both simplify existing network applications and serve as a platform for
developing new ones (see [2]). The main advantage of this network architecture is that
programmers are able to control the behavior of the whole network by con�guring
coherently the �ow tables in the switches. Nevertheless, bugs are likely to remain proble-
matic since the complexity of software will increase. Moreover, SDN allows multiple
applications operate simultaneously on the same controller and, hence, manage the same
network. This opportunity may result in con�icting rules that spoil the forwarding policy
of the whole system. The solution is to develop a toolset which could be able 1) to
check correctness of a separate application operating on the controller w.r.t. a speci�ed
forwarding policy, 2) to check consistency of forwarding policies implemented by various
applications, and 3) to monitor and check correctness and safety of the entire SDN.

Strange as it may seem, but only few researchers made attempts to apply formal
techniques to veri�cation of SDN behavior. The authors of [3] introduced a relational
model of communication networks and developed a BDD-based toolkit to verify reachabi-
lity properties of packet routing. Similar models of networks were considered in [4, 5, 6, 7];
the authors of these papers used other techniques (SAT solving, manipulations with
DNFs or binary strings) to verify the same class of reachability properties. The main
de�ciency of these models is that they do not take into account controllers; instead, they
are aimed at checking only network con�gurations � the snapshots of the data plane.
In the models developed in [8, 9, 10] SDN is regarded as automaton (transition system)
which passes from one state to another as the switches forward packets, send messages
to controllers, or update their �ow-tables. Automata-theoretic models are veri�ed by
means of extended static analysis. However, such models are in rather poor agreement
with symbolic techniques which is unavoidable when the analysis of even local networks
is concerned. As for speci�cation language, the authors of all these papers used temporal
logics (CTL or LTL) just to specify paths in the data plane routed by switches. We
think that when reachability properties are concerned, transitive closure operator is
more suitable for this purpose.

In this paper we study the veri�cation problem for SDNs. Our main contribution to
the study of veri�cation problems for SDNs includes:



4 Ìîäåëèðîâàíèå è àíàëèç èíôîðìàöèîííûõ ñèñòåì Ò.0, �0 (2000)

• introduction of a combined (relational and automata based) formal model which
captures the most essential features of SDN behavior;

• introduction of a tentative language for speci�cation of SDN forwarding policies
which uses transitive closure operator to specify reachability properties of packet
forwarding relation and temporal operators to specify behavior of SDN as a whole;

• formal setting of the model checking problem for SDNs.

2. A formal model of Software De�ned Networks

In this section we present a formal model of SDNs. Unlike all known models introduced
so far our model makes it possible to specify and analyze packet forwarding relations
(relational component of the model) as well the behavior of controllers interacting with
network switches (automata component of the model).

The model of SDN introduced in this paper is a �nite discrete time model; i.e. our
abstraction misses such issues as arithmetic operations and real time. As a consequence,
it does not capture such features as requests and messages that refer to counters and
deletion of forwarding rules from �ow-tables at the expiration of the respective time-outs.
To simplify the presentation of the model we also ignore the priorities of forwarding rules,
but this is not a principal limitation. Unlike the SDN models introduced in [8, 9, 10] our
model deals with paths in the data plane routed by forwarding rules (per �ow model)
rather than individual packets that traverse a network of switches (per packet model).
The semantics of the SDN model is de�ned in terms of a packet forwarding relation on
packet states. A packet state is speci�ed by the header of the packet and the location of
the packet in the network. A packet forwarding relation speci�es how packet states can be
changed while packets traverse the network. When applied to a packet, a forwarding rule
changes the packet state by modifying its header and by transmitting the packet from
one port of the switch to another. Packet states also change when packets are sent from
one switch to another via a network channel. The packet forwarding relation allows some
packets to be sent to the controller via control channels. Such packet states are regarded
as messages addressed to the controller which is viewed as a transducer with a set of
packet states for the input alphabet and a set of commands for the output alphabet.
Upon receiving a message (which is just a packet state) from a switch the controller
moves to another control state and outputs a �nite sequence of commands to switches.
These commands update the �ow tables in some switches and, thus, modify the packet
forwarding relation. An observer may consider the behavior of SDN as an alternating
sequence of messages delivered to the controller (events) and packet forwarding relations
computed by the network. These concepts and principles are de�ned formally as follows.

To avoid ambiguity we use the term �network� for a set of switches communicating
with each other via data �ow channels, and the term �SDN� for a distributed system
which consists of a network and a controller communicating via control channels.

Packet header is a Boolean vector h = (h1, h2, . . . , hN). All headers are assumed to
have the same length N . The set of all packet headers is denoted by H, H = {0, 1}N .
Components of the header h are denoted by h[i], 1 ≤ i ≤ N .
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Port of a switch is a Boolean vector p = (p0, p1, p2, . . . , pk). Its components are
denoted by p[i], 0 ≤ i ≤ k. If p[0] = 1 then p is an input port, otherwise it is an
output port. All switches in the network are assumed to be identical and have the
same number of ports. The set of all (input,output) ports of a switch is denoted by
P(IP ,OP) respectively. The output port p such that p[i] = (0, 0, . . . , 0) is a drop port.
It is denoted by drop; at arriving to this port the packets are dropped. The output port
p = 〈0, 1, 1, . . . , 1〉 is the control output port. It is denoted by octr; at arriving to this
port the packets are sent to a controller. The input port p = 〈1, 1, 1, . . . , 1〉 is the control
input port. It is denoted by ictr; only commands from the controller are passed to this
port.

All switches of a network are enumerated and the name of each switch is a Boolean
vector w = (w1, w2, . . . , wm). Its components are denoted by w[i], 0 ≤ i ≤ m. The set
of such vectors is denoted by W .

A pair 〈h,p〉, h ∈ H, p ∈ P , is called a local packet state. A pair 〈p,w〉, p ∈ P , w ∈
W , is called a node. A triple 〈h,p,w〉, h ∈ H, p ∈ P ,w ∈ W , is called a packet state.
The set of all packet states is denoted by S.

A header pattern is a vector z = (σ1, σ2, . . . , σN), where σi ∈ {0, 1, ∗}, 1 ≤ i ≤ N . A
port pattern is a vector y = (δ1, δ2, . . . , δk), where δi ∈ {0, 1, ∗}, 1 ≤ i ≤ k. Patterns are
used for the selection of appropriate rules from �ow tables as well as for the updating of
packet headers.

Any action a is either a forwarding action OUTPUT (y), where y ∈ OP , or a header
modi�cation action SET_FIELD(z), where z is a header pattern. An instruction is
any �nite sequence of actions.

A �ow entry is a tuple r = 〈(z,y), α〉), where z,y are header and port patterns, and
α is an instruction. A �ow-table of a switch is a �nite set of forwarding rules.

Both the topology and the functionality of a net components are de�ned by means of
binary relations on packet states and nodes. These relations are speci�ed by Quanti�ed
Boolean Formulae. When dealing with patterns we use two auxiliary functions Uσ(u, v)
and Eσ(u), where σ ∈ {0, 1, ∗}, and u, v are Boolean vectors, such that

• if σ = ∗, then Uσ(u, v) = u ≡ v and Eσ(u) = 1,

• if σ ∈ {0, 1}, then Uσ(u, v) = u ≡ σ and Eσ(u) = u ≡ σ.

An action a = OUTPUT (y) sends packets without changing their headers to all
output ports that match a pattern y = (δ1, δ2, . . . , δk). An action b = SET_FIELD(z)
modi�es headers of packets following a pattern z = (σ1, σ2, . . . , σN): a bit h[i] in a header
remains intact if ∗ is in the position i of z, otherwise it is changed to z[i]. The semantics
of both actions is speci�ed by the binary relations

Ra(〈h,p〉, 〈h′,p′〉) =
N∧
i=1

(h[i] ≡ h′[i]) ∧
k∧
i=1

Uδi(p
′[i],p[i])

Rb(〈h,p〉, 〈h′,p′〉) =
N∧
i=1

Uσi(h
′[i],h[i]) ∧

∧̀
i=1

(p[i] ≡ p′[i]) .

on the set of local packet states H×P .
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An instruction α computes a sequential composition of its actions. If α is empty
then a packet by default have to be dropped, i.e. sent to the port drop. Therefore, we
assume that every instruction always ends with a forwarding action. The semantics of
the instruction α is speci�ed by the binary relation Rα which is de�ned as follows:

1. if α is empty then Rα = false;

2. if α = a, β then the relation Rα is de�ned by one of the formulae below depending
on a:

(a) if a is a forwarding action then

Rα(〈h,p〉, 〈h′,p′〉) = Ra(〈h,p〉, 〈h′,p′〉) ∨Rβ(〈h,p〉, 〈h′,p′〉) ,

(b) if a modi�es packet headers then

Rα(〈h,p〉, 〈h′,p′〉) = ∃h′′ (Ra(〈h,p〉, 〈h′′,p〉) ∧Rβ(〈h′′,p〉, 〈h′,p′〉)) .

A packet forwarding rule is a triple r = (y, z, α), where y = (δ1, δ2, . . . , δ`) is a port
pattern, z = (σ1, σ2, . . . , σN) is a header pattern, and α is an instruction. This rule
applies the instruction α to all packets whose port and header match the patterns. Its
e�ect is speci�ed by the binary relation Rr on the set of local packet states H×P

Rr(〈h,p〉, 〈h′,p′〉) = precondr(〈h,p〉) ∧ Rα(〈h,p〉, 〈h′,p′〉) ,

where

precondr(〈h,p〉) =
∧̀
i=1

Eδi(p[i]) ∧
N∧
j=1

Eσj(h[j])

is a precondition of the rule r.
A �ow table tab is a pair (D, β), where D = {r1, r2, . . . , rn} is a set of forwarding rules

and β is a default instruction. A switch applies rules from its �ow table to those packets
which arrive to the input ports of a switch. If all rules from the set D are inapplicable
to a packet then the default instruction β takes e�ect. The semantics of the �ow table
tab is speci�ed by a binary relation

Rtab(〈h,p〉, 〈h′,p′〉) =
n∨
i=1

Rri(〈h,p〉, 〈h′,p′〉) ∨

∨ (¬(
n∧
i=1

precondri(〈h,p〉)) ∧ Rα(〈h,p〉, 〈h′,p′〉)) .

on the set of local packet states H×P . The set of all possible �ow tables is denoted by
Tab.

The topology of a network is completely de�ned by a packet transmission relation

T ⊆ (OP × W) × (IP × W). Although our model admits an arbitrary transmission
relation of the type speci�ed above, in practice T is an injective function. Nodes that
are involved in the relation T are called internal nodes of the network; others are called
external nodes. We denote by In and Out the sets of all external input nodes and external
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output nodes of a network respectively. External nodes of a switch are assumed to be
connected to outer devices (controllers, servers, gateways, etc.) that are out of the scope
of the SDN controller. Packets enter a network through the input nodes and leave a
network through its output nodes.

When a set of switches H and a topology T are �xed then a network con�guration is
a total function Net : W → Tab which assign �ow-tables to the switches of the network.
Finally, the semantics of a network at a given con�guration Net is speci�ed by the packet
forwarding relation relation

RNet(〈h,p,w〉, 〈h′,p′,w′〉) = (CNet(〈h,p,w〉, 〈h′,p′,w′〉) ∧Out(p′,w′)) ∨
∨ ∃p′′(CNet(〈h,p,w〉, 〈h′,p′′,w〉)∧

∧ T (〈p′′,w〉, 〈p′,w′〉)).

on the set of (global) packet states S = H×P ×W , where

CNet(〈h,p,w〉, 〈h′,p′,w′〉) =
( ∨
w∈W

RNet(w)(〈h,p〉, 〈h′,p′〉)
)
∧

k∧
j=1

(wj ≡ w′j) .

When RNet(s, s
′) holds for a pair of packet states s = 〈h,p,w〉 and s′ = 〈h′,p′,w′〉 then

every packet with a header h which comes to a port p of a switch w is forwarded in
one hop either to an input port h′ of a switch w′ or to an outer device connected to an
external output port h′ of a switch w.

A controller is a reactive program which receives messages from switches via their
control ports and generates response commands that change the content of �ow-tables.
A switch sends a message to the controller as a request for updating its �ow-table: a
message indicates that the �ow-table of a switch has no appropriate rules to process
a packet which arrives on an input port of the switch. Therefore, a message may be
viewed as a packet state. A controller generates two types of commands to add and
delete forwarding rules. A command add(w, r), where w ∈ W and r is a forwarding
rule, installs the rule r in the �ow-table of the switch w. We denote by C the set of all
possible commands. A command del(w, z,y), wherew ∈ W , and z,y are header and port
patterns, deletes from the �ow-table of the switch w all forwarding rules r = 〈(z′,y′), α〉
when the patterns z′,y′ match the patterns z,y respectively. Commands of both types
change network con�gurations; we write Net′ = update(cmd,Net) to indicate that a
command cmd changes a network con�guration Net to a network con�guration Net′. If
ω = cmd1, cmd2, . . . , cmdn is a �nite sequence of commands then we write update(ω,Net)
for update(cmdn, update(. . . , update(cmd2, update(cmd1, Net))).

A formal model of a controller is a transducer A = (H, C, Q, q0,∆), where

• H and C are input and output alphabets respectively,

• Q is a set of control states,

• q0, q0 ⊆ Q, is an initial control state, and

• ∆, ∆ ⊆ Q×H× C∗ ×Q is a transition relation.
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A quadruple (q, s, ω, q′) from ∆ means that a controller A when receiving a message s
at the control state q can generates a �nite sequence of commands ω and transits to the
control state q′.

At every network con�guration Net a controller A may receive only such messages
that are triggered by packets incoming to the network via external nodes. In this cases
a message includes a modi�ed header of such packet and an input node of the switch
which sends the message to the controller. To specify the set of messages Event(Net)
admissible at a network con�guration Net we consider the transitive-re�exive closure
R∗Net of the one-hop forwarding relation RNet. Then

Event(Net) = {〈x0,y0, z0〉 : ∃ x,y, z,x′ (〈y, z〉 ∈ In ∧
∧ R∗Net(〈x,y, z〉, 〈x′,y0, z0〉) ∧
∧ RNet(〈x′,y0, z0〉, 〈x0, octr, z0〉))}

A formal model of SDN is speci�ed by the sets W ,P ,H of switches, their ports and
packet headers, a packet transmission relation T , and a control A. A partial run of SDN
M = (W ,P ,H, T, A) is a sequence (�nite or in�nite)

run = (Net0, q0)
s1→ (Net1, q1)

s2→ · · · si→ (Neti, qi)
si+1→ (Neti+1, qi+1)

si+2→ · · · (∗)

where for every i, 0 ≤ i,

1. Neti is a network con�guration, qi is a control state of A, and si is a packet state,

2. si+1 ∈ Event(Neti),

3. a transition relation of A includes a quadruple (qi, si+1, ωi, qi+1) such that Neti+1 =
update(ωi, Neti).

Pairs (Neti, qi) are viewed as the states of SDN and packet states si+1 play the role of
messages sent to the controller. A complete run is a partial run which is either in�nite
or ends with a state of SDN (Neti, qi) such that Event(Neti) = ∅. Given a SDN M and
network con�guration Net0 we write Run(M,Net0) to denote the set of all complete
runs of M which begin with a pair (Net0, q0).

3. Speci�cation of forwarding policies

Usually a wide range of requirements is imposed upon communication networks to
guarantee their correct, safe and secure behavior. We consider only those requirements
that concern the reachability properties. Certain packets have to reach their destination,
whereas some other packets have to be dropped. Certain switches are forbidden for some
packets, whereas some other switches have to be obligatorily traversed. Loops are not
allowed. These and some other requirements constitute a forwarding policy. One of the
aims of network engineering is to provide such a loading of switches with forwarding rules
as to guarantee compliance with the forwarding policy. Since �ow-tables of switches are
updated by the controller, this raises two problems that are fundamental in software
engineering:
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1. veri�cation of SDN against a forwarding policy : given a SDNM and a set of initial
network con�gurations N check that for every network con�guration Net, Net ∈
N , all runs from Run(M,Net) satisfy a given forwarding policy;

2. implementation of forwarding policy : given a forwarding policy and a set of initial
network con�gurations N build a controller A such that for every network con�-
guration Net, Net ∈ N , every run run, run ∈ Run(M,Net) of the corresponding
SDN M satis�es this policy.

In order to apply formal methods to these problems one needs a formal language to
specify forwarding policies.

In this section we present a tentative variant of a speci�cation language for SDN
forwarding policies. Since the behavior of a SDN evolves in time and all the states of
this process may be signi�cant for the forwarding policy, it is reasonable to use temporal
logics to specify the properties of the SDN behaviors. Yet the forwarding policies also
refer to properties of network con�gurations at some stages of the SDN behavior. These
properties mostly concern the paths routed in a network by packet forwarding rules; they
can be expressed in terms of one-hop packet forwarding relation RNet. To this end we
choose �rst-order logic with transitive closure operator (FO[TC] in symbols) to specify
the properties of network con�gurations. Our choice was determined by the following
considerations.

1. FO[TC] is a far more expressive formalism than propositional temporal logics or
regular expressions that are used as forwarding policy speci�cation languages in [3,
4, 5, 6, 7]; in fact, the temporal logics are strictly embedded in FO[TC] (see [12, 13]);

2. in contrast to temporal logics FO[TC] allows one to operate explicitly with packet
forwarding relation; this alleviates both the writing and the understanding of
speci�cations;

3. �nite model checking problem for FO[TC] is decidable within logarithmic space
(see [11]).

But the properties of network con�gurations are formulated in terms of relationships
between packet states. Therefore, we need also a simple language for expressing such
relationships. Since packet states are thought of as Boolean vectors, the best way is to
choose Boolean formulae for this purpose. Now we consider this multi-level language for
speci�cation of forwarding policies in some more details.

Let V ar = {X1, X2, . . . } be a set of variables; they are evaluated over the set S = H×
P×W = {0, 1}N+k+m of packet states. A packet state speci�cation is any Boolean formula
ϕ constructed from a set of Boolean variables {Xi[j] : Xi ∈ V ar, 1 ≤ j ≤ N + k +m}
and connectives ¬, ∧. The set of such formulae is denoted L0.

A language for speci�cation of network con�gurations L1 uses only three predicate
symbols R(2), I(1), O(1) for the signature. It is the smallest language which satis�es the
following rules:

1. if ϕ ∈ L0 then ϕ ∈ L1;
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2. if X, Y ∈ V ar then the atomic formulae R(X, Y ), I(X), O(Y ) are in L1;

3. if ψ(X, Y ) is a formula in L1 and it includes exactly two free variables then
TC(ϕ(X, Y )) ∈ L1;

4. if ψ1 and ψ2 are formulae in L1 and X ∈ V ar then the formulae (¬ψ1), (ψ1 ∧ ψ2),
(∃X ψ1) are in L1.

The semantics of L1 is de�ned as follows. Let Net be a network con�guration, and
s = 〈h,p,w〉 and s′ = 〈h′,p′,w′〉 be a pair of packet states. Then

1. Net |= R(X, Y )[s, s′] i� (s, s′) ∈ RNet;

2. Net |= I(X)[s] i� 〈p,w〉 ∈ In;

3. Net |= O(X)[s] i� 〈p,w〉 ∈ Out;

The satis�ability relation for other formulae in L1 is de�ned straightforward.
Some facts are worthy to be mentioned with respect to FO[TC]. As it follows from

the results of [11], model checking problem for FO[TC] is NLOG-complete. Moreover, as
it was shown in [12, 13] both µ-calculus and PDL can be translated in FO[TC] (although
the size of formulae may grow exponentially). As for network model checking against L1

speci�cations, we proved

Theorem. The model checking problem Net |= ψ for closed formulae in L1 is PSPACE-
complete.

Proof. The state space S = H × P ×W of a model Net is at most exponential of the
size of Net. Therefore, due to the results from [11], model checking problem Net |=
ψ is decidable within polynomial space. The proof of PSPACE-hardness of network
model checking problem is based on the fact that packet headers may be viewed as
con�gurations of linear bounded Turing machine. In this case the commands of such a
machine can be simulated by some appropriate �ow table rules. In fact, it is su�cient
to have only one network switch with a loop to simulate by means of such a network
any Turing machine operating on the tape whose size is bounded by the size of packet
header. Thus, the Halting problem for linear bounded Turing machine that is known to
be PSPACE-complete (see [14]) can be reduced to the problem of checking whether a
given network Net drops a given packet that arrives at a given ingress port of a de�nite
switch.

A forwarding policy, i.e. desirable properties of SDN behavior, can be speci�ed
by means of propositional temporal logics where formulae from L1 serve as atomic
propositions.

Let L0(X) and L1(X) be the set of all those formulae from L0 and L1 respectively
which have the only free variable X. Then LTL(L1) is the smallest language which
satis�es the following rules:

1. if ψ(X) ∈ L1(X) then ψ(X) ∈ LTL(L1);

2. if Φ(X), Ψ(X) ∈ LTL(L1) then (¬Φ(X)), (Φ(X)∧Ψ(X)), (X Φ(X)) and (Φ(X) U Ψ(X))
are in LTL(L1).
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Formulae from LTL(L1) are evaluated on in�nite sequences of network con�gurations
{Neti}∞i=1 for a given packet state s as follows:

• if ψ(X) ∈ L1(X) then {Neti}∞i=1 |= ψ(s) i� Net1 |= ψ(s),

• {Neti}∞i=1 |= X Φ(s) i� {Neti}∞i=2 |= Φ(s),

• {Neti}∞i=1 |= Φ(s)UΨ(s) i� {Neti}∞i=k |= Ψ(s) for some k, 1 ≤ k, and {Neti}∞i=j |=
Ψ(s) for every j, 1 ≤ j < k,

• the semantics of connectives ¬ and ∧ is de�ned in the usual way.

A language for speci�cation of forwarding policies L2 is the set of expressions ϕ(X)⇒
Φ(X), where ϕ(X) ∈ L0(X), and Φ(X) is a temporal formula from LTL(L1). The
semantics of these expressions is de�ned through the satis�ability relations on the runs
of formal models of SDNs. Suppose that (∗) is a run of SDN M and ϕ(X)⇒ Φ(X) is an
expression from L2. Then run |= ϕ(X)⇒ Φ(X) i� Neti

∞
i=n |= Φ(sn) for every n, 1 ≤ n,

such that ϕ(sn) = 1.

A forwarding policy FP can be speci�ed by a constraint ψ on initial network con�gu-
rations which is a closed formula from L1, and a �nite set {ϕ1(X)⇒ Φ1(X), . . . , ϕn(X)⇒
Φn(X)} of expressions from L2. We say that SDN M implements a forwarding policy

FP i� for every network con�guration Net0 such that Net0 |= ψ every run (∗) from the
set Run(M,Net0) satis�es all requirements ϕi(X)⇒ Φi(X), 1 ≤ i ≤ n. Thus, the model
checking problem for SDNs is that of checking whether a given formal model of SDN M
satis�es a speci�cation of given forwarding policy FP .

4. Conclusion

It is worth noticing that if a controller of SDN is a �nite state machine then the model
checking problem, as de�ned above, is decidable for such models of SDN. This is due to
the fact that the network has only �nitely many con�gurations and, hence, all runs of
SDN can be united in a �nite state transition system. Thus, the model checking problem
for SDN can be reduced to a �nite model checking problem for PLTL. The main di�culty
in using this consideration in practice is that the size of the statespace of this transition
system may be double exponential on the size of respective SDN description. Till now
we do not know how to cope with this problem. Nevertheless, we have built a BDD-
based toolset for model checking network con�gurations against their speci�cations, i.e.
closed formulae ψ from L1. Using this toolset we are able to check on-the-�y the simple
forwarding policy speci�cations of the form true ⇒ G ψ, i.e. safety invariants of SDN
behavior.

We would like to thank the anonymous referee for the valuable comments that help
the authors to improve the paper.
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