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Cilia-like structure, primary cilium and mechano-
transduction in the osteocyte

Authors

Rustem E. UZBEKOV', Claude Laurent BENHAMOU?
'Laboratoire des microscopies—Department of Microscopy,
Faculty of Medicine, Frangois Rabelais, University, Tours,
37032 Tours Cedex 1, France

Phone: +33-247-366071 or +33-234-379692, Fax: +33-247-
478207, E-mail: rustem.uzbekovi@univ-tours. fr

EIPR(}& Hépital Porte Madeleine, 45032 Orléans Cedex 02,
France

Phone: +33, E-mail: benhamou.cli@wanadoo fr

The centrosome represents the real core of microtubule orga-
nization in cells. The centrosome is involved in organelles
such as cilia and flagella. The osteocyte is the bone cell in
charge of mechano-reception and mechano-transduction in
the skeleton 1, 2, 3, 4]

Primary cilia are present on most eukaryotic cells, and are
considered to play a role in mechanosensing, particularly in
the translation from mechano-reception to biochemical signals
[5, 6, 7]. This role has been largely studied in the renal tubule
epithelium; in hepatocytes, myocytes, red blood cells [6, 8,9].

The primary cilium is a part of the cytoskeleton, it is
characterized by a microtubule organization [10], under de-
pendence of the centrosome. The centrosome is an organelle
responsible of the microtubule organizing centers. It is in-
volved in the mitotic spindle generation of the cell division,
and in the function of primary cilium.

It is constituted of two centrioles: the mother and the
daughter centrioles. Its molecular structure is mainly acetylat-
ed tubulin [11] with a cylinder shape of nine triplets in the
mother centriole.

Our experiment [12] was developed on male Wistar rats,
26 weeks old, specifically on the upper part of the tibia, to
study the osteocvtes of cortical bone, with a particular care to
the cell orientation. The study involved microscopy immuno-
staining (acetylated alpha-tubulin coupled to confocal micros-
copy), and TEM (transmission electron microscopy).

How many osteocytes possess such a structure? From 236
cells we observed, 222 were positively immunostained (94 %)
[12]. It remains to be defined if the 6 % without staining of the
centrosome could be young osteocytes or osteocytes entering
apoptosis, but this percentage is prone to correspond to such a
nafture.
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How many cilia-like structures per osteocyte ? In all our
experiments, there was one and only one such a structure [12].
This is in accordance with the current knowledge on osteo-
cytes [13, 14].

What size and ultrastructure for the centrosome? There
were two centrioles: the mother centriole connected to the cell
membrane, and daughter centriole never connected to the cell
membrane. The size of the mother centriole average 482+
71 nm while the daughter centriole was smaller (351 +£38 nm).
The two centrioles were connected by striated rootlets in a
large percent of cells, the mean distance between mother and
daughter centrioles averaging 14874 nm.

What onentation for the centrosome?

In our experiment, the mother cenmriole connected to the
cell membrane was orented close to a parallel position to the
section plane, which means an orientation perpendicular to the
long axis of tibial bone.

This preferential orientation suggests a role in
mechanosensing of this structure.

Mormphology of the area connecting the mother centriole to
the cell membrane

There was an electron-dense matenial in this area, with in
some cells short cilium rods.

In one case, we observed a “cillum membrane rame”
[12] between the cell body and the bone tissue. In cell-
culture of osteocytes, such structures in extra cellular
location have been described [15, 16, 17]. We have sug-
gested that the specific bone environment could limit
cilium growth [12]. The distal appendages are also located
in this region, nine per mother centriole, one per triplet of
the mother centriole.

We have also underlined [12] that the osteocyte differenti-
ation was associated to a variation of the respective orientation
of mother and daughter centriole.

The role of this ciliary structure in mechano-transduction
has been underlined by several experiments: the loss of ciliary
structure is characterized by the disappearance of prostaglan-
din expression in response to mechanical stress [16].

Another experiment has shown that the deletion of the
PKDI protein (part of the primary cilium structure) leads to
a low bone mass, low anabolic processes, and bone defects
[19]. Other studies confirm the evidence of these pnmary
cilium structures’ role in mechano-reception, conditioning
bone formation and bone mass [19, 20]. Furthermore, the role
of'the ciliary structures in Wnt-signaling induced by mechano-
sensing has been demonstrated by hypogravity experiments
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[21]. The cilia had previously been implicated in the regula-
tion of Wnt-signaling [22, 23, 24].

In other organs, the primary cilium structures appear to be
related to the calcium signaling [25, 26] while it does not seem
to be the case in bone cells [27]. A direct role of the primary
cilium structure on the PGE2 signaling has been suggested
[27, 28, 29, 16].

In conclusion, the osteocyte primary cilium structure has
been largely imaged by our recent study, and appears to play a
major role in the mechano-sensing process in bone, consid-
ered as an early step in the bone formation process.
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Fig. 1 The mother and daughter centriole (MC, DC) with the striated rootlet (SR), the extra-cellular cavity (cav), the dendrite (D), the
nucleus (N) and the bone matrix (B) in an osteocyte from male Wistar rat imaged by transmission electron microscopy (TEM)
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Fig. 2 Magnification of the junction between primary cilia and the extra cellular cavity with identification of the cilia membrane
rame (CMR)
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Fig. 3 Schematic representation ofthe centrosome with its fine microtubule constitution and its orientation relative to the rat tibia
(adapted from 12)
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