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Altermagnetism became very popular because of unique features, namely coupling between magnetic proper-
ties and momentum of itinerant electrons. The particular model of the altermagnetic system of our interest has
already been studied in recent publications in a different context: Phys. Rev. B 108, L140408 (2023). Here, we
study the scattering process of an itinerant electron from the altermagnetic material on the electron localized in
a GaAs quantum dot doped on the altermagnetic material. We found a spatially inhomogeneous distribution
of quantum entanglement in the postscattering state. An interesting observation is the spatially anisotropic
distribution of concurrence which depends on the values of the altermagnetic spin-orbit interaction constant.
We also studied Rényi entropy and the effect of disorder in the system leading to randomness in the spin-orbit
constant. Our main finding is that, due to the unique properties of an altermagnetic system, tuning the applied
external magnetic field allows tailoring of the desired entangled state. Thus the scattering process, in essence,
mimics the Hadamard-CNOT gate transformation, converting the initial disentangled state into the entangled
state of Bell’s state. In particular, we achieved more than 70% fidelity between the postscattering and Bell’s

states.
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I. INTRODUCTION

The linearity of the Schrodinger equation leads to the
superposition principle, a fundamental principle of quantum
mechanics. Due to the superposition principle, the linear com-
binations of solutions also satisfy the Schrodinger equation.
The superposition principle and quantumness of the system
form the basis of the functionality of quantum computers and
it has certain advantages. The list of proposed quantum reg-
isters for quantum computers is pretty long. It includes, e.g.,
superconducting quantum computing with Josephson junction
qubits, trapped ions, and quantum dots [1-6]. The quantum
register is a repository of qubits with quick access to them
and the possibility of controlling their states through the quan-
tum gates. In particular, semiconductor quantum dots attract
the attention of the quantum information community [7-9].
Quantum dots (QD) in the materials with a strong spin-orbit
(SO) interaction (graphene, carbon nanotubes, and topological
insulators [10]) are in the scope of interest [11-15]. Spin-orbit
interaction (SOI) can be exploited to increase the fidelity of
quantum gates [16,17]. Recently, the study of altermagnetism
became a hot topic [18-22]. Altermagnetic materials, such as
insulators FeF, and MnF,, semiconductors MnTe, and met-
als RuO,, are characterized by magnetic properties strongly
coupled with the momentum of the electrons. Coupling
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between electronic and magnetic properties opens a new pos-
sibility for controlling qubits in QDs through the SOI and
itinerant electron states. Altermagnets are viewed as a new
type of magnetic material [18,19,23-26]. The main peculiarity
of the altermagnetic state is the existence of spin splitting of
electron energy bands, which is generated by the usual anti-
ferromagnetic ordering in the magnetic sublattice (see, e.g.,
review articles [27,28]). The spin splitting is quite unusual
for conventional antiferromagnets and is due to the specific
orientational symmetry of electron orbitals, so that the band
electrons moving in different directions experience the mag-
netization of different magnetic sublattices [18,28,29]. It was
found that the symmetry of certain crystals like, e.g., RuO,,
MnTe, etc. allows such an altermagnetic state [20,29-33].

The spin splitting in altermagnets has some similarity to
the spin splitting due to relativistic spin-orbit interaction and,
correspondingly, makes it possible to use altermagnets in
various spintronic applications. For instance, the existence
of anomalous Hall effect, spin current generation, spin See-
beck and spin Nernst effects, et al. in the altermagnets was
demonstrated [31-37]. In this work, we demonstrate that the
nonrelativistic coupling of spin to the orbital motion in al-
termagnets can be also used for manipulating the quantum
entanglement by using the scattering of electrons from the
quantum dot. In particular, we consider altermagnetic material
with doped GaAs quantum dot.

A disentangled bipartite system |¢),5 = |0)4 ® |0)z can
be entangled by performing a unitary quantum gate operation:
CNOT,p 0 Hadamardy [0) 4 |0) 5 = |®)1,, where |®)1, is the
Bell’s state. While the formal procedure is relatively straight-
forward, its implementation for the realistic physical system is
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a demanding problem. One practical realization of the entan-

gling gate procedure is the elastic spin-dependent scattering

protocol [38—41]. A unitary scattering § matrix converting a

disentangled state into an entangled postscattering state can

be viewed as the equivalent of the Hadamard and CNOT gates
= {CNOT .3 o Hadamard, }.

It connects the initial disentangled bipartite state with a
final entangled state |\I/£B(oo)) =3 |Wiz(—00)). One of the
methods for the generation of entangled pairs of electrons is a
scattering process [41-50]. In the present work, we study the
scattering process of the itinerant electron of the altermagnetic
system on the electron localized in the quantum dot, which
is deposited on the surface of an altermagnet. We prove that
the scattering of two electrons leads to the formation of the
entangled state due to the features of the altermagnetic system.
The key role belongs to the coupling between electronic and
magnetic properties and the presence of a SOI effect in the
altermagnetic system.

Measuring the entanglement in the experiments is related
to specific dilemmas. Let O be an arbitrary Hermitian quan-
tum operator and Tr(pO) the expectation value of it averaged
through the density matrix of the system p. Then nonlinear
functions of the density matrix, i.e., purity Tr([)z), can be
measured directly without reconstruction of the whole density
matrix p [51-54]. There are two different direct and indi-
rect measurement schemes. The direct measurement scheme
implies n identical copies of the quantum systems prepared
in the same state p. Measurements are performed on those
multiple copies. In many cases, it is a “thought experiment,”
since the noncloning theorem does not permit copying and
preparing a desired number of the identical quantum states.
The elegant solution is a random measurement that only im-
plies a single copy of p [55,56]. One applies the random
unitary rotation operator U to a single copy of the state
UpagU~", where pap = |¥) (W|,p 1s the density matrix of
the bipartite system. Then, the result is averaged over random
unitaries. In essence, the ensemble average of a single random
measurement is equivalent to the set of deterministic mea-
surements [55,56]. In our case, the practical implementation
of the random unitary rotation operator is equivalent to the
random SOI in the scattering problem. Randomness in the
SOl is related to the disorder and impurities and is a realistic
assumption for two-dimensional solid-state materials [13,57].
In what follows, we will be focused on Renyi entropies, which
can be determined from a tomographic reconstruction of the
quantum state [58—61] and measured experimentally [62,63]:
S™(pa) =[1/(n — 1)]1log Tr(p), where p4 is the reduced
matrix p4 = Trg(pap) of the part A. We are interested in out-
come probabilities P(s) = Tr[U psU P;], where Py = |s) (s|
are projectors and U is the random unitary matrix. Then Renyi
entropy is extracted through the statistical moments

(P(s)") = (Tr[(0 pal )" PE"]), M
where (...) means averaging over disorder. We consider a
bipartite system consisting of an altermagnet (itinerant elec-
tron A) and quantum dot (localized electron B) prepared
initially in a product state. We assume the randomness of
the SO coupling constant (due to the disorder and impurities
that may exist in the realistic material). We tackle the elastic

scattering process as a random unitary operation and ex-
plore the entanglement of the scattered state. Thus ran-
dom unitaries in our proposal are replaced by a random
SOI elastic scattering process U = S. We calculate fidelity
.7:(|‘I’£B(OO)) |\II)XB) between scattered state |\P£B(oo)) =

5‘3( 00)) and the state obtained through the applied gate

W) s = {CNOT4p o Hadamard, } |\IJAB( 00)).

We present results for fermionic entanglement as a function
of momentum of itinerant electron k. The scattered electron
with particular K is singled out of all the other electrons form-
ing the altermagnet due to the Pauli principle. Other itinerant
electrons in altermagnet are not allowed to have the same mo-
mentum k. However, this does not mean that our result applies
only to a single particular electron case. We present results for
different k corresponding to the ensemble of itinerant elec-
trons in an altermagnet. We follow the Lippmann-Schwinger
formalism of the scattering problem. Formulated for a single
electron, this formalism describes the scattering problem of
the ensemble of electrons with different k. Our aim is to find
particular electrons forming entangled pairs with the electron
from the quantum dot. A quantum dot is deposited on the
altermagnet. The electron from the altermagnet is not far away
from the electron in the quantum dot. The distance between
electrons is about magnetic localization length, in the range
of the radius of the quantum dot. Therefore, entangled pairs
of electrons in the system altermagnet-quantum dot form a
prototype repository for storing quantum information. The pa-
per is organized as follows. In Sec. II, we solve the scattering
problem; in Sec. III, we present results for concurrence ob-
tained for the deterministic SO coupling constant. The Rényi
entropy is discussed in Sec. IV. Section V concludes the work.

II. SCATTERING PROBLEM

Recently, there has been a growing interest in the problem
of magnetic impurities in altermagnets [64—70]. In essence, in
the following discussion we formulate the problem theoreti-
cally and develop a mathematical description of the scattering
problem relevant to quantum dots characterized by the SO
coupling. The total Hamiltonian of the system comprises the
three terms

ﬁtat = ﬁAM + I‘jD + V (2)

Here Hyy = & + o, 65kcky, ky =k cos8, ky = k sin is the
low-energy Hamiltonian for the altermagnet, &; = h*k>/2m,
65 is the Pauli operator for the spin of itinerant electron, k is
the momentum of itinerant electron, and «, is the SOI constant
[71]. The Hamiltonian of the electron localized in the doped
GaAs quantum dot (QD) has the form

N nz K> ) e I 5,

HD = —BO’B + Z—Wle(—lv + gA) + zma)or (3)
where wy is the frequency of electron oscillation in QD, m,
is the effective mass, and A is the vector potential. In partic-
ular, for GaAs QD we consider the following parameters: the
effective mass m, = 0.067m (m is the electron mass), g factor
g = —0.44, and the confinement energy /iwy = 4.4 meV. The
external magnetic field applied locally to the quantum dot
allows it to freeze (strong field) or relax (weak field) the spin
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of the localized electron 65 depending on the value of Zeeman
energy B = hy,B. The lowest Fock-Darwin eigenstate of the
localized electron in the symmetric gauge A = B(—y, x, 0)/2
has the form [72]

1 x? +y?
r) —= — —_ |,
vl lB\/E eXp( 21; )

Iy =15/ 1+ B2} /402 4)

Here Iy = (/i/m.wy)'/? is the confinement length [73]. Here-
after we set dimensionless r = r/ly and measure the distance
in terms of the confinement length. The last term in Eq. (2)
describes the interaction between localized and itinerant elec-
trons. We consider the short range interaction case [74]:

V =J6,-658(r —r3). (3)

The coupling constant J is determined by the ratio [75]
J ~ T?/U, where U and T are the Coulomb interaction and
electron hopping terms:

62 |I//I‘L,J(r1)|2 |wD,a(r2)|2

= 4meoly It — o] + 6

T—E / Ul (F) Yoo (1) dr. ©)

dl‘l dl’z,

Here 6 refers to the Pauli vector of the spin of quantum dot
and § is the cutoff of electron-electron interaction, 4 is the
Pauli vector of the spin of itinerant electron in altermagnet,
and R is the radius of the quantum dot.

The initial wave function of the bipartite system is a
product of two wave functions ¥, ,(r4) and VYp,(rp) =
¥ (rp)|0)5. In what follows, for brevity, we use the notations
ry = r and rg = r'. The scattering process involves two states
of localized electron yp o(r) = ¥p(r)|0) (spin-up, |0) = |1)
and Yp, 1(r) = Yp(r)|l); spin-down, |1) =|])). The wave
function of the two-electron system after scattering can be
presented in the following general form:

W, 0, (01, 12) = Y0 YD 0(r2) + ¥ () WD (02). (7)

Here 1/;}546) and 1/;}54;) are the two-component spinors

)y _ [ Po(r) +) oy [ ®1(r)
0 (r)‘(xO(r>>’ 1(")‘(xl(r)>' ®

In the momentum-space representation,
+) 2., —i (+)
Yo (@) = /d re Py (),

spinors in the above equation are the solution of the fol-
lowing system of coupled Lippmann-Schwinger integral
equations (n = k, o0 =1):

do(P)\ _ 1 0
(xg(p)) =@mrop - k)[a (0> - ﬂ<1>}

2
o [ L G(+)(P;E)Voo(61)(¢0(p - ‘”)

(2m)? Xo(p—q)
G iy o1(p—q)
+ ,3/ Oy G (p’E)VOI(q)<X1(p _ q))
9)

and

(¢1 (p)>
x1(p)

_ d’q ) do(p — Q)

g iy, s (1P —q)
+ﬂ/—(2n)2G (p,E—ZBwu(r)(Xl(p_q)).
(10)

The Green’s function has the form

1 I+6 +1 -6,
2E—FEx4+i0 2E—FE +i0

G (pE) = QY

where Ej 4| = & £ a.kik, and matrix elements read Voo
(@) =J e 7526, Voi(q) =T e 526, —i6y), Vio(q) =
J e 7528, 4 i6y), and Vi (ry) = —J e~7'/26,. Details of
the calculation of integrals are presented in the Ap-
pendix Egs. (A1)—(A15).

II1. POSTSCATTERING DENSITY MATRIX

In the spirit of the scattering theory, we present the
postscattering density matrix in terms of the spatial coordi-
nates, energy, and spin of the itinerant electron. Consequently,
the entanglement between the electrons depends on the same
parameters. Thus we can preselect and propose particular
initial itinerant electrons that, after scattering, are entangled
stronger with localized electrons rather than other electrons.
Taking into account the initial density matrix

po = |¥r.s ()¥p) (V1.0 (0)¥p| ® |0) (O[5 12)

and the wave function of the system after scattering Eq. (7),
we define two random unitary matrices through the following
formulas:

D= W0, (x, ¥)) (o0, (x, ¥)| = UpoUT,  (13)

pa = UapoUy. (14)

Here index A means that gate transformation U, acts only
on the qubit A, while the qubit of the localized electron B
is frozen by applied strong magnetic field. The explicit form
of the density matrices read

p = p1110) (04 ®0) (Ol + p22 [1) {114 ® |0) (Ol
+ 44 [1) (T, ® [1) (1|5 + p12|0) {114 ® [0) (Ol

+ £1410) (114 ® [0) (1|5 + 21 [1) (04 ® |0) (Ol
+ 41 [1) (014 @ [1) (Ol + 24 1) (114 @ 10) (11
+ paz [1) (1], ® [1) (Ol , 5)
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where
_ o?|e® + JI (r))?
U= e £ T2 + B2 + B2 L)
’32
P2 = e £ T2 + B2 + B L)
B2J* L(r)[?
pas = —— .6
a2|e®kr + JI; (r)|? + B2 + B2J2|L(r)|?
and
_ afl1 +J el (1))
P2 = 21 1 I (02 + B2 + B2 L))
_ aBJL ()™ + J1 (r)]
pue = a?|e®r + JI ()2 + B2 + B2J2|L(r)|2’
2] eikrl* r
024 A 1(r) (17

= 2™+ TL ()2 + B2+ BARIL()

P12 = P3;, p1a = Py, and pr4 = pj,. For the second matrix
we deduce

24 = pa1110) (014 ® [0) (Ol + paza [1) (114 ® |0) (Ol
+ pa1210) (114 ® 10) (Ol + paz1 [1) (O], ® [0) (Olg,

(18)
and
e ()2
Pall = a?|ekr + JI(r)|? + B2’
B2
PAR = e 4 T + p
af[l +Je ™ ()]
PA12 = d l "

o2l T + p2

and pa12 = P4y

IV. CONCURRENCE AND FIDELITY

We exploit the definition of concurrence [76] C =
| (V] 6y ® 6y |¥*) |, where 6, ® 6y is the direct product of
Pauli matrices, and calculate entanglement between two elec-
trons after scattering:

_ 2aBJ (™™ + JIF(x)I (r)|.
—a?le® + T ()2 4 B2 + BRI L(r)*

(20)

In what follows we explore concurrence in the absence of dis-
order. For the fidelity between Bell’s state |®) 1, and scattered

J

state p we deduce

Fp, 19)ip) = 2(o11 + paa + p1a + par). 21)
When ¢ = 8,J = 1, Eq. (21) takes the form

L@+ b))
C2[L(0) + L2+ 1]
Re[Z5 (r)l4(r)]
IL(r)]> + |L@)2+ 17

where we introduced the notation I4(r) = ¢* + I;(r). When
a = 1, B = 0 fidelity takes the value F(p, |<I>)XB) =1/2.In
Fig. 1, we plot the spatially anisotropic distribution of en-
tanglement r, = r cos ¢, r, = r sin ¢, for equally distributed
spin up/down incident states o> = B2 = 1/2 of the itiner-
ant electron beam. We present results for different 6: k, =
k cos 8, k, = k sin 6, for zero and nonzero magnetic fields and
other parameters as they are shown in the figure caption. As
we see from Fig. 1 magnetic field B substantially enhances the
value of concurrence, from C(¢) = 0.35 up to the C(¢) = 0.9.
Besides, due to the strong SOI in the system, concurrence
strongly depends on the momentum k of the itinerant elec-
tron. We see an interesting physical effect in Fig. 2. Spatially
anisotropic distribution of concurrence depends on the values
of altermagnetic SOI constant .. In the case of the weak SOI
constant, the maximal value of concurrence is shifted towards
small scattering angles, meaning ¢ =0, 7, r, = £r, and
ry ~ 0. In Fig. 3, we plot the spatially resolved anisotropic
distribution of fidelity between the postscattering state and
Bell’s state |®)XB , which is our desired target state. As we can
see, akin to the concurrence, fidelity’s maximal value rotates
upon the change in the spin-orbit constant. Besides, the value
of fidelity reaches 70%, which is a quite reasonable value for
the gate {Hadamard4 o CNOT}p}.

Fa=p (P 19)15)

(22)

V. RENYI ENTROPY

We proceed and calculate Rényi entropy of the bipartite
system after scattering taking into account disorder in the
system and randomness of the spin-orbit interaction con-
stant. Following [77], we present the bipartite density matrix
through the Pauli strings:

n,v=0
R/u) = Tr[@Dpw]’ oy = IA,B?
D/w = AZ{L ®6'llg), (23)

where D,,, is the Dirac matrix [78]. After laborious calcula-
tions we deduce

1 2Re(pi)  —2Im(pi) P}y — 03 — P4
R — 2Re(24) 2Re(p14)  —2Im(p14) —2Re(p24) (24)
—21Im(p24) —2Im(p14) —2Re(p14) 2 Im(p24)
o} +pn—pu 2Re(prn)  —2Im(pin)  pf + p2 + pu
The quantity of interest, the second Rényi entropy, is given as
$2(2) = —log, Tr{2”]. (25)
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FIG. 1. Spatially anisotropic distribution of concurrence C(g), in the polar coordinate system r, = r cos¢, r, = r sing, for equally
distributed spin up/down incident states > = 82 = 1/2 of the itinerant electron. We present results for different 0: k, = k cos 6, k, = k sin 0,
for zero B =0 (the left plot) and nonzero B =2 T magnetic fields (the right plot). The values of parameters read fiwy = 4.4 meV,
U=1meV, J=0.25 meV, a,/a. =0.6, k =lhk=1, E =15 meV, r =r/ly =10, and Iy = (i/m.w,)"/? is the confinement length,
o, = h*/m,. The effective mass m, = 0.067m (m is the electron mass) and g factor g = —0.44, which leads to the /, ~ 15 nm. Different
colors annotate values of 6.

— 0.2
— 04
0.6
0.8

FIG. 2. Concurrence C(¢) in the polar coordinate system r, = r cos ¢, r, = r sin ¢, for different values of the spin-orbit constant c,,
a./a. = 0.2, 0.4, 0.6, 0.8 and equally distributed spin up/down incident states a? = B% = 1/2 of the itinerant electron. The value of 8: k, =
k cos, k, =k sinf, and 6 = 5 /4. The following parameters are considered: k = [pk =1, E = 15 meV, r = r/ly = 10, and o, = i /me,
and the confinement length /[y = 15 nm. The magnetic fields B = 0 (the left plot) and B = 2 T (the right plot). Different colors annotate values
of o, /x,.
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@ oy ey O

S SR I M R |+

FIG. 3. Spatially anisotropic distribution of fidelity F(¢) in the polar coordinate system r, = r cos ¢, r, = r sin ¢, for equally distributed
spin up/down incident states o> = 8% = 1/2 of the itinerant electron. We present results for different 0: k, = k cos 8, k, = k sin6, and zero
(the left plot) and nonzero magnetic fields B =2 T (the right plot). The effective mass m, = 0.067m (m is the electron mass), g factor
g = —0.44, leads to the [y ~ 15 nm. The other parameters: hiwy = 4.4 meV, «,/a. = 0.6, . = hz/me, k=Ilk=1E=15meV, and r =

r/ly = 10. Different colors annotate values of 6.

Trace of the density matrix can be calculated through the
following formula [77]:

Tr[%] = %[1 +3((2)) +3((2)°) + 9((2;}’3)2)}, (26)

where

ZM8 = Tr[Up0" 62 ® 67, @27)

and ensemble average moments (. . .) are done for the random

SOL. Here Z2 corresponds to the process when both spins of

electrons are flipped after the scattering process, while Z% and
B . . .

7, correspond to the processes when only one spin is flipped.

After cumbersome calculations we deduce

00064 ® 67 = <p11 10) (01, ® [0) {0l

= 02210) (Oly ® [1) (115 4 paa 1) (1], ® [1) (1]
= p1210) (014 ® [0) (1[5 + p14 |0) (1], ® [0) (1]
+ 021 10) (014 ® [1) (Ol — 24 [0) (1], & [1) (1]

+ 041 1) (01, @ [1) (Ol — paz [1) (0], @ [1) (IIB)- (28)

Taking into account Eq. (28) we deduce

Z:?B = Tr[U@UTézA ® 6ZB] = P11 — P22 + Paa4. (29)

If the spin of the quantum dot is frozen, similarly we obtain
Z) = UpdU{67 ® Ty = pan 10) (01, ®10) (0lz.  (30)

As a next step we need to define mean values of squares
of quantities Eq. (27). These averaged values over random
o, = a.£ are defined as follows:

(z2)’) = [ de P&)(Z2E)),

((z2)’) =o0.

(z2%)) = / de P(E)(22 ). 31)
Here
1 (E - ée)z
= —_ 2
PE AEN27 eXp[ 2(A8)? ] G2

is the distribution function of the random SO interaction con-
stant v. The Renyi entropy as a function of magnetic field
B is plotted in Fig. 4. As we see Renyi entropy depends on
the angles 6, ¢ and as well as concurrence has anisotropic
character. As we see the maximal values of the Renyi entropy
are rotated by magnetic field B in the (k,, k,) plane.

VI. CONCLUSIONS

In the present work, we studied entanglement in the sys-
tem of an altermagnetic and a quantum dot. In particular,
we considered the case when the itinerant electron from the
altermagnet and the electron localized in the GaAs quantum
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FIG. 4. Spatially anisotropic Renyi entropy S,(8[¢]) = — log, Tr[0?] in the polar coordinate system r, = r cos ¢, r, = r sin ¢, for equally
distributed spin up/down incident states «> = 82 = 1/2 of the itinerant electron. The parameters of the distribution function P(a,): £ = 1,
A& = 0.1. We present results for different 6: k, = k cos 0, k, = k sin 6, and zero (the left plot) and nonzero magnetic fields B = 2 T (the right
plot). The values of parameters: k = [k = 1, E = 15 meV, and r = /[y = 10. The confinement length [, = 15 nm. Different colors annotate

values of 6.

dot doped on the altermagnet initially are disentangled and
become entangled after the spin-resolved scattering process.
We analytically solved coupled Lippmann-Schwinger integral
equations and obtained the system’s postscattering density
matrix. We found that concurrence in the system is highly
anisotropic and the region of nonzero concurrence rotates
depending on the values of the spin-orbit constant. Realis-
tic physical systems, in many cases, are characterized by
certain disorders due to lattice dislocations and impurities.
To describe the effects of the disorder, we considered the

J

random spin-orbit constant and calculated the Renyi entropy
averaged over the randomness in the spin-orbit constant. Akin
to the concurrence, the Renyi entropy also depends on the
spin-orbit constant. We showed that, due to the unique prop-
erties of an altermagnetic system, tuning the applied external
magnetic field allows tailoring of the desired entangled state.
Thus the scattering process, in essence, mimics the CNOTyp o
Hadamard, gate transformation, converting the initial disen-
tangled state into the entangled state of Bell’s state with more
than 70% fidelity.

APPENDIX: CALCULATION OF SCATTERING INTEGRALS

Fourier transformation of the wave functions Eq. (7) has the form

dzp . . 1 . 0 dzp . e~ (P—K)I3/2 1
— ip-r — ik-r ik-r J ip-r Al
nin= [ Gl mm=act (o) roer(() vas [ Ghe E = By +10 (o) (D
d2p ) d2p ) e~ P—K1I5/2 0
— ip-r = BJ p-r . A2
= [ SEerrnm = [ SE e () (A2)

As we see, we have to calculate two integrals

d? ) —a(p—k)?
I(r) = f L err = _ (A3)
2n2 ¢ E—Ep, +i0
e~ a(p—k)’
(Ad)

dzp ipr
Iz(r)=/(2n)ze"

o . thz
where a = [5/2 and Epy | = 3= + a.p.py.

E—2B—Ep, +i0’
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Let us use an integral representation of the function

e—a(p—k)2 1 /dZ ’ —t(p k)-r’ —)’2/211‘ (A5)
2ma
Then we get
) =g [ e e dp (A6)
Qr)? E—Epy +1i0°
The integral over p in Eq. (A6) is
d2p P (r—r’) 1 eipx(G*r;-)“l’ipy(rv*d)
Lr—1') = 5 — = —2/ pxdpy S ;
@Qr)* E —Epy +i0  4m E — h"p?/2m, — aepxpy +i0
] ipe(re—ry)
- - / dpy ) f dpe — : (A7)
27T2h —00 (px — Dx1 )(px - pr)
where
1/2
pu2=—&p, & (szpf i ) (A8)

and we introduced notation § = «,/a., where o, = K2 /m, is the maximum value of ¢, [71]. Calculating the integral over p,
along the contour in complex p, plane, that can be closed in the upper half plane for r, > r, and in the lower half plane for
ry < ry, we obtain

0o £Px(re=r0) 27 epa(=r) o
/ _ ’ X X (A9)

dp = : .
00 ' (Px — Px1)(Px — Px2) Px1 — Px2 eiPalns r")a Iy < V;~

Note that this solution will be substituted to Eq. (A6). This means that we can take in Eq. (A7) r, > r, as it corresponds to r
outside the dot. Substituting (15) with r, > r; to (13) we obtain

Lr—r)=—

ime /—oo » exp[ipy(ry - }’/ )] exp[ipxl(rx - r)/;)] (AlO)

2 ZmeE .\ 1/2
27 h (&2 —p2+ + i0)
Now we can substitute Eq. (A10) into Eq. (A6):

L(r)=—

im, o exp(ipyry) exp(ipy1ry) ) ,
s / dp, — PP PP / d*r' exp(~r/2a) expl~il(pa — k) 7+ (py — k) 71}
4n hta (82p% — p2 + £ +00)

im, exp{—al(px — ko)* + (py — k)*1}
= - / dpy exp(ipair + ipyry) P —— B s (Al1)
2 (£2p2 — p2 + 2E +0)

If we drop {0 in the denominator of (13), the function under integral is divergent, but the integral convergent. Thus we can drop
i0. Then we get

exp{—al(px1 — kx)2 + (py - ky)z]}

im, &
Li(r) = ——/ dpy exp(ipxiry +ipyry) , (A12)
i1 — 82 ) v V& =p)k + py)
where (we assume £ > OQand & < 1)
2 2m.E
= . (A13)
ne(1 - &%)

Integral Eq. (A12) can be evaluated approximately. Since we are interested in large r >> Iz (far from the dot), the main
contribution in Eq. (A12) is from rather small |p,| < |ry|’1. We assume «r > 1. In this case, (k> —p’%)l/2 >~k 1in the

denominator of Eq. (A12). Besides, in the limit of k7 >> 1, we also have p,;» >~ —&p, &£ ko, where kg = +/2m.E /}. Hence,
from Eq. (A12), we get

im e o’ [ . .
Li(r) >~ ——— / dpy exp(—i& pyry + ipyry) exp{—al(—&py + ko — ko)* + (py — k)’ 1)
2nh kg J—oo

im, exp [i(kors — ljké’ [ky + & (ko — ko)1) ] exp { - r)? +4a*[Eky — (ko — ko)]? }

2J/ma(€2 + 1) ko 4a(g? +1)

(A14)
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Integral I,(r) differs from 7, (r) by the sign of «,. Correspondingly, we need to change the sign of £ in (23) to get the expression
for I,(r). Besides, we have to change E — E — 2B. Thus we obtain

Kiry +

_(En A ) +4a’[Eky + (1 — kP

Ery+ry

Cre —kx)]D

im, .
L(r)>~ —
»(r) r ra@ D exp <z[
xexp{ 4a(E2 + 1)

}, (A15)

where k| = «/2m,(E — 2B)/h. The obtained result is valid for k7 3> 1, k7 >> 1, and magnetic fields B < E /2.
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