УДК. 553.411:553.21/24

ЗОЛОТО-ТЕЛЛУРИДНАЯ МИНЕРАЛИЗАЦИЯ ЗАПАДНОЙ ЧУКОТКИ: МИНЕРАЛОГИЯ, ГЕОХИМИЯ И УСЛОВИЯ ОБРАЗОВАНИЯ

© 2013 г. Ю. Н. Николаев*, В. Ю. Прокофьев**, А. В. Аплеталин*, Е. А. Власов*, И. А. Бакшеев*, И. А. Калько*, Я. С. Комарова*

> *Московский государственный университет им. М.В. Ломоносова 119234, Москва, Ленинские горы

** Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН 119017, Москва, Ж-17, Старомонетный пер., 35

Поступила в редакцию 12.09.2012 г.

Изучены минералогия, геохимия и получены данные по условиям формирования руд рудопроявления Сентябрьское – первого промышленно значимого проявления золото-теллуридной минерализации на Чукотке. Золото в рудах находится частично в самородной форме, а частично – в соединении с теллуром в виде петцита. Главные минералы золото-теллуридной ассоциации – петцит и гессит, на которые наложено самородное золото. Среди минералов теллура установлены также алтаит, колорадоит и парателлурит. Данные изучения флюидных включений в сфалерите и кварце, ассоциирующем с рудными минералами, свидетельствуют о том, что золото-теллуридная минерализация рудопроявления Сентябрьское и малосульфидная золото-серебряная минерализация расположенного рядом месторождения Двойное формировались из флюидов разной природы и при разных условиях. Установлена многостадийность гидротермального рудообразующего процесса в Илирнейском районе, обусловленная длительным функционированием порфирово-эпитермальной системы. Показана сопряженность золото-теллуридной минерализации рудопроявления Сентябрьское с щелочным магматизмом. Одним из индикаторов наличия такой минерализации может быть высокая (выше 5 мас. %) концентрация солей в растворе флюидных включений в гидротермальном кварце. Минералого-геохимические особенности руд рудопроявления Сентябрьское указывают на их принадлежность к среднему уровню порфирово-эпитермальной системы и перспективности изучения его глубоких горизонтов.

DOI: 10.7868/S0016777013020044

ВВЕДЕНИЕ

Эпитермальные месторождения золота, в которых существенная часть главного полезного компонента – золота – находится не в свободной форме, а химически связана с теллуром, часто выделяют в особый золото-теллуридный тип (Lindgren, 1933; Bonham, 1986; Head *et al.*, 1987; Richards, 1995 и др.). Из-за высокого содержания золота в рудах такие месторождения вызывают как промышленный, так и научный интерес. По оценке Р. Силлитоу (Sillitoe, 1997), около 20% крупных месторождений золота в вулканических поясах Тихоокеанского обрамления относятся к золото-теллуридному типу.

На Северо-Востоке России эпитермальные месторождения золото-теллуридного типа известны в кайнозойских вулканических поясах полуострова Камчатка (Озерновское, Агинское и др.). В пределах Охотско-Чукотского вулканического пояса (ОЧВП) мелового возраста до последнего времени не было известно таких объектов, а наиболее крупные эпитермальные месторождения здесь образованы малосульфидными золото-серебряными рудами (месторождения Купол, Двойное, Клен, Валунистое и др.). Поэтому вызывает как теоретический, так и практический интерес находка золото-теллуридной минерализации на находящемся в стадии промышленной оценки рудопроявлении Сентябрьское (Илирнейский рудный район, Западная Чукотка), которой и посвящена настоящая работа. В 80 км к югу от рудопроявления Сентябрьское работает крупный ГОК компании "Кинросс" на месторождении Купол. Выяснение условий формирования и генезиса новой для района золото-теллуридной минерализации может дать информацию о поисковых признаках такой минерализации в регионе и способствовать расширению сырьевой базы благородных металлов. В то же время установление природы рудообразующих флюидов является одной из фундаментальных проблем теории гид-

Адрес для переписки: В. Ю. Прокофьев. E-mail: vpr@igem.ru

Фиг. 1. Географическое расположение рудопроявления Сентябрьское. 1 – месторождения; 2 – рудопроявление Сентябрьское.

ротермального рудообразования (Бетехтин, 1955, Бортников, 2006 и др.).

КРАТКАЯ ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА

Рудопроявление Сентябрьское расположено в пределах Илирнейского рудного района, в верховьях рек Раучуа и Илирнейвеем, в 10 км от разрабатываемого канадской компанией "Кинросс" месторождения Двойное. В административном плане территория находится на границе Чаунского и Билибинского муниципальных районов Чукотского автономного округа (фиг. 1). Водораздельный золоторудный узел, в состав которого входят месторождение Двойное и ряд рудопроявлений, к числу которых относится и Сентябрьское, пространственно приурочен к вулкано-тектоническим структурам Центрально-Чукотской зоны ОЧВП. Согласно Г.Ф. Журавлеву (1999 г.) рудопроявление Сентябрьское локализовано в одноименной интрузивно-купольной структуре, наложенной на Илирнейскую вулканическую структуру обрушения (кальдеру). Схема геологического строения рудопроявления представлена на фиг. 2. Рассматриваемый район сложен раннемеловыми вулканитами тытыльвеемской свиты (K₁*tt*), входящей в состав тытыльвеемского андезит-риолитового вулкани-

Фиг. 2. Геологическое строение рудопроявления Сентябрьское (по Г.Ф. Журавлеву, 1999 г.).

1–4 – интрузивные образования илирнейского комплекса позднемелового возраста: 1 – кварцевые монцониты, 2 – гранодиориты, 3 – гранит-порфиры, 4 – дайки граносиенит-порфиров; 5 – субвулканические тела риолитов тытыльвеемского комплекса; 6–8 – тытыльвеемская свита: 6 – андезиты и андезибазальты, нижняя подсвита; 7 – риолиты, дациты и их туфы, средняя подсвита; 8 – андезиты, их кластолавы и туфы, верхняя подсвита; 9 – четвертичные отложения; 10 – разрывные нарушения; 11 – кварцевые жилы и зоны кварцевых прожилков.

ческого комплекса, состоящего из трех подсвит. Наиболее распространены образования нижней и верхней подсвит, представленные чередующимися потоками лав и кластолав андезитов, андезибазальтов, пачками и пластами туфов и туфобрекчий среднего состава. Средняя подсвита сложена в основном вулканитами кремнекислого состава: дацитами, риодацитами, реже – их игнимбритами. В центральной части территории породы тытыльвеемской свиты прорваны интрузивами кварцевых монцонитов ($q\mu_1 K_2 il$) и гранодиоритов $(\gamma \delta K_2 i l)$, относящихся к илирнейскому комплексу субщелочных гранитов позднемелового возраста. В вулканических породах наблюдаются: 1) многочисленные дайки сиенитов ($\xi_2 K_2 il$) и гранит-порфиров ($\gamma \pi K_2 i l$), принадлежащих илирнейскому комплексу; 2) тела раннемеловых риолитов ($\lambda K_1 t$) тытыльвеемского комплекса, являющиеся частью крупного субвулканического массива, расположенного в юго-западной части территории.

Гидротермальные изменения пород проявляются в виде пропилитизации, окварцевания, серицитизации и аргиллизации. Метасоматические породы обычно образуют изометричные, или линейно вытянутые зоны площадью 0.5–5.0 км². Они располагаются в экзоконтактах интрузивных и субвулканических тел, в кровле над невскрытыми интрузивами, реже — в зонах трещиноватых пород на некотором удалении от них. Пропилитизация обычно развивается по андезитам и туфам тытыльвеемской свиты, слабее проявлена в интрузивных породах. Позднее формируются околорудные метасоматические изменения — окварцевание, серицитизация и аргиллизация.

Минерализация контролируется крутопадающими разрывными нарушениями северо-западного и субмеридионального простираний. Рудные тела рудопроявления образованы жилами, прожилковыми и жильными зонами. Они рассекают кварцевые монцониты илирнейского комплекса, андезиты и андезибазальты средней подсвиты тытельвеемской свиты. Жилы сложены кварцем (до 80–90%) – белым, светло-серым, крупно- и мелкозернистым, иногда халцедоновидным, присутствуют серицит, адуляр, хлорит. Рудные минералы отмечаются в небольших количествах, иногда достигая 20% в кварц-сульфидных жилах.

Расположенное вблизи *месторождение Двойное* образовано малосульфидными золото-серебряными кварц-адуляровыми жилами и зонами прожилково-вкрапленного оруденения в андезитах, их туфах, лавах и лавобрекчиях нижней подсвиты тытыльвеемской свиты. Жильные минералы (кварц, адуляр, кальцит, в подчиненном количестве — эпидот, гидрослюды, серицит, хлорит, биотит, альбит и др.) представляют основной объем рудных тел. Рудные минералы составляют не более 1.5%. В рудах выделено две стадии минералообразования: золото-пиритовая и серебро-золото-сульфидная, в которой описаны блеклорудно-полиметаллическая и золото-акантитовая минеральные ассоциации.

Золото в рудных телах встречается в основном в жильном кварце колломорфно-зонального строения с мелкими ксенолитами вмещающих пород. Под микроскопом выделения золота наблюдаются также в карбонате, пирите, сфалерите, халькопирите и галените. Размер золотин изменяется от сотых долей до 1–2 мм. Наиболее распространенные формы выделения золота – прожилковые, интерстициальные, чешуйчатые, пленочные, проволоковидные и плоские дендритовидные. Цвет золота изменяется от ярко-желтого с зеленоватым оттенком до бледно-желтого, показывая неоднородность химического состава. Содержания в золоте Ag 18.7–38.7, Hg 0.08–0.24 мас. %.

Месторождение Двойное можно отнести к эпитермальной минерализации LS-типа (Sillitoe, Hedenquist, 2003).

МЕТОДЫ ИССЛЕДОВАНИЯ

Химический состав руд анализировался методом ICP-AES на приборе "Varian 710 ES" в лаборатории Limited Liability Company "Alex Stewart Geo Analytical", Москва. Анализ проводился на 40 химических элементов после окислительного разложения твердофазных проб в четырех кислотах. Диапазон определяемых концентраций – от десятых долей ppb до десятков %, относительная аналитическая ошибка сходимости $\pm 1\%$. Золото в пробах определялось методом пробирной плавки из навески 50 г с атомно-абсорбционным окончанием на приборе Varian AA 240 FS. Нижний предел обнаружения – 0.01 ppm, относительная аналитическая ошибка сходимости $\pm 5\%$.

Для получения изображений в отраженных электронах, качественного и количественного микроанализа минералов использовался сканирующий электронный микроскоп "Jeol" JSM—6480LV с комбинированной системой на основе энергодисперсионного спектрометра "Inca Energy—350" и волнового дифракционного спектрометра "Inca Wave—500" (аналитики — Е.В. Гусева, Н.Н. Коротаева и В.О. Япаскурт, кафедра петрологии, геологический факультет МГУ).

Условия съемки: ускоряющее напряжение – 20 кВ, ток зонда – 2 ± 0.005 нА. Для процедуры коррекции использованы ХРР-поправки (программа "INCA" версия 17а). Линии профилей характеристического рентгеновского излучения оптимизированы и нормализованы с использованием стандартов природных силикатов.

Определение химического состава самородного золота и халькогенидов (сульфиды, сульфоарсениды, сульфосоли, минералы теллура) осуществлялось с помощью электронных микроанализаторов "Camebax SX-50" (аналитик – И.А. Брызгалов, кафедра минералогии, геологический факультет МГУ) и "Camebax SX-100" (аналитик – Н.Н. Кононкова, ГЕОХИ РАН). Условия анализа на приборе "Сатеbax SX-50": халькогениды — ускоряющее напряжение – 15 кВ, ток зонда – 30 нА, диаметр пучка зонда 1-3 мкм; самородное золото – ускоряющее напряжение повышалось до 20 кВ. В качестве эталонов при анализе самородного золота использованы: Au, Ag и Cu – чистые металлы, Hg – колорадоит. При анализе халькогенидов использованы следующие эталоны: Ад – гессит, Те – колорадоит, синтетические фазы: $Au - AuTe_2$, Pb - PbS, Zn - ZnS, Cu - CuS, S - ZnS, As - FeAsS, Se - CdSe, Sb - Sb_2S_3 , $Bi - Bi_2S_3$.

Условия анализа на приборе "Camebax SX-100": ускоряющее напряжение – 20 кВ, ток зонда – 50 нА, диаметр пучка зонда 3–5 мкм. В качестве эталонов при анализе использованы: Au – Au металлическое, Ag, Te – гессит, Cu, Fe, S – халькопирит, Hg – колорадоит, Bi – Bi металлический, Pb – галенит, Sb – стибнит, Se – CdSe (синтетический).

Мессбауэровский спектр турмалина был получен на спектрометре "MS-1104 Em" с источником ⁵⁷Со в матрице Rh (аналитик – В.В. Коровушкин, МИСиС, Москва). Изомерный сдвиг определялся относительно α-Fe. Для анализа использовали порошковые пробы навеской 100 мг. Обработка мессбауэровских спектров осуществлялась по программе "Univem MS" (РГУ, Ростов-на-Дону). Измерения проводились в диапазоне скоростей ±3.5 мм/с с накоплением импульсов в 512 каналах.

Микротермометрическое изучение индивидуальных включений проводилось в лаборатории геологии рудных месторождений ИГЕМ РАН с использованием измерительного комплекса, состоящего из камеры "THMSG 600" фирмы "Linkam" (Англия), установленном на микроскопе "Olimpus ВХ51" (Япония), видеокамеры и управляющего компьютера. Химический состав флюида, захваченного во включениях, оценивался по результатам измерений фазовых переходов и превращений, происходивших при нагревании и охлаждении препаратов. Точность измерений температуры составляет $\pm 0.2^{\circ}$ С в интервале температур от -20до +20°С и понижается при более высоких и низких температурах. Состав солей, преобладающих в водных растворах флюидных включений, оценивался по результатам измерения температур плавления эвтектики (Борисенко, 1977). Суммарная концентрация солей в двухфазовых флюидных включениях типа 2 оценивалась по температурам плавления льда на основе экспериментальных данных для системы NaCl-H₂O (Bodnar, Vityk, 1994). Давление углекислоты определялось для гетерогенных флюидов методом пересечения изохоры и изотермы (Калюжный, 1982). Общее давление оценивалось как сумма парциальных давлений углекислоты и насыщенного пара воды в гидротермальной системе (Прокофьев, 1998). Оценки концентраций солей, плотностей и давлений флюида проводились с использованием программы "FLINCOR" (Brown, 1989).

Анализ водных вытяжек из включений проводился с помощью комплекса методов, включающим газовую и ионную хроматографию и ICP-MS, из навесок 0.5 г мономинеральной фракции кварца размером 0.5–0.25 мм в ЦНИГРИ (аналитик – Ю.В. Васюта, ЦНИГРИ) по методике, опубликованной в работе (Кряжев и др., 2003). Одновременно методом газовой хроматографии определялось количество воды для расчета концентраций элементов в гидротермальном растворе. Кроме того, анализировались углекислота и метан, а после приготовления вытяжки в растворе определялись: Cl, K, Na, Ca, Mg и все элементы, которые удалось обнаружить методом ICP-MS.

МИНЕРАЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕТАСОМАТИТОВ

Метасоматиты в пределах рудопроявления Сентябрьское представлены пропилитами, кварцсерицитовыми, окварцованными и аргиллизированными породами и образуют изометричные и линейные зоны площадью до 5.0 км². Метасоматические изменения проявлены неравномерно.

Пропилиты — породы зеленоватого цвета с неравномернозернистой структурой; размер выделений минералов варьирует от десятых долей до первых миллиметров, часто образуют линейные зоны в слабопропилитизированных породах, где нередко читаются текстуры исходных пород и сохраняются первичные минеральные ассоциации. Для порфировых пород характерно избирательное замещение вкрапленников плагиоклаза при частичной сохранности минералов основной массы.

Пропилиты имеют турмалин-хлорит-актинолит-эпидотовый состав. В них нередко отмечаются кварц и карбонаты, образующие секущие прожилки и обособления в виде гнезд или линз в более ранних эпидот-хлоритовых агрегатах. Хлорит пропилитов по составу относится к шамозиту (Si 2.69–2.70 ф.е.; Fe/(Fe + Mg) 0.56–0.59). Температура образования хлорита, оцененная по минералогическому термометру (Cathelineau, 1988), составляет ~360°С. Кристаллы турмалина пропилитов, как правило, сложнозональные. В пропилитизированных породах, содержащих реликтовый магматический ильменит, нередко появляется метасоматический титанит.

Кварц-серицитовые породы – мелко-скрытокристаллические - характерны для рудопроявления. Они развиваются как по неизмененным вулканитам, так и по более ранним пропилитам и пропилитизированным породам. Соотношение кварца и серицита в них обычно 1 : 1, но иногда кварц преобладает над серицитом. Размер выделений минералов обычно не превышает первых десятых долей миллиметра. Серицит нередко замещает вкрапленники полевых шпатов вулканитов с образованием полных или частичных псевдоморфоз. Часто в породах встречаются небольшие гнезда и линзы, сложенные более крупными выделениями кварца и светлой слюды. Светлая слюда по химическому составу относится к мусковит-фенгиту (Si 3.16–3.38, K + Na 0.79–0.98 ф.е.)

В отдельных образцах кварц-серицитовых пород установлен турмалин, который образует лучистые агрегаты и небольшие гнезда размером до 1.5 мм. Нередко кварц-серицитовые породы содержат равномерную вкрапленность пирита (до 5 об. %), реже встречаются выделения пирротина, рутила и сильно измененного реликтового титаномагнетита. Они рассечены кварцевыми прожилками с рудной минерализацией.

Аргиллизированные породы в пределах рудопроявления встречаются локально. Аргиллизация проявлена в вулканитах (особенно в риолитах) и хуже при формировании аргиллизитов по более ранним метасоматитам. Главный минерал аргиллизированных вулканитов – монтмориллонит. Породы, обогащенные монтмориллонитом, как правило, приобретают синеватый или синеватозеленый оттенок. В аргиллизированных породах нередко отмечаются кварцевые и адуляр-кварцевые прожилки с гнездами монтмориллонитового и тосудит-клинохлорового состава. Клинохлор ет сферолиты размером до 50 мкм, которые обрастают агрегатами тосудита. Температура формирования клинохлора по минералогическому термометру (Cathelineau, 1988) составляет 220-250°С. Учитывая более позднее отложение тосудита, можно предполагать, что формирование аргиллизитов происходило и при более низких температурах.

Химический состав турмалина метасоматитов. В пропилитах турмалин слагает секущие прожилки, размер зерен достигает нескольких десятков микрон. Турмалин зональный и плеохроирует от бледно-бурого и бесцветного до темно-зеленого, почти черного цвета. Последний является цветом максимальной абсорбции и, вероятно, указывает на значительное содержание Fe³⁺ в минерале. Подобный характер плеохроизма в турмалине пропилитов был ранее установлен на меднопорфировых месторождениях и проявлениях Чукотки (Песчанка, Ветка, Куст), Казахстана (Актогай), Монголии (Сатыр Худаг), золото-порфи-

ровом (Прокофьев и др., 2007) месторождении Талатуй и других месторождениях золота Дарасунского рудного поля (Baksheev et al., 2012). Железистость [Fe_{обш}/(Fe_{обш} + Mg)] варьирует от 0.49 до 0.64. На графике соотношения Fe и Mg (фиг. 3а) видно, что точки составов расположены параллельно вектору FeAl_1, отвечающему изоморфизму Fe³⁺ → Al. Это типично для турмалина из пропилитов порфировых систем (Baksheev et al., 2012). На фиг 36 составы турмалина расположены параллельно линии "окси-дравит" - повондраит, а на фиг. Зв они находятся в поле щелочных видов, обогащенных Са. Поэтому описываемые турмалины можно классифицировать как обогащенные Са промежуточные члены ряда "окси-дравит" – повондраит. По данным мессбауэровской спектроскопии отношение Fe³⁺/Fe_{обш} в усредненной пробе турмалина пропилитов составляет 0.44, что близко к данным для турмалинов медно-порфировых месторождений и отличается от олово- и золото-порфировых (Baksheev et al., 2009, 2012).

В кварц-серицитовых породах турмалин образует кристаллы размером до несколько сотен микрон, которые корродированны и замещаются кварцем и карбонатом (фиг. 4а). Минерал плеохроирует от бесцветного до сине-зеленого цвета; проявлена слабая оптическая зональность, выражающаяся в чередовании более светлых и более темных зон. Железистость турмалина варьирует от 0.56 до 0.75. На фиг. За точки составов турмалинов расположены почти параллельно векторам □Al(NaFe)₋₁ и AlO(Fe(OH))₋₁. Поскольку доля вакансии в позиции Х (Х□) варьирует существенно меньше (0.28-0.46 а.ф.е.), чем содержание Fe (1.32–2.05 ф.е.), то роль вектора □Al(NaFe)_1 в вариации содержания Fe меньше, чем $AlO(Fe(OH))_{-1}$. Этот вектор отвечает схеме изоморфного замещения ${}^{Y}Al + {}^{W}O^{2-} \longrightarrow {}^{Y}Fe^{2+} + {}^{W}OH^{-}$. Отклонение от параллельности вызвано, по-видимому, влиянием векторов \Box Al(NaMg)₁ и AlO(Mg(OH))₁. Однако, из-за отсутствия данных мессбауэровской спектроскопии (малое количество материала) оценить степень влияния каждого вектора невозможно. В качестве ведущего тип изоморфизма ${}^{Y}Al + {}^{W}O^{2-}$ ► ${}^{Y}\text{Fe}^{2+} + {}^{W}\text{OH}^{-}$ был установлен в турмалинах из кварц-серицитовых пород медно-порфировых месторождений Песчанка и Ольховка на Чукотке (Baksheev et al., 2012). На диаграмме Fe-Al-Mg (фиг. 3б) точки составов турмалина расположены выше линии шерл-дравит, что косвенно указывает на невысокое содержание Fe³⁺ в минерале. На графике соотношения Fe и Mg (фиг. 3a) точки попадают в поле железистых турмалинов, а на диаграмме □-Са-Na (фиг. 3в) находятся в поле щелочных турмалинов. Поэтому с учетом ведущей роли изоморфного замещения ${}^{Y}Al + {}^{W}O^{2-} \longrightarrow {}^{Y}Fe^{2+} + {}^{W}OH^{-}$ турмалин можно классифицировать как промежуточный член ряда шерл - "окси-шерл". На медно-порфиро-

Фиг. 3. Диаграммы изменения химического состава турмалинов пропилитов (1), кварц-серицитовых пород (2) и аргиллизитов (3) рудопроявления Сентябрьского.

а – соотношение Fe и Mg; б, в – классификационные диаграммы турмалина (Henry *et al.*, 2011): б – по соотношению Fe, Al и Mg, в – по преобладающему катиону или вакансии в позиции *X*.

вых месторождениях в кварц-серицитовых породах, развивающихся по гранитоидам, турмалин представлен промежуточными членами ряда дравит— "окси-дравит". Высокое содержание Fe в турмалине из кварц-серицитовых пород рудопроявления Сентябрьское обусловлено его высоким содержанием в замещаемых породах (андезибазальтах).

В аргиллизитах турмалин слагает отдельные оптически слабозональные или незональные изолированные кристаллы и радиально-лучистые агрегаты (фиг. 46, 4в). Длина кристаллов и индивидов в агрегатах достигает нескольких сотен микрон. Турмалин плеохроирует от бесцветного до сине-зеленого цвета. Железистость минерала варьирует от 0.67 до 0.97. На диаграмме Fe–Al–Mg (фиг. 36) точки составов турмалинов изолированных кристаллов и радиально-лучистых агрегатов располагаются между линиями шерл–дравит и фойтит–магнезиофойтит, а на графике соотношения Fe и Mg в области железистых турмалинов и ниже линии шерл–дравит (фиг. 3а). Это косвенно свидетельствует о невысоком содержании Fe³⁺

в минерале. На этом же графике видны две обособленные группы составов турмалинов аргиллизитов с содержанием $Mg < 0.2 \phi$.е и $Mg > 0.5 \phi$.е. Наличие этих двух групп обусловлено сложной зональностью по химическому составу отдельных кристаллов или индивидов в радиально лучистых агрегатах. На диаграмме □-Са-Na (фиг. 3в) составы находятся в полях вакансионных и щелочных турмалинов. Учитывая положение составов на этих трех диаграммах, турмалины аргиллизитов можно классифицировать как промежуточные члены ряда шерл-фойтит. Однако из-за малого количества материала мессбауэровские исследования для определения соотношения Fe³⁺/Fe_{общ} в турмалине аргиллизитов проведены не были, поэтому такую систематику следует признать приблизительной.

МИНЕРАЛЬНЫЙ СОСТАВ РУД

На рудопроявлении Сентябрьское отчетливо выделяется два промышленных типа золотых

Фиг. 4. Турмалин из кварц-серицитовых пород (а) и аргиллизитов (б, в) рудопроявления Сентябрьское. Изображение в отраженных электронах.

Ти – турмалин, Q – кварц.

руд: 1) вкрапленные, прожилково-вкрапленные и жильные золото-серебро-мышьяковые и 2) жильные золото-серебро-теллуридные (фиг. 5). В золото-серебро-мышьяковых рудах обнаружены (г/т): Au (2.1–9.5), Ag (16–3588), As (3713–49571), Sb (176-13961), Pb (522-88831), Cu (57-28183), Zn (193-14321), Cd (5-558), Bi (6-2207), Sn (4-1203) и W (до 278). Концентрации Au в этих рудах отчетливо кореллируют с As и не обнаруживают корелляции с Те (фиг. 6а, 6б). В составе золото-серебро-теллуридных руд установлены (г/т): Au (2.3-5459), Ag (50-10165), Te (30-3000), Pb (553-129752), Cu (165-20071), Zn (99-19344), Hg (3-4137), Se (до 689), Cd (1-348), As (26-516), Sb (7-32) и Bi (до 50). Содержания Au в них хорошо кореллируют с Те, и не связаны с концентрациями As (фиг. 6в, 6г).

Золото-серебро-теллуридные руды проявления Сентябрьское относятся к ярко выраженному "бонанцевому" типу, с крайне неравномерным распределением как ценных компонентов (Au и Ag), так и элементов-спутников: Те, Pb, Cu и Zn. Руды этого типа характеризуются относительно невысокими содержаниями As и Sb и устойчивым преобладанием Te над Se: Te/Se = 10/1-3/1, среднее отношение Au/Ag = 1/7 (1/2-1/22). Золото-серебро-мышьяковые руды отличаются относительно невысоким содержанием и более равномерным распределением Au, высокой мышьяковистостью и сурьмянистостью. Среднее отношение Au/Ag = 1/18 (1/6-1/68).

По величине отношения Au/Ag тип руд рудопроявления Сентябрьское единый — золото-серебро-теллуридный.

В рудах рудопроявления Сентябрьское установлены три главные минеральные ассоциации, последовательно сменяющие друг друга (фиг. 7) – *пирит-арсенопиритовая*, *полиметаллическая* и золото-серебро-теллуридная. Последовательность минеральных ассоциаций установлена в горных выработках по взаимоотношениям прожилков. Последовательность кристаллизации минералов внутри главных ассоциаций выявлена при изучении взаимоотношений (нарастании, корродировании) минеральных фаз в отдельных образцах и полированных шлифах.

Фиг. 5. Структуры золото-серебро-мышьяковых (вкрапленные (а), прожилково-вкрапленные (б) и жильные (в, г)) и золото-серебро-теллуридных (д) руд рудопроявления Сентябрьское.

Главные минералы *пирит-арсенопиритовой ассоциации* (фиг. 8) — пирит и арсенопирит, которые образуют вкрапления и небольшие гнезда в кварцевых прожилках или скопления в призальбандовых зонах. Второстепенные минералы – сфалерит, галенит, халькопирит, блеклые руды, реже

Фиг. 6. Корелляция содержаний Au с As (а, в) и Те (б, г) для золото-серебро-мышьяковых (а, б) и золото-серебро-теллуридных (в, г) руд рудопроявления Сентябрьское.

встречаются цинкенит, бурнонит (табл. 1), станнин, касситерит, шеелит. Сфалерит, галенит, блеклые руды и станнин обрастают более ранние кристаллы пирита и арсенопирита. К сфалеритгаленитовым агрегатам могут быть приурочены выделения бурнонита и цинкенита. Последний нередко замещает зерна галенита. У сфалерита и блеклых руд проявляется сложное зональное строение кристаллов (фиг. 8а, 8д). Блеклые руды по составу отвечают серебросодержащему железистому или цинкистому тетраэдриту (табл. 2). В некоторых случаях в срастании с блеклыми рудами и станнином отмечаются небольшие (до 50 мкм) выделения шеелита и касситерит. Касситерит образует как хорошо сформированные кристаллы, так и прожилки и неправильной формы обособления в станнине.

Минеральные фазы Au в этой ассоциации не выявлены. Главный носитель Ag в этой ассоциации — блеклые руды, содержание Ag в которых достигает 21.4 мас. %.

Полиметаллическая и золото-серебро-теллуридная минеральные ассоциации слагают золото-серебротеллуридные руды, которые являются главным объектом исследования. Эти руды – мелко-среднезернистые, массивные, приурочены к кварцевым жилам и прожилкам, секущим вмещающие кварц-серицитовые породы. Главные рудные минералы – гессит, пирит, халькопирит, галенит и сфалерит, реже отмечаются самородное Au, петцит, алтаит колорадоит и акантит. Жильные минералы представлены: кварцем, фенгитом, шамозитом, кальцитом, анкеритом и железистым доломитом. Гипергенное изменение руд выражается в развитии церуссита, линарита, англезита, познякита, брошантита, парателлурита и недиагностированных фаз с составом Си-Те-О, Са-Те-О и Мg-Те-О.

Полиметаллическая ассоциация. Пирит в ней, по-видимому, является наиболее ранним рудным минералом. Он образует кубические идиоморфные кристаллы размером 0.1–0.2 мм, которые обрастают халькопиритом. На них и на ранний

		Ассоциации мине	ералов	
Минералы	арсенопирит- пиритовая	полиметаллическая	золото-серебро- теллуридная	гипергенная
Кварц				
Пирит				
Арсенопирит				
Халькопирит				
Сфалерит				
Галенит				
Шеелит				
Касситерит				
Станнин				
Тетраэдрит				
Бурнонит				
Цинкенит				
Акантит				
Гессит				
Петцит				
Алтаит				
Колорадоит				
Золото самородное				
Анкерит, доломит				
Кальцит				
Мусковит, шамозит				
Парателлурит				
Скородит			4	
Церрусит				
Англезит			•	
Линарит				
Познякит, брошантит				

Фиг. 7. Схема последовательности отложения минералов разных ассоциаций рудопроявления Сентябрьское.

жильный кварц нарастают галенит и сфалерит. Галенит слагает идиоморфные кубоктаэдрические кристаллы размером до 0.5 мм или почти мономинеральные агрегаты размером до 5 мм. Сфалерит встречается в виде выделений неправильной формы, либо идиоморфных кристаллов тетраэдрического габитуса. Для него характерна эмульсионная вкрапленность халькопирита, приуроченная к отдельным зонам кристаллов. В сфалерите присутствуют примеси (мас. %): Fe (0.7–2.3) и Cd (1.4–1.6), что характерно для сфалерита эпитермальных месторождений и свидетельствует об участии магматического флюида в формировании минерала (Гричук, 2005).

Золото-серебро-теллуридная ассоциация. Минералы полиметаллической ассоциации обрастают или замещаются минералами золото-серебро-теллуридной ассоциации, среди которых преобладают теллуриды Au, Ag и Pb. Жильные минералы ассоциации представлены кварцем, анкеритом, железистым доломитом, кальцитом, мусковит-фенгитом (Si 3.21-3.26, K + Na - 0.77-0.82 ф.е.) и шамозитом (Si 2.68-2.78 ф.е.; Fe/(Fe + Mg) 0.57-0.62). Кристаллы анкерита и железистого доломита ромбо-

эдрического габитуса размером 20–100 мкм нарастают на сфалерит, галенит и кварц. Карбонаты проявляют ростовую зональность, связанную с вариацией отношения Fe/(Fe + Mg) от 0.23 до 0.67. Внешние зоны кристаллов, как правило, высокожелезистые. В качестве примеси в анкерите и железистом доломите присутствует Mn (0.4–4.7 мас. %). Наибольшие его концентрации отмечаются в анкерите. Чешуйчатые агрегаты светлой слюды обрастают как кристаллы анкерита и железистого доломита, так и сульфиды полиметаллической ассоциации. Кальцит, видимо, является наиболее поздним минералом золото-серебро-теллуридной ассоциации – он обрастает или сечет агрегаты минералов теллура.

Гессит является доминирующим минералом золото-серебро-теллуридной ассоциации. Макроскопически минерал светло-серый, с ярким металлическим блеском, средней спайностью, покрытый синей пленкой побежалости. Гессит выполняет интерстиции между зернами кварца и небольшие пустоты; размер его выделений достигает нескольких сантиметров. Часто гессит прорастает агрегаты светлой слюды и шамозита с пи-

Фиг. 8. Минералы арсенопирит-пиритовой ассоциации. Изображения в отраженных электронах. а – зональный пирит, обрастающий кристаллами арсенопирита; б – замещение галенита агрегатом игольчатых кристаллов цинкенита; в – зональный кристалл сфалерита с включениями станнина; г – бурнонит на границе арсенопирита и галенита; д – ритмично-зональный кристалл тетраэдрита; е – тетраэдрит-касситерит-станниновый агрегат, замещающийся более поздним галенитом.

Sp – сфалерит, St – станнин, Zn – цинкенит, Gn – галенит, Ару – арсенопирит, Ру – пирит, Tt – тетраэдрит, Br – бурнонит, Cst – касситерит, Qtz – кварц.

ритом и халькопиритом. На контакте гессита с более ранним галенитом развиты неоднородные реакционные каймы мощностью до 20–50 мкм. Со стороны галенита в каймах преобладает акантит, со стороны гессита – алтаит (фиг. 9а, 9г). В них иногда наблюдается мусковит (фиг. 9г). Алтаит может образовывать отдельные кристаллы и выделения неправильной формы в гессите (фиг. 9д, 9е). В алтаите различных срастаний обнаружены (мас. %): Ад (0.2–0.6), Sb (0.2–0.4), Ві (до 0.3) и Se (0.1–0.4) (табл. 3). Для гессита характерны примеси (мас. %): Аи (до 3.3), Нg (до 1.2), Sb (до 0.3) (табл. 4).

Главные минералы-носители Au в рудах — петцит и самородное Au. Петцит образует изометричные или слабо удлиненные выделения, размером не более 100 мкм. Для него характерны тесные срастания с гесситом, однако это хорошо видно только на снимках в отраженных электронах (фиг. 10а, 10б). В таких срастаниях доля пет-

Элементы	1	2	3	4
Pb	30.52	33.96	33.46	45.25
Cu	0.29	0.74	1.23	13.21
Ag	—	0.82	0.78	_
Sb	45.3	40.85	40.23	17.89
As	—	2.26	1.71	4.48
S	21.99	22.29	21.6	19.71
Сумма	98.10	100.91	99.00	100.54
Фор.	мульные коэффициенть	і в расчете на 7 (цинкен	ит) и 6 (бурнонит) ато	ОМОв
Pb	0.852	0.922	0.930	1.050
Cu	0.026	0.065	0.112	1.000
Ag	—	0.043	0.041	—
Sb	2.153	1.888	1.904	0.707
As	—	0.170	0.131	0.287
S	3.968	3.912	3.881	2.956

Таблица 1. Химический состав цинкенита и бурнонита рудопроявления Сентябрьское, мас. %

Примечание. "-" – ниже предела обнаружения. 1–3 – цинкенит, 4 – бурнонит. Анализы выполнены на микроанализаторе "Camebax SX-50".

Таблица 2. Химич	еский состав блекл	ых руд рудопроявл	ения Сентябрьское	е, мас. %
0	1	2	2	1

Элементы	1	2	3	4	5
Cu	22.91	25.80	35.96	31.84	34.60
Ag	21.38	16.49	2.39	8.12	5.47
Fe	4.22	6.06	5.36	0.16	1.62
Zn	2.12	0.42	1.61	7.12	5.54
Sb	26.11	27.22	28.44	25.08	22.96
As	0.30	0.13	0.44	1.95	3.91
S	22.47	22.68	24.10	23.43	24.33
Сумма	99.51	98.81	98.30	97.70	98.43
	Форму.	льные коэффициент	ны в расчете на 29 а	томов	!
Cu	6.591	7.328	9.654	8.803	9.241
Ag	3.625	2.759	0.379	1.323	0.860
Fe	1.383	1.960	1.638	0.050	0.493
Zn	0.593	0.116	0.420	1.912	1.438
Sb	3.922	4.036	3.985	3.619	3.201
As	0.073	0.032	0.101	0.458	0.887
S	12.813	12.768	12.823	12.836	12.880
Sb/(Sb + As)	0.98	0.99	0.97	0.89	0.78
Fe/(Fe + Zn)	0.70	0.94	0.79	0.025	0.255

Примечание. "—" — ниже предела обнаружения. 1–3 — железистый тетраэдрит; 4, 5 — цинкистый тетраэдрит. Анализы выполнены микроанализаторе "Camebax SX-50".

цита достигает 20-50% (фиг. 10а, 10б). Химический состав петцита близок теоретическому (AuAg₃Te₂) (табл. 5), минерал содержит примеси (мас. %): Hg (до 0.7) и Sb (до 0.3).

Самородное Аи локализовано в агрегатах теллуридов и практически не встречается в более ранних минералах (фиг. 106–10е). Выделения самородного Аи по морфологии весьма разнообразны. Макроскопически наблюдаются пленочные и комковатые выделения золота длиной 2–3 мм при толщине доли миллиметра. В крупных выделениях Au присутствуют включения гессита, петцита и алтаита (фиг. 10д). Наиболее распространенная форма выделений самородного Au – многочисленные тонкие ветвящиеся микропрожилки в гессит-петцитовом агрегате (фиг. 106–10г, 10е).

ЗОЛОТО-ТЕЛЛУРИДНАЯ МИНЕРАЛИЗАЦИЯ ЗАПАДНОЙ ЧУКОТКИ

Фиг. 9. Алтаит-акантитовые каймы вокруг галенита, обрастающие гесситом (а–г); алтаит (д), нарастающий на галенит, и алтаит в гессите (е).

а – изображение в отраженном свете, б-е – изображение в отраженных электронах.

Hs - гессит, Pz - петцит, Au - золото самородное, At - алтаит, Ac - акантит, Gn - галенит, Ms - мусковит, Qtz - кварц.

Реже микропрожилки Au встречаются среди агрегатов акантита и алтаита, окаймляющих более ранние кристаллы галенита. В самородном Au не обнаружено зональности и двойникования, пробность его достаточно высокая (832–853‰), из элементов-примесей отмечается только Hg (до 1.2 мас. %) (табл. 6).

Колорадоит в рудах присутствует в незначительном количестве, выполняя интерстиции между зернами кварца. Размер выделений колорадоита варьирует от первых микрон до 50 мкм. Имеются срастания колорадоита с гесситом, пересекающиеся мелкими прожилками самородного Au (фиг. 11). Состав колорадоита — однородный (мас. %): Hg (59.8—61.8), Te (39.4—40.0); зафиксированы примеси Au (до 0.7), Ag (до 0.2), Pb (до 0.1) и Sb (0.2—0.4) (табл. 3).

Гипергенные минералы в рудах рудопроявления Сентябрьское наблюдаются на поверхности рудных агрегатов и по трещинам в них. С окислением пирита связано образование гидроксидов Fe, по арсенопириту образуется скородит, по галениту – англезит и церуссит. Изменение халькопирита приводит к формированию яркоокрашенных ги-

Элементы	1	2	3	4	5	6	7	8	9
Pb	61.33	60.67	59.96	59.59	60.46	0.12	—	0.12	—
Au	_	—	0.09	0.46	—	_	—	—	0.75
Ag	0.25	0.44	0.54	0.55	0.65	0.19	0.20	0.20	0.25
Cu	0.04	_	0.03	0.10	0.08	0.02	_	—	0.05
Sb	0.28	0.22	0.36	0.24	0.17	0.31	0.24	0.36	0.26
Fe	0.03	_	0.01	0.03	0.04	0.02	0.05	—	0.03
Bi	0.09	0.04	0.14	0.17	0.27	_	0.05	—	_
Hg	_	0.79	1.20	_	_	60.76	61.58	61.81	59.76
S	0.03	0.01	0.04	0.06	0.04	_	0.02	0.01	0.03
Se	0.13	0.11	0.25	0.41	0.16	_	0.05	0.07	_
Te	40.11	39.98	39.00	38.70	40.02	39.81	39.96	39.41	39.68
Сумма	102.29	102.26	101.62	100.31	101.89	101.23	102.18	101.98	100.82
		Φ	ормульные н	коэффициен	ты в расчеп	пе на 2 атом	ia		
Pb	0.956	0.948	0.941	0.943	0.942	0.002	—	0.002	—
Au	—	—	0.001	0.008	—	—	—	—	0.012
Ag	0.007	0.013	0.016	0.017	0.019	0.006	0.006	0.006	0.007
Cu	0.002	—	0.002	0.005	0.004	0.001	—	—	0.002
Sb	0.007	0.006	0.010	0.007	0.005	0.008	0.006	0.010	0.007
Fe	0.002	—	0.001	0.002	0.002	0.001	0.003	—	0.002
Bi	0.001	0.001	0.002	0.003	0.004	—	0.001	—	—
Hg	_	0.013	0.019	—	—	0.976	0.980	0.988	0.962
S	0.003	0.001	0.004	0.006	0.004	_	0.002	0.001	0.003
Se	0.005	0.005	0.010	0.017	0.007	—	0.002	0.003	—
Te	1.015	1.014	0.994	0.994	1.013	1.006	1.000	0.991	1.004

Таблица 3. Химический состав алтаита и колорадоита рудопроявления Сентябрьское, мас. %

Примечание. "-" – ниже предела обнаружения. 1–5 алтаит; 6–9 – колорадоит. Анализы выполнены на микроанализаторе "Camebax SX-50".

пергенных минералов меди. Брошантит и линарит встречены в виде синеватых корочек и микрогнезд, познякит, как правило, образует очень мелкие ярко-голубые пластинки. В качестве продуктов окисления гипогенных теллуридов установлены парателлурит и неизвестные фазы с составами Са-Те-О, Mg-Те-О и Си-Те-О. Парателлурит образует псевдоморфозы по гесситу, на что указывают многочисленные реликты гессита в парателлурите. Типичны выделения парателлурита в виде бежевых корочек по трещинам в рудных агрегатах. Размер обособлений парателлурита меняется от 10 мкм до 1 мм. В ассоциации с парателлуритом установлены фазы: Са-Те-О и Мg-Те-О (фиг. 12). Фаза Си-Те-О формирует травяно-зеленые корки и примазки толщиной до 50 мкм среди агрегатов более ранних рудных минералов (фиг. 12г). Данная фаза рентгеноаморфна; электронно-зондовые анализы хорошо пересчитываются на формулу (CuTeO₃). Возможно, эта фаза является рентгеноаморфным аналогом балякинита.

ИССЛЕДОВАНИЕ ФЛЮИДНЫХ ВКЛЮЧЕНИЙ

Изготовление большого числа прозрачно-полированных пластин и их изучение позволило выбрать пригодные для исследований первичные флюидные включения размером более 14 мкм в кварце и сфалерите. Изучено восемь образцов из жил и прожилков рудопроявления Сентябрьское, представляющих разные типы минеральных ассоциаций, и, для сравнения, три образца малосульфидных золото-серебряных руд месторождения Двойное. Среди изученных флюидных включений в соответствии с известными критериями (Реддер, 1987) были выделены первичные, первично-вторичные и вторичные флюидные включения. К первичным отнесены флюидные включения, равномерно распределенные в объеме минерала-хозяина или приуроченные к зонам роста (фиг. 13а), а к вторичным - приуроченные к секущим минерал-хозяина трещинам. Первично-вторичные флюидные включения приурочены к трещинам внутри кристаллов и зерен, не достигающим внешних границ, а по фазовому наполнению они аналогичны первичным включениям.

По фазовому составу при комнатной температуре изученные флюидные включения (фиг. 136– 13г) подразделены на два типа. К типу 1 отнесены флюидные включения, заполненные преимущественно газовой фазой (фиг. 136). Иногда в этих включения при охлаждении в ходе криометрических исследований может обнаруживаться углекислота. К типу 2 принадлежат двухфазовые флюидные включения (фиг. 13в, 13г), которые могут быть как первичными, так и вторичными.

Элементы	1	2	3	4	5	6	7	8	9	10
Ag	59.65	61.10	60.25	61.92	60.58	61.93	61.65	62.45	61.59	62.78
Au	0.92	_	3.28	0.08	0.43	0.26	_	_	0.07	0.79
Cu	0.07	0.02	_	0.01	0.03	0.05	0.05	0.13	0.07	_
Sb	0.27	0.13	0.16	0.20	0.19	0.20	0.11	0.19	0.25	0.23
Fe	0.06	0.01	0.02	0.06	_	_	_	0.05	_	_
Bi	_	0.17	0.04	0.06	0.04	_	0.07	_	_	_
Hg	0.82	1.25	0.04	0.62	0.79	_	1.10	0.04	_	_
Pb	0.08	_	_	_	0.03	0.07	_	0.05	_	0.16
S	_	0.14	_	0.02	0.06	0.06	0.03	0.12	0.03	0.04
Se	_	_	_	0.03	_	0.01	_	0.08	_	0.06
Te	37.98	38.74	37.33	38.74	37.91	38.87	37.95	38.36	38.19	39.4
Сумма	99.85	101.56	101.13	101.74	100.06	101.46	100.95	101.49	100.20	103.46
			Формульн	ые коэффи	циенты в р	расчете на	3 атома			
Ag	1.920	1.924	1.926	1.945	1.939	1.947	1.954	1.953	1.958	1.941
Au	0.016	_	0.057	0.001	0.008	0.005	_	_	0.001	0.013
Cu	0.004	0.001	_	0.001	0.002	0.003	0.003	0.007	0.004	_
Sb	0.008	0.004	0.005	0.006	0.005	0.005	0.003	0.005	0.007	0.006
Fe	0.004	0.001	0.001	0.004	_	_	_	0.003	_	_
Bi	_	0.003	0.001	0.001	0.001	_	0.001	_	_	_
Hg	0.014	0.021	0.001	0.011	0.014	_	0.019	0.001	_	_
Pb	0.001	_	_	_	0.000	0.001	0.000	0.001	_	0.003
S	_	0.015	_	0.002	0.006	0.006	0.003	0.012	0.003	0.004
Se	_	—	—	0.001	—	—	—	0.003	—	0.003
Te	1.033	1.032	1.009	1.029	1.026	1.033	1.017	1.014	1.027	1.030

Таблица 4. Химический состав гессита рудопроявления Сентябрьское, мас. %

Примечание. "-" – ниже предела обнаружения. Анализы выполнены на микроанализаторе "Camebax SX-100".

Нередко включения типа 2 сингенетичны первичным включениям типа 1, свидетельствуя о гетерогенном состоянии минералообразующего флюида. При этом, поскольку гидротермальная система находилась на линии двухфазового равновесия, температуры гомогенизации включений 1 типа, сингенетичных газовым включениям, не требуют поправки на давление и соответствуют температуре кристаллизации кварца.

Данные термо- и криометрических исследований более 400 индивидуальных флюидных включений в кварце и сфалерите разных ассоциаций рудопроявления Сентябрьское и месторождения Двойное приведены в табл. 7 и на фиг. 14.

Первичные, первично-вторичные двухфазовые газо-жидкие включения типа 2 в кварце *пирит-арсенопиритовой* ассоциации гомогенизируются в жидкость при температуре $360-213^{\circ}$ С и содержат водный раствор с концентрацией солей 8.1-0.9 мас. %-экв. NaCl. В растворе этих флюидных включений преобладают хлориды Na и K ($T_{3BT} = -37...-30^{\circ}$ С), плотность флюида 0.58-0.90 г/см³.

Первичные двухфазовые газо-жидкие включения типа 2 в сфалерите гомогенизируются в жидкость при температуре 287°С и содержат водный раствор с концентрацией солей 6.6 мас. %-экв. NaCl. В растворе этих флюидных включений преобладают хлориды Na и K ($T_{_{ЭВТ}} = -33^{\circ}$ C), плотность флюида 0.81 г/см³.

Первичные газовые включения типа 1, сингенетичные включениям водных растворов типа 2, некоторые содержат углекислоту (плотность 0.32-0.23 г/см³), которая гомогенизируется в газ при температурах от +23.6 до +29.3°С. Температура плавления углекислоты изменяется от -57.7 до -59.5°С, что свидетельствует о наличии примесей низкокипящих газов (CH₄, N₂) до 7 мол. %. Полная гомогенизация этих включений происходит в газ при температурах 360–295°С, т. е. в том же интервале, что и гомогенизация первичных газо-жидких включений типа 2, еще раз доказывая их сингенетичность. Давление в период формирования изученной минерализации составляло 310–570 бар.

Вторичные двухфазовые газо-жидкие включения типа 2 в кварце гомогенизируются в жидкость при температуре 277–155°С и содержат водный раствор с концентрацией солей 6.9–1.2 мас. %-экв. NaCl. В растворе этих флюидных включений преобладают хлориды Na и K ($T_{3вт} = -36...-24$ °C), плотность флюида 0.78–0.94 г/см³.

Первичные и первично-вторичные двухфазовые газо-жидкие включения типа 2 в кварце *полиметал-лической ассоциации* гомогенизируются в жидкость при температуре 302–235°С и содержат водный рас-

Фиг. 10. Минералы Au и Ag в рудах рудопроявления Сентябрьское. а – петцит-гесситовый агрегат с алтаитом; б – прожилки Au в петцит-гесситовом агрегате; в – петцит-гесситовый агрегат с самородным Au; г – тонкие прожилки самородного Au в алтаит-гесситовом агрегате; д – включения гессита и петцита в крупном выделении самородного Au; е – ветвящиеся микропрожилки самородного Au в гессите. а–в – изображение в отраженных электронах, г–е – изображение в отраженном свете. Рz – петцит, Au – золото самородное, Hs – гессит, At – алтаит, Gn – галенит.

твор с концентрацией солей 8.1–0.9 мас. %-экв. NaCl. В растворе этих флюидных включений преобладают хлориды Na и K ($T_{_{\rm ЭВТ}} = -35...-24^{\circ}$ C), плотность флюида 0.70–0.84 г/см³.

Первичные газовые включения типа 1 гомогенизируются в газ при температуре 302°С, т. е. при той же температуре, что и сингенетичные им включения водных растворов типа 2. Давление в период формирования изученной минерализации составляло около 80 бар.

В кварце золото-серебро-теллуридной ассоциации изучены первичные и первично-вторичные

Элементы	1	2	3	4	5	6	7	8	9
Au	24.36	24.38	25.09	25.08	24.61	26.73	26.51	20.74	27.15
Ag	42.39	43.04	41.71	42.08	42.35	43.47	42.95	45.52	41.66
Cu	0.03	_	0.03	0.04	_	_	0.10	0.01	0.07
Sb	0.18	0.16	0.32	0.17	0.19	0.14	0.20	0.14	0.24
Fe	_	_	0.02	_	_	0.02	0.02	_	_
Bi	0.04	_	0.05	0.12	_	_	—	0.26	0.08
Hg	_	_	0.46	_	0.54	0.70	0.44	_	_
Pb	0.04	_	0.08	_	_	_	0.15	_	0.11
S	0.01	0.01	0.05	0.04	0.04	0.03	_	0.05	0.03
Se	_	0.01	0.07	_	_	0.01	_	0.05	0.11
Te	34.53	33.01	34.16	33.85	33.98	31.78	29.94	33.70	32.63
Сумма	101.58	100.61	102.03	101.38	101.70	102.88	100.31	100.48	102.08
		Φ_0	ормульные к	оэффициен	ты в расчет	е на 6 атом	06		1
Au	0.940	0.948	0.967	0.971	0.950	1.026	1.044	0.794	1.052
Ag	2.985	3.057	2.935	2.976	2.985	3.046	3.087	3.179	2.947
Cu	0.004	—	0.003	0.005	—	—	0.012	0.002	0.008
Sb	0.011	0.010	0.020	0.011	0.012	0.009	0.013	0.009	0.015
Fe	—	—	0.003	_	_	0.003	0.003	_	_
Bi	0.001	_	0.002	0.004	_	_	_	0.009	0.003
Hg	—	—	0.017	_	0.021	0.026	0.017	—	_
Pb	0.001	_	0.003	_	_	_	0.006	_	0.004
S	0.002	0.002	0.012	0.009	0.009	0.007	_	0.012	0.008
Se	—	0.001	0.007	—	—	0.001	—	0.004	0.011
Te	2.055	1.982	2.032	2.024	2.024	1.883	1.819	1.991	1.952

Таблица 5. Химический состав петцита рудопроявления Сентябрьское, мас. %

Примечание. "-" - ниже предела обнаружения. Анализы выполнены на микроанализаторе "Camebax SX-100".

двухфазовые газо-жидкие включения типа 2, гомогенизирующиеся в жидкость при температуре 349—263°С и содержащие водный раствор с концентрацией солей 6.7—1.7 мас. %-экв. NaCl. В растворе этих флюидных включений преобладают хлориды Na и K ($T_{эвт} = -37...-28$ °C), плотность флюида 0.69—0.83 г/см³.

Первичные газовые включения типа 1, сингенетичные включениям водных растворов типа 2, содержат углекислоту (плотность изменяется от 0.18 до 0.22 г/см³), которая гомогенизируется в газ при температурах от +17.9 до +23.4°С. Температура плавления углекислоты изменяется от -58.0 до -58.2°С, что свидетельствует о незначительных примесях низкокипящих газов. Полная гомогенизация этих включений происходит в газ при температурах 332–293°С, т. е. в том же интервале, что и гомогенизация газо-жидких включений, подтверждая их сингенетичность. Давление в этот период составляло 250–380 бар.

Вторичные газо-жидкие включения типа 2 в кварце гомогенизируются в жидкость при температуре 235–175°С и содержат водный раствор с концентрацией солей 3.6–0.7 мас. %-экв. NaCl. В растворе этих флюидных включений преобладают хлориды Na ($T_{_{3BT}} = -36...-28$ °C), плотность флюида 0.87–0.91 г/см³.

Состав растворов флюидных включений в кварце руд рудопроявления Сентябрьское приведен в табл. 8. Во флюиде среди катионов главную

роль играют: Na, K и Ca, а Mg находится в подчиненном количестве. Установлены заметные коли-

чества: Cl⁻, HCO₃⁻, CO₂ и CH₄, As и B. Кроме того, в составе флюида выявлены: Fe, Mn, Sb, Sr, Li, P3Э, P, Cd, Cs, Ba, Ni, Rb, Mo, Cu, Bi, Cr, Ag, Ge, Co, U, V, Sn, Ti, Ga, Tl, Pb и Th.

Для сравнения в табл. 7 и на фиг. 14, 15 приведены данные исследования флюидных включений в кварце *малосульфидных золото-серебряных руд* месторождения Двойное. Первичные и первичновторичные двухфазовые газо-жидкие включения типа 2 гомогенизируются в жидкость при температуре 257–200°С и содержат водный раствор с концентрацией солей 3.9–0.5 мас. %-экв. NaCl. В растворе этих включений преобладают хлориды Na и K ($T_{3BT} = -33...-23^{\circ}$ C), плотность флюида 0.80–0.90 г/см³.

Вторичные двухфазовые газо-жидкие включения типа 2 в кварце гомогенизируются в жидкость при температуре 235–175°С и содержат водный раствор с концентрацией солей 3.6–0.7 мас. %-экв. NaCl. В растворе этих флюидных включений преобладают хлориды Na и K ($T_{\rm эвт} = -36...-28$ °C), плотность флюида 0.87–0.91 г/см³.

Состав растворов флюидных включений в кварце руд месторождения Двойное приведен в табл. 8. Во флюиде среди катионов главную роль играют Na и K. Установлены такие компоненты,

N⁰	1	2	3	4	5	6
Au	83.42	85.47	83.92	84.19	84.96	84.78
Ag	16.84	15.02	15.36	14.97	14.60	14.88
Cu	0.07	0.15	0.02	_	0.07	0.08
Hg	0.39	0.50	0.90	1.18	0.42	0.68
Sb	_	_	_	0.07	0.06	_
Bi	_	_	0.34	_	0.03	0.03
Pb	_	0.12	0.06	0.11	0.05	0.24
Fe	0.04	_	_	0.02	—	_
Se	_	0.03	_	_	_	_
Te	0.14	0.42	0.13	0.24	0.22	0.21
Сумма	100.90	101.70	100.73	100.77	100.40	100.88
Пробность, ‰	832	850	845	849	853	851

Таблица 6.	Химический	состав самородного	Аи рудопроявления	Сентябрьское, мас. %
------------	------------	--------------------	-------------------	----------------------

Примечание. "-" - ниже предела обнаружения. Анализы выполнены на микроанализаторе "Camebax SX-100".

как: Cl⁻, HCO₃⁻, CO₂ и CH₄, As и B. Кроме того, в составе флюида выявлены следующие микрокомпоненты: Sb, Sr, Li, P3Э, P, Cd, Cs, Rb, Cu, Bi, Ge, Ti, V, Sn, Tl и Pb. Как видно из табл. 8, набор микрокомпонентов во флюиде месторождения Двойное гораздо уже, чем во флюиде рудопроявления Сентябрьское.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Геологическое строение, метасоматиты и представляющие их породы, минералогия руд свидетельствуют, что образование рудопроявления Сентябрьское связано с процессом формирования порфирово-эпитермальной системы (Hedenquist, Lowenstern, 1994; Hedenquist *et al.*, 2000; Simmons *et al.*, 2005 и др.). Судя по минеральному составу руд, оно относится к IS-типу, по классификации (Sillitoe, Hedenquist, 2003). Изученные турмалины из пропилитов, кварцсерицитовых пород и аргиллизитов рудопроявления Сентябрьское принадлежат к промежуточным членам ряда дравит—повондраит, шерл — "окси-шерл" и шерл—фойтит соответственно.

В месторождениях порфирового типа, связанных с гранитоидами, турмалин эволюционирует от промежуточных членов ряда "окси-дравит" повондраит с содержанием Fe > 3 ф.е. в пропилитах, до чистого "окси-дравита" в кварц-серицитовых породах. Поскольку с кварц-серицитовыми породами на месторождениях порфирового типа сопряжен значительный основной объем сульфидного оруденения, то большая часть Fe распределяется в сульфидные минералы (пирит, халькопирит, борнит). Это приводит к образованию низкожелезистого турмалина.

При образовании аргиллизитов гидротермальные флюиды становятся более кислотными, обусловливая формирование турмалина с повышенной

Nº 2

2013

Фиг. 11. Колорадоит золото-серебро-теллуридной ассоциации. Изображение в отраженных электронах. а – колорадоит в анкерит-кварцевом агрегате; б – срастание гессита с колорадоитом, секущееся прожилками Au. Кг – колорадоит, Hs – гессит, Au – золото самородное, Qtz – кварц, Ank – анкерит.

Фиг. 12. Гипергенные минералы Те. Изображение в отраженных электронах.

а — каймы парателлурита на границе кристаллов кварца и гессита; б — сросток парателлурита с фазой Са-Те-О, анкеритом и кварцем в гессите; в — фаза Mg-Te-O и парателлурит, замещающие золото-гесситовые-петцитовый агрегаты; г — корочки фазы Cu-Te-O на кварце.

Prt – парателлурит, Au – золото самородное, Hs – гессит, Qtz – кварц, Cal – кальцит.

долей вакансии в позиции *X*, и относящегося к промежуточным членам ряда дравит—магнезиофойтит. Содержание Mg в турмалинах всех типов метасоматических пород остается постоянным ~2 ф.е.

В работе (Бакшеев и др., 2012) показано, что турмалин из пропилитов, заместивших базальтоиды на медно-порфировых месторождениях, характеризуется, с одной стороны, высоким содержанием Fe, а с другой – Al. Поэтому по аналогии с месторождениями, связанными с гранитоидами, при формировании кварц-серицитовых пород и увеличении летучести серы во флюиде следует ожидать снижение содержания Fe в новообразованном турмалине, что и происходит в турмалине кварц-серицитовых пород рудопроявления Сентябрьского. При увеличении кислотности минералообразующих флюидов и при формировании аргиллизитов кристаллизуются шерл фойтит.

Таким образом, минеральный состав пород, представляющих метасоматиты, химический состав турмалина из этих пород свидетельствуют о сложной и многоактной гидротермальной деятельности в районе, связанной с порфирово-эпитермальной рудообразующей системой.

Ассоциация минералов теллура (алтаит, гессит, колорадоит, петцит), установленная в рудах рудопроявления Сентябрьское, типична для многих эпитермальных золото-теллуридных месторождений Тихоокеанского обрамления (Cooke, Phail, 2001; Pals, Spry, 2003; Spry, Scherbarth, 2006 и др.) и других регионов (Бортников и др., 1988; Коваленкер и др., 1988; 1990; Voudoris, 2006; Sung et al, 2007 и др.). Однако для этих месторождений характерно разнообразие теллуридов золота в рудах. Изученные руды рудопроявления Сентябрьское отличаются от них наличием только одного теллурида Au – петцита. В то же время расчеты показали, что в форме петцита находится 40-70 мас. % общего количества золота золото-серебро-теллуридных руд рудопроявления Сентябрьского, т.е., возможно, мы имеем новый тип золото-теллуридного оруденения. Руды более глубинного месторождения с минералами Те-Дарасун, Забайкалье (Prokofiev et al, 2006, 2010) - отличаются от вышеупомянутых отсутствием в рудах калаверита, сильванита, креннерита, и слабым развитием петцита. В таких рудах широко развиты теллуриды и сульфотеллуриды Ві и преобладает самородное Аи. Возможно, руды рудопроявления Сен-

Фиг. 13. Расположение первичных флюидных включений по зонам роста кристалла кварца (а) и флюидные включения различных типов в изученных образцах (б–г): б – газовое включение типа 1, в, г – двухфазовые газо-жидкие включения типа 2.

Фазы во включениях: Ж – водный раствор, Г – газ.

тябрьского являются переходным типом от малоглубинных руд к глубинным.

Термобарогеохимические исследования показали, что руды рудопроявления Сентябрьского начали формироваться при более высоких температурах (360°С), чем малосульфидная золото-серебряная минерализация месторождения Двойное (257°С) (табл. 7, фиг. 14). Это согласуется с ранее опубликованными данными по температурам формирования руд месторождения Двойное (Волков и др., 2012). Отношение $P_{\text{обш}}/P_{\text{H}_{2}\text{O}}$ для флюидов рудопроявления Сентябрьское часто превышает величину 2 (до 4.9, табл. 7), что также свидетельствует о рудоотложении на субвулканическом уровне глубинности (Прокофьев, 1998). Исходя из величины среднего литостатического давления (270 бар/км), глубина формирования руд могла достигать 2 км, что согласуется с минеральным составом руд.

Диаграмма на фиг. 16 построена по убыванию температур гомогенизации, последовательность которых в целом совпадает с относительным временем захвата включений. Это можно проследить по их расположению в разных зонах заключающего их кварца (фиг. 13а). На диаграмме видно отсутствие взаимной корреляции между температурой (фиг. 16а) и минерализацией флюида (фиг. 16б). Возможно, это связано с процессом смешения флюидов разной природы. Формирование золото-серебро-теллуридной минеральной ассоциации сопряжено с повышением температуры, что можно объяснить поступлением новой порции рудообразующего флюида (фиг. 16а). При этом, судя по смене галенита алтаитом, а акантита – гесситом, имело место быстрое уменьшение летучести серы и резкое повышение летучести теллура (фиг. 17). Для большинства месторождений наблюдается тенденция уменьшения активности Те в процессе формирования теллуридных ассоциаций (Afifi et al., 1988; Voudoris et al., 2006 и др.). Необычные петцит-гесситовые срастания (фиг. 10а, 10б) могли возникнуть при распаде гелеобразной фазы с высокими концентрациями Au, Ag и Te. Это – ветвящиеся прожилки Au в петцит-гесситовом агрегате, напоминающие синеретические

Фиг. 14. Диаграмма "температура–концентрация" для рудообразующего флюида рудопроявления Сентябрьское (1–3) и месторождения Двойное (4).

Данные по включениям разных ассоциаций: 1 — пирит-арсенопирит-блеклорудная, 2 — полиметаллическая, и 3 — зо-лото-серебро-теллуридная.

Фиг. 15. Усредненные составы рудообразующих флюидов рудопроявления Сентябрьское (1) и месторождения Двойное (2).

трещины в усохшем геле (фиг. 18). Эта гипотетическая фаза образовала агрегат петцита и гессита, а избыток Au и Ag заполнял образующиеся микротрещины. Высокая пробность Au свидетельствует о том, что оно не могло образоваться вместе с гесситом и петцитом, а кристаллизовалось позже при низкой температуре (Бортников и др., 1988). Гелеобразное состояние теллурсодержащей

Te (*)	
ралери	
ий и сф	
оциаци	
AX acco	
е разні	
кварц	
зний в	
яключе	
дных в	
флюи	
UTLEHELX	
ивидуа	
цни йи	
дован	loe
х иссле	Двойн
чески	кинэд
идтэмс	жодота
и кри	е и мес
repmo-	орьско
ытаты 1	Сентя(
Резул	ления
ица 7.	прояв.
Табл	рудо

N <u>⁰</u> ⊓poбь	Тип включений**	и	$T_{ m rom},^{\circ}{ m C}$	$T_{_{ m 3BT}},$ °C	T _{IDI} . JIb.IIa, °C	$T_{ m III.CO2}, ^{\circ} m C$	$T_{\text{fom.CO}2}, ^{\circ}\text{C}$	Т _{пл. газгидр.} °C	С солей, мас. %-экв. NaCl	d , r/cm^3	P, 6ap	$rac{P_{ m obin}}{P_{ m H_2O}}$
	-				Pydo	проявление С	ентябрьское					
					Арсеноп	vundnu-undn	овая ассоциац	вni				
1	2 П	4	309	-36	-2.3	I	Ι	I	3.9	0.73	340	3.6
	1П	3	Ι	Ι	Ι	-58.4	23.9 T	I	I	0.23		
	2П	3	301	-36	-2.0	I	Ι	I	3.4	0.74	410	4.9
	1П	8	I	Ι	Ι	-59.5	23.6 T	I	Ι	0.23		
	2 П-В	4	274	-3635	-1.81.1	I	Ι	I	3.1–1.9	0.77-0.79	I	Ι
	2 B	6	190-155	-3628	-2.82.1	I	Ι	Ι	4.7–3.6	0.91 - 0.94	I	Ι
	2П	14	287	-33	-4.1	I	Ι	Ι	6.6	0.81	I	Ι
2	2П	7	261	-30	-0.5	I	Ι	I	0.9	0.78	I	I
	2 B	11	212-191	-2624	-1.30.9	I	Ι	I	2.2-1.6	0.87-0.89	I	Ι
б	2П	40	360-295	-3732	-5.21.1	I	Ι	I	8.1–1.9	0.58-0.80	I	Ι
	1П	3	360 F	Ι	I	-59.4	29.3 T	Ι	I	0.32	570	3.3
	1П	4	326 F	-30	-2.0	-57.7	25.0 T	8.0	4.0	0.24	410	3.5
	1 []	2	295 F	Ι	Ι	-58.2	24.3 T	I	Ι	0.23	310	4.2
	2 B	43	277-187	-3529	-4.31.7	I	Ι	I	6.9–2.9	0.78-0.93	I	Ι
4	2П	2	321	-33	-4.9	I	Ι	I	7.7	0.77	I	Ι
	2 П-В	9	237–213	-3330	-4.53.8	I	Ι	Ι	7.2-6.2	0.88-0.90	I	I
	2 B	13	206-176	-3221	-4.20.7	I	Ι	I	6.7–1.2	0.88-0.91	I	I
	_	-	_	-	IIonu	металлически	ая ассоциация		-	_	-	
2	1П	4	302	-24	-0.6	I	Ι	I	1.1	0.70	80	1.0
	2П	17	283—249	-26	-0.6	I	Ι	Ι	1.1	0.74 - 0.80	I	I
9	2П	21	291–262	-3526	-4.20.6	I	Ι	I	2.9–1.1	0.75-0.82	l	I
	2 П-В	9	242-235	-3129	-2.10.4	I	I	I	3.6-0.7	0.82 - 0.84	I	I

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 55 № 2 2013

136

НИКОЛАЕВ и др.

Таблиц	ца 7. Окончани	e										
№ Пробы	Тип включений**	и	$T_{ m rom},^{\circ} m C$	$T_{ m abr}, ^{\circ}{ m C}$	T _{IUI} . JILIA, °C	$T_{ m III.\ CO2}, ^{\circ}{ m C}$	T _{IOM} . CO ₂ , °C	Т _{пл. газгидр.} °C	С солей, мас. %-экв. NaCl	<i>d</i> , г/см ³	P, 6ap	$rac{P_{ m o6m}}{P_{ m H_2O}}$
					Золото-се	the standard the second standard the second standard standard standard standard standard standard standard stand	идная ассоци	вина				
٢	2П	9	315-290	-3330	-3.83.6	I	I	Ι	6.2-5.9	0.75-0.80	Ι	Ι
	2 П-В	20	286-283	-3128	-3.93.6	I	I	I	6.3-5.9	0.80 - 0.81	I	Ι
	2 B	3	209	-28	-3.6	I	I	I	5.9	0.90	I	I
8	2П	45	349–290	-3630	-4.21.7	I	I	I	5.3-2.9	0.69-0.78	l	I
	2П	5	332	-35	-3.7	I	I		0.9	0.72	380	3.0
	1 П	17	$332~\Gamma$	I	I	-58.2	23.4 Γ		I	0.22		
	2П	2	293	-34	-3.3	I	I	I	5.3		257	3.5
	1П	2	293 F	Ι	I	-58.0	17.9 F	I	I	0.18		
	2 П-В	15	289-263	-3733	-3.31.0	I	I	I	5.4-1.7	0.78-0.83	I	Ι
	2 B	30	235-175	-3632	-3.20.7	I	I	Ι	5.3-1.2	0.87-0.93	Ι	Ι
	_	-		-	W	есторожодени	е Двойное		_	_	_	
6	2 П-В	13	248-200	-3627	-2.30.3	I	I	I	3.9-0.5	0.80-0.90	I	Ι
	2 B	17	184-133	-3127	-1.70.3	I	I	I	2.9-0.5	0.90-0.95	Ι	Ι
10	2П	23	257-251	-3323	-2.00.5	I	Ι	Ι	3.4-0.8	0.80-0.83	I	Ι
	2 П-В	13	238-224	-32	-0.90.3	Ι	Ι	Ι	1.5 - 0.5	0.82-0.85	Ι	Ι
	2 B	9	181	-28	-0.5	I	Ι	Ι	0.8	06.0	Ι	Ι
11	2 П–В	4	209	-28	-0.5	Ι	Ι	Ι	0.9	0.86	Ι	Ι
	2 B	12	173–153	-2827	-0.60.3	I	I	I	1.1-0.5	0.93-0.90	Ι	I
Приме ^т вторичь	чание: * – включ ные; В – вторичн	ения е ibie. <i>n</i>	к сфалерите. * – количество	·* — 1 — газовые исследованны	е, 2 — двухфазоі х включений. Г	вые газо-жиди – гомогениз	кие. Генетичес ация в газовун	кий тип вкл о фазу.	очений: П – первич	ные включен	ия, П–В –	первично-

ЗОЛОТО-ТЕЛЛУРИДНАЯ МИНЕРАЛИЗАЦИЯ ЗАПАДНОЙ ЧУКОТКИ

137

Компоненты	Сентябрьское				Двойное		
	1	2	3	среднее	4	5	среднее
Макрокомпоненты, г/кг H ₂ O							
CO ₂	28.36	13.98	9.79	17.38	4.40	4.96	4.68
CH_4	0.43	0.03	0.06	0.17	0.13	0.06	0.10
Cl ⁻	2.56	1.89	0.31	1.585	0.10	0.15	0.13
HCO_{3}^{-}	0.50	0.02	2.11	0.88	1.46	0.46	0.96
Na	1.13	1.06	0.65	0.95	0.44	0.20	0.32
K	0.54	0.18	0.60	0.44	0.31	0.120	0.21
Ca	0.24	0	0	0.08	0	0	0
Mg	0.07	0.004	0	0.025	0	0	0
Микрокомпоненты, 10 ⁻³ г/кг Н ₂ О							
Р	1.97	1.46	4.6	2.67	1.34	0	0.67
As	7148	185	320	2551	226	1476	851
Li	8.74	3.87	5.17	5.92	3.89	6.63	5.26
В	608	266	365	413.3	199	75.6	137
Rb	2.27	0.46	0.92	1.22	1.47	0.26	0.87
Cs	2.41	0.52	0.16	1.03	0.79	0.26	0.52
Sr	20.9	0	0	7.00	0	2.41	1.20
Mo	1.74	0.96	3.12	1.94	0	0	0
Ag	0.57	0.002	0	0.19	0	0	0
Sb	0	86.4	272	119.4	95.3	233	164
Cu	0	1.97	0	0.66	0	0.07	0.04
Cd	1.73	0.08	0.29	0.70	0	0.45	0.23
Pb	0	0.02	0	0.01	0	3.06	1.53
Bi	1.02	0	0.014	0.35	0.01	0	0.006
Th	0.009	0	0	0.01	0	0	0
U	0.23	0	0.003	0.08	0	0	0
Ga	0.05	0.002	0	0.025	0	0	0
Ge	0.18	0.03	0.06	0.09	0	0.30	0.15
Ti	0.08	0.03	0.04	0.05	0.04	0	0.02
Mn	35.1	1.14	0	1.55	0	0	0
Fe	22.4	382	3.86	136.1	0	0	0
Co	0.33	0.01	0.02	0.12	0	0	0
Ni	1.64	0.43	0.64	0.90	0	0	0
V	0.009	0.011	0.113	0.04	0.044	0	0.022
Cr	0.015	0.17	0.77	0.32	0	0	0
Sn	0.086	0	0	0.03	0.019	0	0.01
Ba	6.92	0	0	2.31	0	0	0
Tl	0.015	0.003	0.027	0.015	0	0.002	0.001
REE	1.27	0.005	0.02	0.43	0.002	0.017	0.01
Na/K	2.1	6.0	1.1	3.1	1.4	1.6	1.5
CO_2/CH_4	66.0	411.2	166.0	214.4	33.8	81.3	57.6
CO_2/HCO_3	56.4	776.8	4.6	279.3	3.0	10.9	7.0
Cl/B	4.2	7.1	0.9	4.1	0.5	1.9	1.2
K/Rb	239.8	385.2	647.9	424.3	209.4	457.1	333.3
Cl/As	0.36	10.22	0.98	3.85	0.45	0.10	0.275

Таблица 8. Состав растворов флюидных включений в кварце из руд рудопроявления Сентябрьское и месторождения Двойное

Фиг. 16. Изменение температур (а) и концентраций солей (б) в ходе формирования минеральных ассоциаций на рудопроявлении Сентябрьское.

фазы, вследствие высокой вязкости, могло способствовать локальному повышению активности Те. U–Si-метагель описан в рудах месторождений Стрельцовского рудного поля (Алешин и др., 2007).

Существует и другая возможность формирования необычных срастаний гессита и петцита, т.е. распад твердого раствора [(Au, Ag)₂Te]. Локальная перекристаллизация руд приводила к ретушированию структур распада и формированию зернистых агрегатов гессита и петцита с обособлениями самородного Au.

Концентрация солей в рудообразующих флюидах рудопроявления Сентябрьское и месторождения Двойное сильно различается (фиг. 14). Такое различие характерно для эпитермальных золотосеребряных и золото-теллуридных месторождений (Simmons *et al.*, 2005 и др.). Состав растворов флюидных включений рудопроявления Сентябрьское и месторождения Двойное также различается, причем не только по основным компонентам, но

Фиг. 17. Изменение летучестей серы и теллура при смене полиметаллической ассоциации (1) золото-серебро-теллуридной ассоциацией (2) при 250°С. Поля устойчивости минеральных ассоциаций, по данным (Afifi *et al.*, 1988).

и по микроэлементам, набор которых существенно шире, а концентрации выше для флюида рудопроявления Сентябрьское (табл. 8, фиг. 15). Величины отношений, используемых в качестве геохимических индикаторов (K/Na, CO₂/CH₄, CO₂/HCO₃, Cl/Br, K/Rb/Cl/As), также заметно различаются для этих объектов (табл. 8). Золотосеребро-теллуридная минерализация рудопроявления Сентябрьского и малосульфидная золото-серебряная минерализацию месторождения Двойное сформированы разными гидротермальными флюидами. Эти флюиды явно связаны с магматической деятельностью, но с разными ее фазами. Вероятно, на рудопроявлении Сентябрьское формировалась долгоживущая многоэтапная порфирово-эпитермальная рудообразующая система с разными типами оруденения, модель которой представлена в работе (Sillitoe, 2010). Поэтому можно предполагать в Илирнейском рудном районе смену с глубиной эпитермального оруденения порфировым. Рудопроявление Сентябрьское можно отнести к субэпитермальному типу (Sillitoe, 2010).

Авторы проводили геохимические поиски на многих месторождениях и рудопроявлениях Северо-Востока России и располагают большим количеством анализов рудных образцов, в том числе с минералами Те разных ассоциаций из руд разных месторождений. На диаграмме Ag/Au–Se/Te

для геохимической классификации золото-серебряных месторождений Северо-Востока России и Камчатки (Николаев, Аплеталин, 1998), руды рудопроявления Сентябрьское попадают в поле золотых месторождений с минералами Те (фиг. 19а). Наблюдаемое в поле разделение золото-серебряных руд по отношению Se/Te отражает преимущественно вулканогенно-гидротермальный генезис золото-селенидных месторождений, в то время как золото-теллуридные — нередко обнаруживают пространственную (и, возможно, генетическую) связь с более глубинными магматическими очагами (Николаев, Аплеталин, 1998).

Для золото-теллуридных руд в целом характерны пониженные содержания As и Sb и повышенные – Pb и Zn. Это отражено на фиг. 196 в более низких значениях геохимического показателя (AsSb/PbZn). Золото-теллуридные объекты на диаграмме (фиг. 18а) концентрируются в двух обособленных группах: 1) золото-теллуридные месторождения Камчатки (Агинское, Озерновское) с разнообразными теллуридами Au; 2) рудопроявление Сентябрьское, золото-серебро-теллуридные и теллурсодержащие месторождения ОЧВП с преобладающим петцитом. Основное геохимическое различие между этими группами заключается в большей величине отношения Аg/Au и содержаний Pb и Zn в последних.

Наиболее близки по составу к рудам рудопроявления Сентябрьское — руды месторождения Весеннее, которое приурочено к периферической части Находкинской медно-порфировой системы и, по результатам последних исследований, отнесено к эпитермальному IS-типу (Николаев и др., 2011). В результате минералогических исследований установлено, что в рудах месторождения основной минерал Ag, находящийся в тесном парагенезисе с Au, — гессит, в небольших количествах встречаются петцит и самородный Te. Золото-гесситовая минеральная ассоциация обнаружена в эпитермальных рудах других участков Находкинского рудного поля (Прямой, Малыш).

В последнее время (Горячев и др., 2010) появились новые данные о более широком развитии золото- и серебро-теллуридной минерализации как на известных, так и недавно выявленных золотосеребряных рудопроявлениях в Анадырском секторе ОЧВП, что подтверждает мнение авторов о его слабой изученности и о возможности выявления промышленных месторождений этого типа.

Нашими исследованиями при проведении ревизионных работ установлено ее присутствие в рудах рудопроявлений Кайэнмываамской площади (Телевеем, Маюль, Срединный, Арыкеваам). На рудопроявлении Телевеем золото-серебро-теллуридная минерализация, представленная петцитом, креннеритом, гесситом и волынскитом, играет существенную роль в рудах Южной группы жил, где содержания Те составляют 120– 1460 г/т, Au – 6–35 г/т, Ag – 160–1300 г/т.

Фиг. 18. Ветвящиеся прожилки Au в гессит-петцитовом агрегате. а, б – изображение в отраженном свете; в, г – изображение в отраженных электронах. Pz – петцит, Au – золото самородное, Hs – гессит, At – алтаит, Gl – галенит, Q – кварц.

В составе золото-серебро-теллуридных руд месторождений ОЧВП на диаграммах (фиг. 19а, 19б) прослеживается определенный тренд возрастания отношения Se/Te с увеличением отношения Ag/Au и содержаний Pb и Zn. На изученных месторождениях это связано с уменьшением в рудах количества петцита и других теллуридов Au, вытесняемых гесситом на фоне роста содержания сульфидов Pb, Zn и Cu. В сульфидах, особенно в галените, наблюдается развитие различных минералов Se, увеличение концентраций которого определяет увеличение отношения Se/Te.

Следует отметить, что выявленный тренд изменения соотношений между элементами соответствует вертикальной зональности: приуроченности теллурсодержащих месторождений с более высоким отношением Ag/Au этой группы (Весеннее, Прямой) к интрузивным телам порфирового типа. Золото-серебро-теллуридные месторождения локализованы в вулканических постройках, под которыми можно прогнозировать невскрытые порфировые интрузивы.

Геохимическое сходство этих объектов, их пространственная связь с интрузивными и субвулканическими фациями магматических комплексов позволяет предположить, что золото-серебро-теллуридные руды проявления Сентябрьское, как и руды месторождения Весеннее, сформировались в эпитермальный этап развития порфирово-эпитермальной системы. Признаки существования такой системы на глубине — широкое распространение Си-минералов, их большое разнообразие в эпитермальных рудах и недавние находки собственно медной (с борнитом) и молибденовой минерализаций в окрестностях рудопроявления Сентябрьское.

Можно полагать, что уровень эрозионного среза рудопроявления Сентябрьское, учитывая широкое развитие и разнообразие теллуридов, более высокое отношение Au/Ag и низкое – Se/Te, является незначительным. На более глубоких горизонтах можно ожидать переход к золотосеребро-полиметаллическим рудам с меньшим, количеством теллуридов Au, их вытеснением теллуридами Ag и появлением минеральных парагенезисов, сходных с теми, которые преобладают на месторождении Весеннее.

С другой стороны, известно, что месторождения с минералами Те генетически связаны с калиевым магматизмом (Richards, 1995; Jensen, Barton, 2000 и др.). Видимо, не случайна пространственная связь рудопроявления Сентябрьское с обога-

Фиг. 19. Диаграмма Ag/Au – Se/Te для содержащих минералы Te руд золото-серебряных месторождений и рудопроявлений Камчатки и Чукотки.

Поля развития разных типов руд: І – селенидные и селенистые; ІІ – теллуридные (сильванит-калаверитовые); ІІІ – теллуридные (петцит-гесситовые).

1–8, 13 – месторождения: *1* – Клен, *2* – Двойное, *3* – Асачинское, *4* – Аметистовое (*a* – золото-серебряные малосульфидные руды), *5* – Купол, *6* – Родниковое, *7* – Озерновское, *8* – Агинское, *9* – Телевеем, *13* – Арыкеваам.

9–12 – рудопроявления: *10* – Сентябрьское (*a* – золото-серебро-полиметаллические руды, *б* – золото-серебро-теллуридные руды), *11* – Весенний, *12* – Прямой.

щенными калием магматическими породами илирнейского комплекса. Состав турмалина из метасоматитов рудопроявления Сентябрьское похож на состав турмалина руд месторождения Дарасун (Baksheev *et al.*, 2011), которое также связано с калиевыми гранодиорит-порфирами. Поэтому можно предположить, что наиболее перспективны для обнаружения золото-теллуридного оруденения на Чукотке будут районы развития среднего и кислого щелочного магматизма калиевой специализации.

выводы

1. В рудах золото-теллуридного рудопроявления Сентябрьское (Западная Чукотка) установлены: петцит, гессит, алтаит, колорадоит и парателлурит. В сфалерите обнаружены высокие концентрации Сd, свидетельствующие о магматическом источнике рудообразующего флюида.

2. Данные исследования флюидных включений в минералах руд показали, что золото-теллуридная минерализация рудопроявления Сентябрьское и малосульфидная золото-серебряная минерализация месторождения Двойное формировались флюидами разной природы. Комплекс исследований показал многостадийность гидротермального рудообразующего процесса в Илирнейском рудном районе и его связь с порфировоэпитермальной системой.

3. Показана связь золото-теллуридной минерализации Илирнейского района с щелочным магматизмом. Предполагается, что наиболее перспективны для обнаружения золото-теллуридного оруденения на Чукотке будут районы развития среднего и кислого шелочного магматизма калиевой специализации. Одним из поисковых признаков такой минерализации может служить повышенная (выше 5 мас. %) соленость флюидов во флюидных включениях в гидротермальном кварце.

4. Минералого-геохимические особенности руд рудопроявления Сентябрьское свидетельствуют об их принадлежности к среднему уровню порфирово-эпитермальной системы и перспективности изучения его глубоких горизонтов.

БЛАГОДАРНОСТИ

Авторы выражают благодарность М.В. Борисову за полезное обсуждение статьи и конструктивные замечания.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты 11–05–00571-а и 12–05–01083-а) и компании "ГЕОХИМПОИСКИ СВ".

СПИСОК ЛИТЕРАТУРЫ

Алешин А.П., Величкин В.И., Крылова Т.Л. Генезис и условия формирования месторождений уникального молибден-уранового Стрельцовского рудного поля: новые минералого-геохимические и физико-химические данные // Геология руд. месторождений. 2007. Т. 49. № 5. С. 446–470.

Бакшеев И.А., Плотинская О.Ю., Япаскурт В.О. и др. Турмалин месторождений Биргильдинско-Томинского рудного узла, Южный Урал // Геология руд. месторождений. 2012. Т. 54. № 6. С. 540–556.

Бетехтин А.Г. Гидротермальные растворы, их природа и процессы рудообразования // Основные проблемы в учении о магматогенных рудных месторождениях. М.: Изд-во АН СССР, 1955. С. 125–278.

Борисенко А. С. Изучение солевого состава газо-жидких включений в минералах методом криометрии // Геология и геофизика. 1977. № 8. С. 16–27.

Бортников Н.С. Геохимия и происхождение рудообразующих флюидов в гидротермально-магматических системах в тектонически активных зонах // Геология руд. месторождений. 2006. Т. 48. № 1. С. 1–26.

Бортников Н. С., Крамер Х., Генкин А. Д. и др. Парагенезисы теллуридов золота и серебра в золоторудном месторождении Флоренсия (Республика Куба) // Геология руд. месторождений. 1988. № 2. С. 49–61.

Волков А.В., Прокофьев В.Ю., Савва Н.Е. и др. Особенности рудообразования на золото-серебряном месторождении Купол, Северо-Восток России (по данным исследования флюидных включений) // Геология руд. месторождений. 2012. Т. 54. № 4. С. 350–359.

Горячев Н.А., Волков А.В., Сидоров А.А. и др. Аи-Аg-оруденение вулканогенных поясов Северо-Востока Азии // Литосфера. 2010. № 3. С. 36–50.

Гричук Д.В. Отношение Cd/Zn как индикатор вклада магматических флюидов в питание гидротермальных систем // Тез. докл. VII междунар. конф. "Новые идеи в науках о Земле". М.: 2005. Т. 2. С. 83.

Калюжный В.А. Основы учения о минералообразующих флюидах. Киев: Наук. думка, 1982.

Коваленкер В.А., Наумов В.Б., Прокофьев В.Ю. Минералого-геохимические закономерности и *PT*-парамет-

ры формирования продуктивных минеральных ассоциаций Кочбулакского рудного поля // Геология руд. месторождений. 1988. № 1. С. 38–52.

Коваленкер В.А., Прокофьев В.Ю., Левин К.А., Залибекян М.А. Физико-химические условия формирования сульфидно-теллуридной минерализации Меградзорского рудного поля в Армении // Геология руд. месторождений. 1990. Т. 32. № 6. С. 18–35.

Кряжев С.Г., Прокофьев В.Ю., Васюта Ю.В. Использование метода ICP-MS при анализе состава рудообразующих флюидов // Вестн. МГУ. Сер. 4. Геология. 2006. № 4. С. 30–36.

Николаев Ю.Н., Аплеталин А.В. Геохимические поиски месторождений золота в условиях Камчатки // Геохимические и геофизические методы при поисках полезных ископаемых. Александров: ОМЭ, 1998. С. 59–71.

Николаев Ю.Н., Читалин А.Ф., Калько И.А. и др. Новые данные по геологии, минералогии и геохимии Находкинской золото-молибден-медно-порфировой системы // Тез. докл. науч. конф. "Ломоносовские чтения". М.: МГУ, 2011. http: // geo.web.ru/db/msg.html?mid= 1186049&uri=nikolaev.html.

Прокофьев В.Ю. Типы гидротермальных рудообразующих систем (по данным исследования флюидных включений) // Геология руд. месторождений. 1998. № 6. С. 514–528.

Прокофьев В.Ю., Зорина Л.Д., Коваленкер В.А. и др. Состав, условия формирования руд и генезис месторождения золота Талатуй (Восточное Забайкалье, Россия) // Геология руд. месторождений. 2007. Т. 49. № 1. С. 37–76.

Реддер Э. Флюидные включения в минералах. М.: Мир, 1987. Т. 1, 2.

Afifi M. A., Kelly W. C., Essene E. J. Phase relations among tellurides, sulfides and oxides: II. Applications to telluride-bearing ore deposits // Econ. Geol. 1988. V. 83. P. 395–404.

Baksheev I.A., Prokof'ev V.Yu., Zaraisky G.P., et al. Tourmaline as a prospecting guide for the porphyry-style deposits // Europ. J. Mineral. 2012. V. 24. № 6. P. 957–979.

Baksheev I.A., Prokof ev V.Yu., Yapaskurt V.O. et al. Ferriciron-rich tourmaline from the Darasun gold deposit, Transbaikalia, Russia // Canad. Mineralogist. 2011. V. 49. P. 263–276.

Baksheev I.A., Tikhomirov P.L., Yapaskurt V.O. et al. Tourmaline of the Mramorny tin cluster, Chukotka Peninsula, Russia // Canad. Mineralogist. 2009. V. 47. P. 1177–1194.

Bodnar R.J., Vityk M.O. Interpretation of microterhrmometric data for $H_2O-NaCl$ fluid inclusions // Fluid inclusions in minerals: methods and applications. Pontignano: Siena, 1994. P. 117–130.

Bonham H.F.-Jr. Models for volcanic-hosted epithermal precious metal deposits: a review // Intern. volcanological congress. Symposium 5. Proceedings. Hamilton, New Zealand, 1986. P. 13–17.

Brown P. FLINCOR: a computer program for the reduction and investigation of fluid inclusion data // Amer. Mineralogist. 1989. V. 74. P. 1390–1393.

Cathelineau M. Cation site occupancy in chlorites and illites as a function of temperature // Clay Minerals. 1988. V. 23. P. 471–485.

Cooke D.R., Mc Phail D.C. Epithermal Au–Ag–Te mineralization, Acupan, Baguio District, Philippines: numerical simulations of mineral deposition // Econ. Geol. 2001. V. 96. P. 109–131.

Heald P., Foley N.K., Hayba D.O. Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types // Econ. Geol. 1987. V. 82. № 1. P. 1–26.

Hedenquist J.W., Lowenstern J.B. The role of magmas in the formation of hydrothermal ore deposits // Nature. 1994. V. 370. P. 519–527.

Hedenquist J.W., Arribas A. Jr., and Gonzales-Urien E. Exploration for epithermal gold deposits // Gold in 2000. Rev. Econ. Geol. 2000. V. 13. P. 245–277.

Henry D.J., Novák M., Hawthorne F. et al. Nomenclature of the tourmaline-supergroup minerals // Amer. Mineralogist. 2011. V. 96. P. 895–913.

Jensen E.P., Barton M.D. Gold deposits related to alkaline magmatism // Gold in 2000. Rev. Econ. Geol. 2000. V. 13. P. 279–314.

Lindgren W. Mineral deposits. 4th ed. N.Y.: McGraw-Hill, 1933.

Pals D.W., Spry P.G. Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji // Mineralogy and Petrology. 2003. V. 79. P. 285–307.

Prokofiev V.Yu., Garofalo P.S., Bortnikov N.S. et al. Fluid inclusion constraints on the genesis of gold in the Darasun district (Eastern Transbaikalia), Russia // Econ. Geol. 2010. V. 105. № 2. P. 395–416.

Prokofiev V.Yu., Zorina L., Kovalenker V., Krasnov A. Tellurides of the Darasun gold deposit (Eastern Transbaykalia, Russia) and their formation conditions // Au–Ag–Te–Se deposits. IGCP-486. Proceed. of the 2006 Field Workshop Izmir-Turkey.Izmir: Eylül, 2006. P. 145–147.

Richards J.P. Alkalic-type epithermal gold deposits – a review // Magmas, fluid and ore deposits. Short course ser. mineralogical association of Canada.: Vancouver, 1995. V. 23. P. 367–400.

Sillitoe R.H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region // Australian J. of Earth Science. 1997. V. 44. P. 373–387.

Sillitoe R.H. Porphyry copper systems // Econ. Geol. 2010. V. 105. P. 3–41.

Sillitoe R.H., Hedenquist J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits // Society of Econ. Geol. Special Publ. 2003. V. 10. P. 315–343.

Simmons S.F., White N.C., John D.A. Geological characteristics of epithermal precious and base metal deposits // Econ. Geol. 2005. 100th Anniversary Volume. P. 485–522.

Spry P.G., Scherbath N.L. Vanadium silicates and oxides in the Tuvatu gold-silver telluride deposit, Fiji // Mineralogy and Petrology. 2006. V. 87. P. 171–176.

Sung Y.H., Ciobanu C.L., Pring A. et al. Tellurides from Sunrise Dam gold deposit, Yilgarn Craton, Western Australia: a new occurrence of nagyagite // Mineralogy and Petrology. 2007. V. 91. P. 249–270.

Voudoris P. A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeast Greece // Mineralogy and Petrology. 2006. V. 87. P. 1438–1468.