If the number of revolutions in the interval T* is désig—
nated as N, then from (45) and (46) we find

N=2nK/xno.

In case "a" we will have, with the help of Egs. (18)
and (21),

N=BK/apA (p'+q"), (47)
where
m, 16 qr 3 1+e’ %
=it B=5 () (=)
'mo a (]

and m, is the mass of the central body.

The equations for the other cases can be written sim-
ilarly. Thus, in case "d" we have

N=BK/2npAYpq, (48)

while in case "c" the equation for N has the same form
as (47).

The behavior of N as a function of h for A = 0.1, e' =
0.6, and ¢ =1 is shown in Fig. 4. It is seen from Fig. 4
that in the given case for the majority of initial conditions
the period of variation of the eccentricity (left branch of
the curve) and the hitting time (right branch of the curve)
comprise 100-200 revolutions of body P about the central
bOdy Po.

'E. P. Aksenov, Astron. Zh. 56 (1979) [Sov. Astron. 23, (1979)].
2Yu. S. Sikorskii, Elements of the Theory of Elliptic Functions with Appli-
cations to Mechanics [in Russian] Ob'ed, Nauch, Tekh, Izd, (1936),
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The existence of generating solutions which correspond to a new family of periodic solutions in the
problem of the translational-rotational motion of a rigid body in the gravitational field of a sphere is
demonstrated and a qualitative analysis of them is given. The solutions found are called solutions of the
third kind and correspond to three-dimensional periodic motions of the bodies in a moving coordinate
system rotating together with the line of nodes of the orbit in the Laplace plane. The analytical
conditions for the existence of solutions of the third kind are studied for all possible cases of
commensurability between the mean velocity of the orbital motion and the angular velocity of rotation of
the body. A geometrical and dynamic interpretation of the corresponding generating solutions is given.

PACS numbers: 95.30.5f, 95.10.Ce

INTRODUCTION

Reports of the author? ¢ have been devoted to the study
of Poincaré periodic solutions! in the problem of the trans-
lational —rotational motion of two rigid bodies whose ele-
mentary particles interact by Newton's law. In these re-
ports the investigation of periodic solutions is based on the
use of equations of translational —rotational motion in De-
launay — Andoyer, canonical, osculating elements, which
are obtained for the problem under consideration as a par-
ticular case from the general equations for the problem of
n rigid bodies. ®

The plane translational —rotational motion of a tri-
axial body in the gravitational field of a sphere was con-
sidered in Ref, 2. The periodic solutions found in that re-
port actually comprise the periodic solutions of the sec-
ond kind (in Poincaré's terminology) for the problem being
considered here. In Ref, 3 the results were generalized
to the case of the plane, translational —rotational motion
of two rigid bodies possessing a common plane of dynamic
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symmetry. Periodic motions of a three-dimensional char-
acter in the problem of the motion of an axisymmetric
rigid body in the gravitational field of a sphere were con-
sidered in Ref, 4.

In each of the enumerated reports the analytic condi-
tions for the existence of Poincaré periodic solutions were
obtained and they were analyzed qualitatively and numer-
ically in the most interesting cases from a practical as-
pect.

In the present report such an analysis is extended to
periodic solutions of the third kind in the problem of the
translational —rotational motion of a rigid body in the
gravitational field of a sphere.

The conditions for the existence of periodic solutions
satisfying two types of commensurabilities are studied in
detail: I) N'n'= 2n, II) N'n' = n, where n' is the mean
orbital motion, n is the mean rotation rate of the sphere,
and N' is a whole number. The main relationships de-
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scribed by the corresponding generating periodic solu-
tions are formulated. The general and specific properties
are noted for the cases of commensurabilities I) and ).

1. EQUATION OF MOTION

Let us consider the translational —rotational motion
of a rigid body M; under the action of the gravitation of a
uniform sphere M;. We designate the masses of these
bodies as m; and m, and the principal central moments of
inertia of body M; as A = B » C.

Let Oxyz be a relative Cartesian coordinate system
with the origin at the center of mass O of the sphere and
with axes maintaining a constant orientation in space;
O;xyz’is a coordinate system with the origin at the center
of mass O; of body M; whose axes are parallel to the like
axes of the coordinate system Oxyz; Oy£n¢ is a moving
coordinate system whose axes are directed along the prin-
cipal central axes of inertia of the body, with the principal
central moments of inertia A, B, and C corresponding to
the axis of inertia O;¢, O;n, and Oy.

The relative translational —rotational motion of body
M, is described by the Delaunay — Andoyer, canonical,
osculating elements®

LG H,LGHUV, ¢ IIgh, ™

where L!, G', H', I', g', and h' are the Delaunay elements:
L'= Vu'g', I'is the mean anomaly, G'= Vu'd(l ~ e'z), g'
is the angular distance to the pericenter of the orbit, H' =
G'cosi', h' is the longitude of the ascending node of the
orbit, ¢' is the semimajor axis, e' is the eccentricity, i'
is the inclination of the orbital plane to the principal Oxy,
p'=fmgm,v!, v' = mgm, /(m, + m,), and { is the gravita-
tional constant; L, G, H, 7, g, and h are the Andoyer ele-
ments: G is the magnitude of the vector G of the angular
momentum of the rotational motion of the satellite, L is
the projection of the vector G onto the O;¢ axis of the
body, H is the projection of the vector G onto the O,z axis,
1 is the angle of the proper rotation of the satellite
reckoned from the intermediate plane P normal to the
vector G, g is the longitude of the ascending node of the
plane O;¢n of the body at the intermediate plane, and h

is the longitude of the ascending node of the intermediate
plane at the principal plane O;xy. We also introduce into
the analysis the quantities 9 andp through the equations
L =Gcos 9 and H= Gcosp. Consequently, ¢ is the in-
clination of the plane O,¢n of the body to the intermediate
plane and p is the inclination of the plane P to the princi-
pal plane O;xy.

In accordance with the general results of Ref. 5, the
equations of motion of bodies M, and M, in the variables
(1) have the form

(L', G H',L,G,H) oF
dt T T, g W, 1,8 k)’

A, g K, Lgh) oF 2
dt T Te(’,G,H,LGH

where F is the characteristic function of the problem, ex-
pressed through the elements (1) using the equations of
the unperturbed motion: ’
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F=F(L,1 G, H, L, G, H,V, gly h—F, 1 g)' 3)

Equations (2) admit of an energy integral and three area
integrals:

- F=c, (4

YG —H"sin h’+YG*—H* sin h=c;, (5)
YG"—H" cos h'+VG*—H* cos h=c;, (6)
H+H=c, I

where c,, c,, C3, and ¢, are arbitrary constants. The area
integrals (5)-(7) are used to reduce the order of Egs. (2).
For this we take the fixed Laplace plane, for which c, =
¢y =0 and ¢, = ¢, as the principal plane Oxy. Then Egs.
(5)-(7) are written in the form

.H’=‘/zc+t/zc_l (G,’_Gl) ) Ii:t/zc-‘/lc_i (Gn—'G') ’ (8)
h—h'=mn.
Equations (8) allow us to eliminate the variables h', h,
H', and H from the right sides of Egs. (2). For the vari-
ables G' and G contained in F, after this elimination, we
introduce the new designations G'= ['and G = . Then
(see Ref. 4) the equations for the variables L', I'", L, I,
i, g', I, and g form an independent system of equations
which retains the canonical form

(L, T,LT) 0K
dt ar,g.lLe’ dt

ot,g\lg) _ 0K
a(L'T,L,T) '
9)

where K is the approximate value of the characteristic
function of the problem, defined by the equation

K=K,+0K,. (10)
Here
Ko=p"/2v'L"—T2/24 (11)

is the principal part of the Hamiltonian corresponding to
the chosen unperturbed motion in which the center of mass
of body M; describes a Keplerian elliptical orbit while the
body itself rotates as a uniform sphere with a constant
angular velocity relative to an axis fixed in space; 0K,
are terms of first order relative to the small parameter
o, which are identified with the part of the kinetic energy
of the rotational motion of the body due to the difference
of this body from a sphere with a central moment of in-
ertia A and with the second harmonic of the force function.
In this case the remaining terms of the function K repre-
sent terms of higher order relative to the parameter g,
for which one can take the quantity ¢ = max {|A — Bl /A,

|A — C|/A} on the basis of the assumption that the ellip-
soid of inertia of body M, is close to that of a sphere. We
represent oK; as a function of the elements L', I'', L, I,
1',g', 1, and g using the trigonometric expansion

6K, =—*/(2/C—1/A—1/B) G* cos* 0—'/,(1/A—1/B) G* sin® § cos 2]
FAZUn, b, b, 10 (0, T, €, 8) cos (kb +h,g +Eil+k.g), (12)

where the summation is carried out over the indices k,(0,
o), ky(0, £ 2), k3(0, *2), and k,(0, + 1, + 2) while the coef-
ficients Uk k,k,.k, 28 explicit functions of the variables
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6, J, and e’ and the parameter 6 are defined by the equa-
tions

U..&.o.o=‘/z(1—’/zsin‘ e) (1—3/zsin2 ]) (1—26)0,_”,
lja.o.zs.u:—x/ssill.2 0(1—’/zsin’ ]) C‘_s,o,

U,o0v=—1/1s8in 20 sin 2J (1—26)C, >,
U, o2e0v—=—"/5(11€v cos 0)sin? JC,>° |
U, o02v="/1s5in* 05in* J (1~28)C, >,

U..0.20e0=—"/1sev sin 2J sin 6 (1+ev cos 0)C,*° s

!.l),

U, 200 5v="/5, 8in* 8 (1—pv cos J)>(1—28) (C, " *+pS,7*%)

(13)

Ut.2u.2m‘l=_9/u sin? 0 sin® ](C.—!.z_l_us‘

Uszpzeav=—"/s(1F&v cos 0)*(1—pv cos ) *(C,**+pS,”**),
U, zuov="/145inJ sin 20 (cos J—pv) (1—28) (C,**+pS,™*),
U 2uzev="/1s&v 8in 8 sin J (1+ev cos 8) (cos J—pv) (C, " +pS,*?),
Ui ano.0="/s(1—"/. sin* 0)sin? J (1—28) (C; " +p8,”*?),

where for brevity of writing we introduce the notation p =
+1,e = +1,and v = + 1 while s takes the values 0, 1, ...,
003

A="/sfm,(A—B)/[a®>, 6=(A—C)/(A—B).

The coefficients Cg-%, C3%?, and S5%? are known functions
of the eccentricity e' = J L' — 1''%/1', while the quantities
0, J, and o' are defined by the equations

cos 0=L/T, J=p+i,
cos J=(c*—I"-T*) /2T, o’=L"/p .

Equations (9) admit of the integral K = const, After inte-
gration of Eqs. (9) the variables h', h, H', and H are cal-
culated from Egs. (8) using the quadrature

oF
_ 14
h JaHdt + const. (14)

Henceforth we will study periodic solutions of the equa-
tions which can be called solutions of the third kind in
Poincaré's terminology. We note that these periodic solu-
tions, generally speaking, will not correspond to periodic
motions of bodies in space but will describe the periodic
motions of bodies in a moving coordinate system rotating
in the Laplace plane with an angular velocity h = —8F/ dH.

2. POINCAR]:J PERIODIC SOLUTIONS OF THE THIRD
KIND
According to Poincaré's theory,! the conditions for
the existence of periodic solutions of Egs. (9) have the
form

H(K) v 10, A)
[K.1/9g,' =0 K.]/0l,=01K,1/0g:—~0, B)
9[K,1/0L,=0, C)

[ K,1/aTy'=0, D)

H(IED) w10 0, 20,700, E)

where L', Lo, I'y's Tgs Ly's 19 8¢'» and gg are arbitrary
constants of the periodic generating solution of period T
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obtained as a result of the integration of Egs, (9) with
o= 0:

L'=Ly, I"=Ty, L=L,, T=T,,

UV=n't+l,, g'=g/, =L, g=nttg,,
nl=p'n/v/L°n’ n=I‘o/A, L
Kn'—=kn, T=2nk'/n=2nk/n’, (15

and k' and k are integers, In the conditions B)-E) [K] is
the Poincaré-averaged function K;:

1 ¢ ’ ’ s r ’
(K= j' K (Ly'Ty' LiTon't+1,’ g, lont+g,) dt. (16)
) 0
Since (16) is determined differently in the cases of
commensurabilities I) and II), which are of practical in-
terest in the given problem, we will study the conditions
of existence A)-E) separately for these cases.

In case I), which corresponds to the actual motion of
Mercury (N' = 3), the function [K;] is determined by the
equation

o[K,]=—"/.(2/C—1/A—1/B) G:* cos® 8,—*/, (1/B—1/4)
XGy? sin® 8, c08 2L HALUs o.0.6+2U, 02,0 cos 2L,
+UN'.0.0.—2 Ccos (N’lo’—zgo) +UN',o‘z__z cos (Nl°'+2la—2go)
FUxro.-2.-2€08 (Nl —200—2g,) +Ux+ 5.0z cos (NI
+2g,"—2g) +Un+.—20.-2 cOS (Nl —2g,/—2g,)
FUnr 22208 (N1 +28,"+2l:—28)) + Uy _2.2.—5 cos (NI,
—2go,+2lo“2go) +Uyi5.—2.—2€08 (N’lo’+2go’—2lo——2gn)
FUn'—2.-2.—2 cOs(N'ly—2g,"—21,—2g,) 1.

Here the coefficients Uk, k,.k,.k, are calculated from Egs.
(13) with the generating values of the variables 9y, Jy, €',
and iy' (henceforth we will omit the indices for brevity).

The condition A) is written the same way for both
cases of commensurability and is clearly satisfied, since

3p"

H(KO) lh.ra= AVILI‘ ¢0

By solving Egs. B) we find the generating values of the
angular quantities:

1,/=0, g’=0, Ysn, m, */m; L=0, e, m, */sm;

g=0, '/om, m, */am. an

The solution g,' = 0, 1/21r, T, 3/21 means that the direction
toward the pericenter of the elliptical generating orbit
either coincides with the line of intersection of the inter-
mediate plane P with the orbital plane (g,' =0, ) or is
orthogonal to this line (gy' = !/,m, 3/,7). The solution I’ =
0;14=0,,m, m,%/,m gy=0,/,m, m,3/,7 means that at
the moment of passage through the pericenter of the orbit
body M, occupies positions such that one of its axes of in-
ertia either coincides with the line of apsides or is orthog-
onal to it,

With allowance for the generating values found for the
angular variables (17), we can write the condition C) in ex-
plicit form. We will have

cos 8® (J, 6, ') =0, (18)
where
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©J,5,¢)= (%) [(2/C—1/A—1/B)—e,(1/B—1/4)]

+(1—28+e,) {— (158> 1) C; " +Y/,sin* JCx" e,
007" (1 +cos?T)+2cos ISy 1eses).

Here we introduce the new notation ¢, = cos 2ly= 21, ¢,=
cos2gy, =+ 1, and g; = cos 2gy' = + 1. Equation (18) gives
the generating solution § = ¥/,

The solution (17) and 6 = !/,7 means that one of the
planes O;£¢ or Oynt of the body coincides with the inter-
mediate plane P. The solution I, =0, !/,x, , 3/,71; 0 =
1/,7 means that the vector G is fixed in the body and coin-
cides with one of the axes of inertia Oyn or O;¢ of the
body. o

The choice of the generating values of e, J, i', and 6
is determined by the condition D), which is equivalent to
three other equations:

1—e?d(K,] LOLK]
e " de —ctgi a7 _'01 (19)
Yu'a’ (1—e”) cosi’+T cos p=c, (20)
T (1—o") sin i'~T'sin p=
Yu'a’ (1—e”) sin i’'—T sin p=0. (21)

Equations (19)-(21) allow us to determine the generating
values of i', p, and c as explicit functions of the generating
values of e' and 6 in a finite form (without resorting to the
construction of solutions in series form). Here we assume
that the quantities e' and I' entering into (19)-(21) are
given by the relation I, i.e.,

N2 v L*=2T/A,
where N! is an odd number,

As the end result we will have

So+8,c*+8,¢4=0, (22)
. { w'a’ (1—e’?) +c*—I* }
== arc cos P ————
2¥u'a’ (1—e?)c
(23)

—p'a’ (1—e) +c+T? }

p== arc cos { 2T

In Eq. (22) Sy, Sy, and S, are known functions of the quan-
tities e', 5, €4, &, and g, After the generating values of
¢ are calculated, the values of p and i' are determined by
Egs. (23), which follow directly from the area integrals
(20) and (21). A numerical analysis of the solution (22),
(23) allows us to establish the presence of solutions of
the third kind, For this the final condition for existence
is reduced to three others:

®(J, ¢, 8)=+0, &*[K,1/oT"*+0, H(IK\]) &', 1, «O0- (24)

A study of the conditions (24) shows that they are sat-
isfied for the generating solutions determined by (17),
(18), (22), and (23).

Analogous arguments are easy to carry through for
the case of the commensurability II), corresponding to
the motion of synchronous satellites like the moon. This
case has its specific properties, however.

The function [K;] is determined by the equation
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6K ]1=—1/.(2/C—1/A—1/B) G,? cos® B,—*/, (1/B—1/4)G?
Xsin® 0y cos 21, FAZU ,x+ 4y 1, —s COS [s(Nl—go) +kags +Eslo],

where the summation indices take the values s(0, 1, 2),
k,(0, + 2), and k4(0, +2) while the coefficients UgNr Jo k.-
are calculated from Egs. (13) with the generating values
of the corresponding variables,

In this case Eqs. B) admit the solutions

I/'=0; g'=0, Y/;n, n, */om; L,=0, */,m, n, /.;; g,=0, n. (25)

The solution gy' = 0, !/,7, 7,3 /,m means that in the gen-
erating solution the line of apsides either coincides with
the line NN' of intersection of the intermediate plane with
the orbital plane (g,' = 0, 7) or is orthogonal to this line
®' = 1/,m, 3/,m). The solution g, = 0, 7 means that the
equatorial plane of the body intersects the line NN',

It is more convenient to write the conditions C) and
D) relative to the generating values of the variables 9, i’,
p, J, and I together with the two area integrals and the
condition of commensurability II). We will have the fol-
lowing system of equations:

1/sin 09[ K,]/80=0, (26)
1—e29[K,] LO0[K,]

g . ctgi Y 0, (27)
Vu:a’(i——e"‘) cos i’+T cos p=c, 28)
Yu'a’ (1—e™) sin i’—T sin p=0, (29)

NYW/va™*=T/A, J=i'+p, (30)

where (K], with allowance for the solutions (25), can be
written in the form

o[K,]=Alv]tesr[w],
where

[v]=vitew tev.te e,
[wl=w,tew,te,w.+e.e.w,,.

Here we introduce the notation g, = cos 21, €5 = cos 2g,',
and g; = cos gy, while the coefficients vy, vy, ..., Wy, are
determined by the equations

riy, 3 ., 3 L Nmso, 3 s
v.,—[ 2(1 2s,m 9)(1 Zsm J)C0 +Esm 0 sin ]le

3 . 3 ~s0 3 . .y
v,=——Tsm’9(1~-2—sm’])C°“—H}—(1+cosz())smzlcz,’p°

5 (3

B %—) sin® 6,

V=", in% 0 (1—26) [ (1+ cos* /) Co” +2 cos ISay-” ],
Vir=—"/1s(1+ c0s?8) [ (1+ c0s? /) Con+"* —2 cos ISon'" 1,
wo=—-"/1s8in 27 5in 20 (1—28)C5"",
w,=—1/,s sin 2J sin 26C5" ",
w,=%/, 5in 20 sin J (1—26) (cos JC *+S5"%),
w="/ysin 20 sin J (cos JCp- +Sx" ).
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Equations (26)-(30) cannot be solved rigorously in fi-
nite form relative to the generating values of c, i', p, and
6 as explicit functions of e', 6, u', ¢!, I, and A like the
way this was done in case I. Therefore, we must resort
to some approximate method to solve Eqs. (26)-(30).

Let us indicate one possible means of solving Egs.
(26)-(30). For a number of celestial bodies whose mean
motions n' and n satisfy the condition of commensurability
1I) the quantities p, i', and e' can have small values (in the
case of the moon, for example). Then the function {w] has
the order of smallness Je' in comparison with the function
[v]l. Neglecting terms of a higher order of smallness, we
arrive at the equations of the zeroth approximation:

1 afvl -0
sinf, 96, (31)
1—80'2 6[1;] L B[v] (32)
e, de,’ —ogh al, =0 .
Y'ay (1—eo") cos iy"+ T cos py=Co, (33)
Yr'a) (1—e.”) sin i’ —T sin po=0. (349

It is easy to show that Eq. (31) has the single solution 4, =
1/,x, while Eqs. (32)-(34) can be solved in finite form for
¢y, ip', and p, by the method presented above,

Then an exact solution of Egs. (26)-(30) is constructed
in the form of series for which the solution of Egs. (31)-
(34) serves as the zeroth approximation,

The conclusion follows from what was said above that
for periodic solutions in the case of commensurability II)
the vector G of angular momentum of the rotational mo-
tion of body M, does not coincide with any axis of inertia.
In this case Egs. (26)-(30) allow one to give a theoretical
estimate of this departure in the generating solution.

CONCLUSION

The existence of Poincaré periodic solutions of the
third kind in the problem of the translational —rotational
motion of a rigid body in the gravitational field of a sphere
is demonstrated in the report. . These solutions describe
the periodic motions of bodies in a moving coordinate sys-
tem with the origin at the center of the sphere and rotating
in the Laplace plane together with the line of nodes. In
this case the law of motion of a node is determined by the
quadrature (14) and in the general case it does not corre-
spond to periodic motions of bodies in space,

In the corresponding generating solutions the arbi-
trary quantities are: the semimajor axis ¢', the eccen-
tricity e', and the initial value of the mean anomaly Z,',
as well as the numerical values of the constant param-
eters of the problem: the mass m; of one of the bodies,
the moment of inertia A of the body, and the dynamic pa-
rameter 5§ = (A — C)/{A — B).

The generating solutions correspond to unperturbed
translational —rotational motions of the bodies described
by the following relationships:

1. The descending node of the intermediate plane co-
incides with the ascending node of the orbit in the Laplace
plane (this situationremains valid for any exact solution of
Eq. (2)].
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2. One of the planes O;£¢ or O;n¢ of the body (we
call it the equatorial plane of the body) intersects the La-
place plane along the line of nodes NN' of the orbit or
along a line orthogonal to it at the moment the center of
mass of the body M, passes through the pericenter of the
orbit.

3. The line of apsides either coincides with the line
of nodes or is orthogonal to it.

4, The vector G of angular momentum is fixed in the
body M, and coincides with one of the axis of inertia O,¢
or Oyn (we call it the polar axis) in the case of commen-
surability I) and is distant from the polar axis by an angle
1/ o7 — @ in the case of commensurability II). In the sec-
ond case the vector G lies in one of the planes O &7 or
Oyn ¢ of the body while the constant value of § is deter-
mined as a result of the solution of Egs. (26)-(30).

5. The vector G is fixed in space and forms a con-

"stant angle p with the fixed Laplace plane and an angle

p + i' with the fixed orbital plane, The generating values
of the quantities p and i' are determined through the solu-
tion of Egs. (19)-(21) (case I) and (26)~(30) (case II).

6. At the moment the center of mass of body M,
passes through the pericenter of the orbit one of its prin-
cipal central axes either coincides with the line of apsides
or is orthogonal to it and lies in the orbital plane,

For the first case of commensurability finite equa-
tions were obtained for finding the generating values of
i', o, and J from the given ¢', e', 6, my, A, g, €, and g,
which makes them suitable for practical applications, In
the other case of commensurability of the mean motions
an approximate means of finding the generating values of
0, 1i', p, and J is indicated.

An important property of periodic solutions of type
II is that the vector G does not coincide with the polar
axis of inertia of the body (as occurs, for example, in the
simpler model of Ref. 6 in accordance with Cassini's
laws). In this case Egs. (26)-(30) allow one to make a
theoretical estimate of the indicated effect,

We note that in the present work we were confined
to an approximate value of the characteristic function of
the problem, retaining the main expansion terms up to the
second harmonic inclusively in the expansion of the force
function. For a wide class of rigid bodies M;, however,
with the proper introduction of the small parameter the
results of the work will be valid for an exact value of the
force function of the Newtonian interaction of bodies M,
and M,.
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