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ABSTRACT

The LP-Newton method for constrained equations, introduced some years ago, has powerful
properties of local superlinear convergence, covering both possibly nonisolated solutions and
possibly nonsmooth equation mappings. A related globally convergent algorithm, based
on the LP-Newton subproblems and linesearch for the equation’s infinity-norm residual, has
recently been developed. In the case of smooth equations, global convergence of this algorithm
to B-stationary points of the residual over the constraint set has been shown, which is a
natural result: nothing better should generally be expected in variational settings. However,
for the piecewise smooth case only a property weaker than B-stationarity could be guaranteed.
In this paper, we develop a procedure for piecewise smooth equations that avoids undesirable
accumulation points, thus achieving the intended property of B-stationarity.
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1 Introduction

The LP-Newton method (to be described shortly) was proposed in [7] for solving constrained
equations of the form

F (z) = 0, z ∈ Ω, (1.1)

where F : Rn → Rm is a given mapping, and Ω ⊂ Rn is a given nonempty polyhedral set.
The LP-Newton method has very strong local convergence properties: the assumptions for
its local quadratic convergence to a solution of (1.1) neither imply differentiability of F nor
require the solutions to be isolated. We refer to [6, 7, 10] for detailed discussions, and also
for comparisons with convergence assumptions of other Newton-type methods.

In this work we assume that F is a piecewise continuously differentiable (PC1-) mapping.
This means that F is everywhere continuous, and there exist continuously differentiable
mappings F 1, . . . , F q : Rn → Rm such that

F (z) ∈ {F 1(z), . . . , F q(z)}

holds for all z ∈ Rn. The mappings F 1, . . . , F q are called selection mappings. This setting
covers various important problem classes. For example, consider the complementarity system

a(z) = 0, b(z) ≥ 0, c(z) ≥ 0, d(z) ≥ 0, c(z)⊤d(z) = 0, (1.2)

where the mappings a : Rn → Rl, b : Rn → Rs, c : Rn → Rr, and d : Rn → Rr are smooth. If
we set m := l + r and define

F (z) := (a(z), min{c(z), d(z)}), (1.3)

Ω := {z ∈ Rn | b(z) ≥ 0, c(z) ≥ 0, d(z) ≥ 0}, (1.4)

then the system (1.2) is equivalent to the constrained equation (1.1), and F is piecewise
smooth. The importance of the specific choice (1.4) for Ω is discussed in [7, 10] (there
are other possible reformulations of (1.2), but (1.3) together with (1.4) ensures the strong
local convergence properties mentioned above). Note also that introducing slack variables
for inequalities and redefining F accordingly, one can always convert a given problem in
such a form that in (1.1) the set Ω is polyhedral. Thus, our standing assumption that Ω is
polyhedral is not restrictive. Complementarity systems include Karush–Kuhn–Tucker (KKT)
systems arising from optimization, variational inequalities, and generalized Nash equilibrium
problems (GNEPs), see [9, Chapter 1] and [15, Chapter 1].

To explain the goals of this paper, we first briefly describe the LP-Newton method [7],
and its recent globalization in [11]. For this purpose, let the index set of selection mappings
active at z ∈ Rn be defined as

A(z) := {p ∈ {1, . . . , q} | F (z) = F p(z)} .

Furthermore, let G : Rn → Rm×n be any matrix-valued mapping such that

G(z) ∈ {(F p)′(z) | p ∈ A(z)}
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holds for all z ∈ Rn. The basic LP-Newton method generates a sequence {zk} ⊂ Ω as follows.
For a current iterate zk ∈ Ω, the next iterate is zk+1 := zk + ζk, where (ζk, γk) is a solution
of the following subproblem in the variables (ζ, γ) ∈ Rn × R:

minimize γ
subject to ∥F (zk) +G(zk)ζ∥ ≤ γ∥F (zk)∥2,

∥ζ∥ ≤ γ∥F (zk)∥,
zk + ζ ∈ Ω.

(1.5)

Here and throughout the paper, ∥ · ∥ stands for the infinity-norm. Then, (1.5) is a linear
program (LP), justifying the name of the method. As any Newtonian method, the one
described by (1.5) ensures local convergence only, under suitable assumptions (as already
commented, the particular appeal of (1.5) is that those assumptions are the best/weakest
currently known for any Newton-type method). To obtain global convergence, at iteration
k the algorithm in [11] performs backtracking linesearch for the natural merit function f :
Rn → R given by

f(z) := ∥F (z)∥,
from the current iterate zk in the direction ζk obtained by solving the LP-Newton subprob-
lem (1.5); see Algorithm 2.1 below for precise details. Note that the function f is every-
where locally Lipschitz-continuous and directionally differentiable in every direction, see [9,
Lemma 4.6.1]. The algorithm in [11] retains local quadratic convergence properties of the
original LP-Newton method. Moreover, in the case of a smooth F , it also has desirable global
convergence guarantees. Specifically, every accumulation point z̄ of any generated sequence
is B-stationary for the optimization problem

minimize f(z) subject to z ∈ Ω, (1.6)

which means that
f ′(z̄; ζ) ≥ 0 for all ζ ∈ TΩ(z̄), (1.7)

where f ′(z; ζ) is the usual directional derivative of f at z in a direction ζ, and TΩ(z) denotes
the usual tangent cone to Ω at z (which for a polyhedral Ω is the set of feasible directions).
We emphasize that property (1.7) is the natural first-order necessary optimality condition
for problem (1.6). Note that, in general, nothing better than first-order stationarity for a
merit function can be expected when globalizing some Newton method in the variational (not
optimization) setting, like our problem (1.1); see the related results in [9] and [15]. Observe
also that due to Clarke regularity of this f when F is smooth, in the latter case B-stationarity
of f on Ω is equivalent to the (generally weaker) C-stationarity property

0 ∈ ∂f(z̄) +NΩ(z̄), (1.8)

where ∂f(z) is the Clarke generalized gradient of f at z (see [2]), and NΩ(z) denotes the
normal cone to Ω at z.

However, if F is nonsmooth (as in the PC1 case under consideration), B-stationarity
(1.7) can be strictly stronger than C-stationarity (1.8). The following example exhibits
that this can be so even if we restrict ourselves specifically to the reformulation (1.1) of
a complementarity system (1.2), employing (1.3) and (1.4).
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Example 1.1 Consider F : R → R with

F (z) := min{1 + z, 1− z} and Ω := [−1, 1],

which corresponds to the complementarity system (1.2) with n := 1, l := 0, s := 0, r := 1,
c(z) := 1 + z, d(z) := 1− z.

For this F there are q = 2 smooth selection mappings: F 1(z) := 1+ z and F 2(z) := 1− z,
both active at z̄ = 0 which belongs to the interior of Ω, but which is not a solution of (1.1).
Taking into account f(z) = F (z) for all z ∈ [−1, 1], i.e., f(z) = 1 + z for z ∈ [−1, 0] and
f(z) = 1 − z for z ∈ [0, 1], we have 0 ∈ ∂f(z̄) = [−1, 1] yielding C-stationarity for problem
(1.6). However, B-stationarity is evidently violated.

We next discuss global convergence results in [11] for the case when F is a PC1-mapping.
The analysis therein employs the additional assumption

f(z) ≤ fp(z) for all p ∈ {1, . . . , q} and all z ∈ Ω, (1.9)

where fp : Rn → R+ is given by
fp(z) := ∥F p(z)∥.

It can be verified directly that (1.9) holds automatically for the reformulation (1.1) of a com-
plementarity system (1.2) given by (1.3), (1.4). So this assumption is not too restrictive, or
at least holds for a good number of important applications. Under (1.9), every accumulation
point z̄ of any sequence generated by the algorithm from [11] satisfies

0 ∈ ∂fp(z̄) +NΩ(z̄) (1.10)

for at least one p ∈ A(z̄) [11, Theorem 4.1]. In other words, z̄ is C-stationary for the problem
of minimizing the norm of F p over Ω for at least one selection mapping F p active at z̄. This
is clearly weaker than the B-stationarity result obtained in [11] for the case of smooth F .

In fact, property (1.10) for some p ∈ A(z̄) does not necessarily imply even the C-
stationarity property (1.8) for the problem of minimizing the norm of F on Ω (and therefore,
due to our discussion above, certainly does not imply the B-stationarity property (1.7)), even
if (1.9) is satisfied. This is demonstrated by the following modification of Example 1.1.

Example 1.2 Consider F : R → R2 with

F (z) :=

(
1− z

min{1 + z, 1− z}

)
and Ω := [−1, 1],

which corresponds to the complementarity system (1.2) with n := 1, l := 1, s := 0, r := 1,
a(z) := 1 − z, c(z) := 1 + z, d(z) := 1 − z. For this F , there are q = 2 smooth selection
mappings:

F 1(z) :=

(
1− z
1 + z

)
and F 2(z) :=

(
1− z
1− z

)
,

both active at z̄ = 0 which belongs to the interior of Ω. It can be easily seen that f1(z) =
max{1− z, 1 + z}, f2(z) = 1− z, and f(z) = 1− z = f2(z) ≤ f1(z) hold for all z ∈ [−1, 1].
Therefore, (1.9) is satisfied. Moreover, we have 0 ∈ ∂f1(z̄) = [−1, 1], i.e., (1.10) is valid for
p = 1. But z̄ does not satisfy (1.10) for p = 2 and, moreover, is not C-stationary for problem
(1.6) because 0 /∈ ∂f(z̄) = ∂f2(z̄) = {−1}.
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The discussion above gives rise to the question of what one can do if a sequence {zk}
generated by the algorithm from [11] gets stuck at or near some z̄ satisfying (1.10) for some
p ∈ A(z̄), but violating this condition for some other active selection. Is it possible to escape
such situations and guarantee B-stationarity of the full merit function f at accumulation
points of the algorithm?

In this paper, we give an affirmative answer to this question. Specifically, we present
a modification of the algorithm from [11] and show that, under suitable conditions, every
accumulation point z̄ of any generated sequence satisfies (1.10) for all p ∈ A(z̄). Moreover,
we establish that the latter implies the desired B-stationarity property (1.7).

Getting back for a moment to complementarity system (1.2), it should be noted that
there certainly exist smooth constrained reformulations for it as well, e.g., employing the
Hadamard product. For such reformulations, the difficulty with the lack of B-stationarity
of accumulation points discussed above, does not arise. However, the numerical results for
KKT-type systems of GNEPs, presented in [11], demonstrate that the globalized LP-Newton
method applied to the nonsmooth reformulation can be more efficient. It is interesting to note
that, as simple examples show, B-stationarity properties for the merit functions associated
to nonsmooth and smooth reformulations of complementarity systems (and even considering
optimization KKT systems only) are incomparable: none implies the other, in general.

We next comment on some previous work on globally convergent Newton-type methods
for general nonsmooth equations (i.e., those without any special structure such as given by
reformulations of complementarity systems, etc.). The two relatively recent ones, [13] and [1],
deal with unconstrained equations F (z) = 0 for F being at least locally Lipschitz continuous
and mapping from Rn to Rn. The semismooth Newton method in [13] is globalized in a
hybrid way. By this we mean that in some situations, instead of the Newton direction, certain
safeguarding directions which are of descent for the residual are employed. It is further shown
how such directions can be constructed for some applications (not for a generic equation). The
local superlinear convergence of the semismooth Newton method relies on semismoothness
and BD-regularity at some solution and on locally accepting semismooth Newton steps by
the test on linear decrease of the residual. In [1], some kind of a path-search globalization
is proposed for Kummer’s inexact local Newton scheme (see [16]). For general nonlinear
equations, both approaches mentioned above might be considered as frameworks rather than
readily implementable algorithms (implementable algorithms can be developed on their basis
afterwards, working out the necessary details for more specific applications). The algorithms
considered in our paper are less general, as they are for piecewise smooth equations only, but
on the other hand, they are fully implementable for this problem setting, as stated. Also,
unlike the LP-Newton method, the methods in [13] and [1] are not intended for cases of
nonisolated solutions: the assumptions needed for their local superlinear convergence imply
that a solution is locally unique. Observe further that the globalization of the LP-Newton
method considered here and in [11] is “pure” (not hybrid), as it always employs the ζ-part
of the solution of the LP-Newton subproblem (1.5) as a direction for linesearch, at every
iteration.

The rest of the paper is organized as follows. In Section 2, we recall the globalized
LP-Newton algorithm from [11] and formally state its global convergence and rate of con-
vergence properties. We also elaborate on Example 1.2, demonstrating that the deficiencies
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of the global convergence theory of this algorithm, specified above, can indeed be observed
in practice. The proposed modification of the algorithm is presented and analyzed in Sec-
tion 4. It relies on an error bound result developed in Section 3, measuring the distance to a
C-stationary point for a given selection, when the point is not a solution of (1.1).

2 The globalized LP-Newton algorithm and its convergence

In this section we briefly review the algorithm from [11] and its convergence properties. By
means of an example, we then show that, in the nonsmooth case, this algorithm may indeed
get stuck at a point which is not even C-stationary for the merit function f . Finally, we
explain our idea on how to escape from the vicinity of such “bad” points.

Consider the LP-Newton subproblem (1.5) with zk replaced by z ∈ Ω, the point z playing
the role of a parameter:

minimize γ
subject to ∥F (z) +G(z)ζ∥ ≤ γ∥F (z)∥2,

∥ζ∥ ≤ γ∥F (z)∥,
z + ζ ∈ Ω.

(2.1)

Let γ(z) stand for the optimal value of this problem. It is obvious that (2.1) is always feasible,
and if z is not a solution of the original problem (1.1), then (2.1) has a solution and it holds
that γ(z) > 0. If F (z) = 0, then the objective function of problem (2.1) is unbounded below
on its feasible set, and thus γ(z) = −∞. Let Z := {z ∈ Ω | F (z) = 0} denote the solution
set of (1.1). Define the function ∆ : Ω \ Z → R by

∆(z) := −f(z)(1− γ(z)f(z)). (2.2)

The function ∆ gives a measure of directional descent for f from some point z ∈ Ω in the
LP-Newton direction ζ. The following algorithm and its convergence results are those from
[11].

Algorithm 2.1 Choose σ ∈ (0, 1) and θ ∈ (0, 1). Choose z0 ∈ Ω and set k := 0.

1. If F (zk) = 0, stop.

2. Compute (ζk, γk) as a solution of subproblem (1.5). If ∆(zk) = 0, stop.

3. Set α := 1. If the inequality

f(zk + αζk) ≤ f(zk) + σα∆(zk) (2.3)

is satisfied, set αk := α. Otherwise, replace α by θα, check the inequality (2.3) again,
etc., until (2.3) becomes valid.

4. Set zk+1 := zk + αkζ
k, increase k by 1 and go to step 1.

We next summarize the global and local convergence results from [11, Theorems 4.1 and
4.2, Corollary 4.1], in the PC1 case.
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Theorem 2.1 Assume that (1.9) is satisfied. Then, the following assertions are valid:

a) Algorithm 2.1 is well-defined and, for any starting point z0 ∈ Ω, it either terminates
with some iterate zk ∈ Ω satisfying

0 ∈ ∂fp(z
k) +NΩ(z

k) (2.4)

for at least one p ∈ A(zk), or it generates an infinite sequence {zk} such that every
accumulation point z̄ of this sequence satisfies (1.10) for at least one p ∈ A(z̄).

b) Let {zk} ⊂ Ω be any sequence such that {f(zk)} is nonincreasing, and such that for ev-
ery accumulation point z̄ of {zk} there is a subsequence {zkj} converging to z̄ with zkj+1

generated by an iteration of Algorithm 2.1 for all j. Then, each of these accumulation
points satisfies (1.10) and ∆(zkj ) → 0 as j → ∞ holds for each of the corresponding
subsequences.

We note that assertion b) of the theorem above slightly extends the corresponding part
of [11, Theorem 4.1]. This extension easily follows observing the proof of [11, Theorem 4.1].

Let dist(z, U) := inf{∥z − u∥ | u ∈ U} denote the distance from a point z to a set U .

Theorem 2.2 Assume that the selection mappings F p, p ∈ A(z̄), have Lipschitz-continuous
derivatives near z̄ ∈ Z. Assume further that Assumptions 2–3 in [7] are satisfied at z̄, and
that (1.9) holds.

If Algorithm 2.1 generates an iterate which is close enough to z̄, then the algorithm either
terminates at some zk ∈ Z or it generates an infinite sequence {zk} converging to some
ẑ ∈ Z, and the rate of convergence is Q-quadratic.

In particular, this assertion is valid if (1.9) is satisfied and if there exists ω > 0 such that

dist(z, Zp) ≤ ω∥F p(z)∥

holds for all z ∈ Ω close enough to z̄, and for all p ∈ A(z̄), where Zp := {z ∈ Ω | F p(z) = 0}.

As already discussed in Section 1, Theorem 2.1 does not rule out the possibility that a
sequence generated by Algorithm 2.1 might have an accumulation point z̄ satisfying (1.10) for
some p ∈ A(z̄) but violating this condition for another active selection, or that the algorithm
even terminates at such a point (in the sense of finite convergence, i.e., hitting this point
exactly). We next show that this situation may occur indeed.

Example 2.1 Let us consider again F and Ω defined in Example 1.2, i.e.,

F (z) :=

(
1− z

min{1 + z, 1− z}

)
and Ω := [−1, 1].

The corresponding two smooth selection mappings F 1 and F 2 are also as defined in Exam-
ple 1.2.
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Then, the index set of active selection mappings and the corresponding mapping G : R →
R2 are given by

A(z) =


{1} for z < 0,
{1, 2} for z = 0,
{2} for z > 0,

G(z) =

{
(F 1)′(z) = (−1, 1) for z ≤ 0,
(F 2)′(z) = (−1, −1) for z > 0,

where for z = 0 also G′(0) = (−1, −1) could have been chosen.
Now assume that Algorithm 2.1 is used for solving (1.1), and suppose that zk ∈ Ω is some

iterate with F (zk) ̸= 0. Then, the algorithm computes a solution (ζk, γk) of the LP-Newton
subproblem (1.5) and the value ∆(zk). If ∆(zk) is negative, a stepsize αk satisfying (2.3)
is determined next, and it is easy to see that αk = 1. Indeed, taking into account that
f(z) = 1− z for all z ∈ Ω, (2.3) provides

1− zk − αζk = f(zk + αζk) ≤ f(zk) + σα∆(zk) = 1− zk + σα∆(zk),

which is equivalent to −αζk ≤ σα∆(zk). Since we know that, assuming ∆(zk) < 0, this
inequality is satisfied with some α > 0, it is also valid for α = 1. Thus, the new iterate is
zk+1 := zk+ζk. Now, elementary calculations show that subproblem (1.5) always has a unique
solution. More precisely, the behavior of the iteration is shown in Table 1. In particular, we

zk ζk γk ∆(zk) behavior of iteration

−1 ≤ zk < 1−
√
5

2
1− zk

2− zk
1

2− zk
< 0 1−

√
5

2 < zk+1 < 0 zk+2 = 0

1−
√
5

2 ≤ zk < 0 −zk 1
(1− zk)2

< 0 zk+1 = 0

zk = 0 0 1 = 0 Algorithm 2.1 stops at zk

0 < zk < 1 1− zk

2− zk
1

2− zk
< 0 zk+1 = 1− (1− zk)2

2− zk︸ ︷︷ ︸
quadratic convergence to ẑ = 1

Table 1: Behavior of Algorithm 2.1 on Example 1.2 for different current iterates zk ∈ [−1, 1)

obtain that the sequence {zk} generated by Algorithm 2.1 converges quadratically to the only
solution ẑ = 1 of (1.1) if the starting point z0 belongs to (0, 1). However, if z0 ∈ [−1, 0], then
the algorithm terminates at z̄ = 0 after at most two steps. As already shown in Example 1.2,
z̄ in fact satisfies (1.10) for p = 1 ∈ A(z̄), but violates (1.10) for p = 2 ∈ A(z̄).

The observations in Example 2.1 lead to the following idea: if ∆(zk) = 0 holds at some
iterate zk ∈ Ω with F (zk) ̸= 0, then we can try to switch to another selection mapping active
at zk (if there is one), i.e., to solve the LP-Newton subproblem (1.5) again but with G(zk)
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replaced by the Jacobian of another active selection mapping. The motivation is that the new
direction generated this way might allow to escape from the iterate zk, which is not possible
in Algorithm 2.1.

Furthermore, in practical computations one would not expect the algorithm to terminate
with some iterate zk satisfying ∆(zk) = 0 exactly. The much more plausible situation is
generating a sequence with an accumulation point z̄ satisfying ∆(z̄) = 0. Therefore, trying
to switch to another selection mapping might already make sense if it happens that ∆(zk)
becomes close to zero while ∥F (zk)∥ is still relatively large. The new selection mapping should
be such that we expect it to be active at a potential accumulation point z̄. By modifying the
algorithm along those lines, we would like to avoid (escape from) an accumulation point if it
is not B-stationary for the merit function f .

The subsequent sections implement the idea described above. In Section 3, we prove the
error bound result which can be used to estimate the set of smooth selection mappings active
at a potential accumulation point of a sequence generated by Algorithm 2.1. In Section 4
this error bound is used to construct and analyze our modification of Algorithm 2.1.

3 Error bound results

We start with the following proposition, which extends the error bound result of [15, Propo-
sition 1.64] from unconstrained to constrained equations. The notation is different from (1.1)
because in the sequel Proposition 3.1 will actually be applied not to F but to ∆ defined in
(2.2).

Proposition 3.1 Let S ⊂ Rn be locally closed and conical at z̄ ∈ S, i.e., there exists a
neighborhood O of z̄ such that

S ∩ O = TS(z̄) ∩ O (3.1)

(this is automatic if S is polyhedral). Let z̄ be a solution of the equation

Φ(z) = 0

for some Φ : S → Rr which is directionally differentiable at z̄ in every direction ζ ∈ TS(z̄).
Then, the condition

{ζ ∈ TS(z̄) | Φ′(z̄; ζ) = 0} = {0} (3.2)

is necessary for the constrained error bound

z − z̄ = O(∥Φ(z)∥) as z ∈ S tends to z̄. (3.3)

If Φ is Lipschitz-continuous near z̄, then (3.2) is also sufficient for (3.3).

Proof. In order to prove the necessity, consider any ζ ∈ TS(z̄) such that Φ′(z̄; ζ) = 0. From
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(3.1) and (3.3) it follows that

t∥ζ∥ = ∥z̄ + tζ − z̄∥
= O(∥Φ(z̄ + tζ)∥)
= O(∥Φ(z̄ + tζ)− Φ(z̄)∥)
= O(t∥Φ′(z̄; ζ)∥) + o(t)

= o(t)

as t → 0+, which is possible only when ζ = 0.
To prove the sufficiency, suppose that there exists a sequence {zk} ⊂ S convergent to z̄,

with zk ̸= z̄ for all k, and such that

∥Φ(zk)∥
∥zk − z̄∥

→ 0 as k → ∞. (3.4)

For each k set ζk := (zk− z̄)/∥zk− z̄∥, tk := ∥zk− z̄∥. Passing to a subsequence, if necessary,
we can assume that the sequence {ζk} converges to some ζ ∈ Rn with ∥ζ∥ = 1. Further, by
the definition of the tangent cone, ζ ∈ TS(z̄). Therefore, taking into account (3.1), (3.4), and
Lipschitz-continuity of Φ near z̄, and observing that z̄ + tkζ

k = zk ∈ S, it holds that

∥Φ(z̄ + tkζ)− Φ(z̄)∥
tk

≤ ∥Φ(z̄ + tkζ
k)∥

tk
+

∥Φ(z̄ + tkζ)− Φ(z̄ + tkζ
k)∥

tk

=
∥Φ(zk)∥
∥zk − z̄∥

+O(∥ζk − ζ∥) → 0 as k → ∞,

implying the equality Φ′(z̄; ζ) = 0, which contradicts (3.2).

All the subsequent considerations in this section are concerned with a fixed smooth selec-
tion mapping F p; that is why we drop the index p, and write F instead of F p. In particular,
the values of ∆(·) are computed using the Jacobian of this specific selection mapping F p. It
is assumed that F p has a locally Lipschitz-continuous derivative.

The polyhedral nonempty set Ω that appears in (1.1) can be written as

Ω = {z ∈ Rn | Cz ≤ b},

with some C ∈ Rs×n and b ∈ Rs. In this representation of Ω we assume, without loss
of generality, that C has no zero rows. If it were not the case, as such constraints are
redundant, they can simply be removed. Then, note that the assumption intΩ ̸= ∅ that
will be employed in the sequel, is equivalent to saying that the constraints defining Ω satisfy
the Slater condition (there exists z such that Cz < b). We note, in passing, that the Slater
condition is automatic in our context, at least for some applications. For example it holds
when Ω is formed by nonnegativity conditions on slack variables used to reformulate nonlinear
inequalities as equalities.

With the above representation of Ω, the constraints of (2.1) can be written in the form

B(z)u ≤ β(z), (3.5)
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with u ∈ Rn × R, B(z) ∈ RM×(n+1), β(z) ∈ RM given by

u :=

(
ζ
γ

)
, B(z) :=


F ′(z) −f2(z)em

−F ′(z) −f2(z)em

I −f(z)en

−I −f(z)en

C 0

 , β(z) :=


−F (z)
F (z)
0
0

b− Cz

 , (3.6)

where M := 2m+ 2n+ s and ej stands for the column vector of ones in the space Rj .

Remark 3.1 According to [11, Lemmas 3.1, 3.2], if F (z̄) ̸= 0 for some z̄ ∈ Ω, then ∆(·) is
continuous at z̄, and (1.8) holds if and only if ∆(z̄) = 0. By (2.2), ∆(z̄) = 0 holds if and only
if (ζ, γ) = (0, 1/f(z̄)) is a solution of (2.1) for z := z̄.

We now consider z̄ ∈ Rn such that

z̄ ∈ Ω, F (z̄) ̸= 0, and ∆(z̄) = 0. (3.7)

Then, z̄ ∈ Ω is such that the estimate ∆(z̄) of the directional derivative employed in the
algorithm is zero, but the point z̄ is not a solution of our problem (1.1). Hence, by Remark 3.1,
(1.8) holds and the solution set of the LP problem (2.1) with z := z̄ has the form

U(z̄) = Z(z̄)× {1/f(z̄)}, (3.8)

where the set Z(z̄) ⊂ Rn consists of ζ ∈ Rn satisfying

∥F (z̄) + F ′(z̄)ζ∥ ≤ f(z̄), ∥ζ∥ ≤ 1, Cζ ≤ b− Cz̄. (3.9)

With our notation above, problem (2.1) with z := z̄ can be written as

minimize γ subject to B̄u ≤ β̄, (3.10)

where B̄ := B(z̄) and β̄ := β(z̄). To consider the LP that is dual to (3.10), let w1+ ∈ Rm,
w1− ∈ Rm, w2+ ∈ Rn, w2− ∈ Rn, and w3 ∈ Rs denote dual variables corresponding to the
five blocks of constraints in (3.5). Then, with w := (w1+, w1−, w2+, w2−, w3) ∈ RM , the dual
of (3.10) can be written as

maximize F (z̄)⊤(w1− − w1+) + (b− Cz̄)⊤w3

subject to F ′(z̄)⊤(w1+ − w1−) + (w2+ − w2−) + C⊤w3 = 0,
f2(z̄)(em)⊤(w1+ + w1−) + f(z̄)(en)⊤(w2+ + w2−) = 1,
w ≥ 0.

(3.11)

To describe the solution set W (z̄) of this program let us recall that (3.7) and Remark 3.1
imply that (ζ̄, γ̄) := (0, 1/f(z̄)) belongs to the solution set U(z̄) of the primal program (3.10).
Therefore, the second constraint in (3.9) and the corresponding constraints −en ≤ ζ ≤ en

in the primal program are not active at ζ̄ = 0. Thus, by complementary slackness, the dual
variables w2+ and w2− associated to these constraints are zero for any solution in W (z̄). This
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implies f2(z̄)(em)⊤(w1+ + w1−) = 1. Applying complementary slackness again, we obtain
that W (z̄) consists of all vectors w ∈ RM satisfying

(F ′(z̄))⊤(w1+ − w1−) + C⊤w3 = 0,

(em)⊤(w1+ + w1−) = 1/f2(z̄),

w1+
I+(z̄) ≥ 0, w1+

{1, ...,m}\I+(z̄) = 0,

w1−
I−(z̄) ≥ 0, w1−

{1, ...,m}\I−(z̄) = 0,

w2+ = w2− = 0,

w3
J(z̄) ≥ 0, w3

{1, ..., s}\J(z̄) = 0,

(3.12)

where
I+(z̄) := {i ∈ {1, . . . , m} | Fi(z̄) = f(z̄)},
I−(z̄) := {i ∈ {1, . . . , m} | −Fi(z̄) = f(z̄)},
J(z̄) := {j ∈ {1, . . . , s} | (Cz̄)j = bj}.

Lemma 3.1 Let z̄ satisfy (3.7). Then, the solution set U(z̄) of the primal LP (3.10) is
bounded. If intΩ ̸= ∅, then the solution set W (z̄) of the dual LP (3.11) is also bounded.

Proof. Because of (3.8) and the second relation in (3.9), we have that the primal LP

solution set U(z̄) is bounded.
By the standard LP duality theory, the solution set W (z̄) of the dual LP (3.11) is the

Lagrange multipliers set of the primal LP (3.10). Next, by standard optimization theory, the
multipliers set associated to any primal problem (not necessarily an LP) is bounded if and only
if the Mangasarian-Fromovitz constraint qualification holds. In the convex case and when all
constraints are inequalities, like in the primal LP (3.10), this constraint qualification is the
same as the Slater condition (existence of a feasible point for which all the inequalities are
strict). As we consider (without loss of generality) that C has no zero rows, our assumption
intΩ ̸= ∅ means that there exists a (Slater) point ẑ with Cẑ < b. To show that the constraints
of the primal LP (3.10) satisfy the Slater condition, first recall that B̄u ≤ β̄ is the same as
B(z̄)u ≤ β(z̄). Taking into account (3.6) and f(z̄) > 0, we easily get a Slater point for the
constraints of (3.10) by just fixing ζ to ẑ − z̄ and by taking γ sufficiently large. Thus, the
Lagrange multipliers set of (3.10) is bounded. Since this set and the solution set of W (z̄) of
the dual LP (3.11) coincide, W (z̄) is bounded as well.

We next analyze the behavior of the optimal value function (B, β) 7→ v(B, β) of the
parametric linear program

minimize γ subject to Bu ≤ β (3.13)

with (B, β) ∈ RM×(n+1) × RM in a neighborhood of (B̄, β̄).
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Lemma 3.2 Let z̄ satisfy (3.7) and suppose that intΩ ̸= ∅. Then, the optimal value function
v of problem (3.13) is Lipschitz-continuous near (B̄, β̄) and directionally differentiable at
(B̄, β̄) in any direction (D, δ) ∈ RM×(n+1)×RM . For this directional derivative, it holds that

v′(B̄, β̄; (D, δ)) = min
u∈U(z̄)

max
w∈W (z̄)

w⊤(Du− δ) = max
w∈W (z̄)

min
u∈U(z̄)

w⊤(Du− δ).

Proof. We first show the local Lipschitz-continuity of the optimal value function v of

the parametric problem (3.13) by applying Theorem 5.1 from [12]. To this end, let us first
consider a modification of problem (3.13), namely

minimize γ subject to Bu ≤ β, γ ≤ 2/f(z̄). (3.14)

Let F(B, β) and S(B, β) denote the feasible set of this problem and its solution set, respec-
tively. Obviously, any u = (ζ, γ) ∈ F(B̄, β̄) satisfies

−γen ≤ ζ ≤ γen and γ ≤ 2/f(z̄).

Therefore, if ∥B − B̄∥ and ∥β − β̄∥ are sufficiently small, we have that

∥u∥ = ∥(ζ, γ)∥ ≤ 4/f(z̄)

holds for all u ∈ F(B, β). Thus, the point-to-set mapping (B, β) → F(B, β) is uniformly
compact near (B̄, β̄) in the sense of [12, Definition 3.3].

It was shown in the proof of Lemma 3.1 that B̄u ≤ β̄ satisfies the Slater condition. Thus,
for ∥B − B̄∥ and ∥β − β̄∥ sufficiently small, F(B, β) ̸= ∅ holds.

Finally, to apply [12, Theorem 5.1] the Mangasarian-Fromovitz constraint qualification
(MFCQ) is needed at any u ∈ S(B̄, β̄). To verify this, we first note that the dual (3.11) of
(3.10) has a bounded solution set W (z̄) according to Lemma 3.1. By (3.8), the additional
constraint γ ≤ 2/f(z̄) in (3.14) cannot be active at a solution in S(B̄, β̄), so that the corre-
sponding dual variable is 0 in the solution set of the dual problem associated to (3.14) for
(B, β) := (B̄, β̄). Hence, this dual problem has a bounded solution set, which means that
MFCQ holds at any u in the solution set S(B̄, β̄) of the primal problem.

Now, Theorem 5.1 in [12] yields the local Lipschitz-continuity of the optimal value function
of problem (3.14) near (B̄, β̄). As a consequence, the constraint γ ≤ 2/f(z̄) cannot become
active for any (B, β) in a sufficiently small neighborhood of (B̄, β̄). Therefore, the optimal
value function v associated to problem (3.13) is the same as the optimal value function of
problem (3.14) and, hence, Lipschitz-continuous near (B̄, β̄).

Recall again that the solution sets of the primal problem (3.10) and of its dual (3.11)
are bounded according to Lemma 3.1. Thus, Theorems I and II in [17] give the remaining
assertions regarding directional differentiability.

Based on the previous lemma we will now prove a result on the directional derivative of
the optimal value function of the LP-Newton subproblem (1.5).
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Lemma 3.3 Let z̄ satisfy (3.7) and assume that intΩ ̸= ∅. Moreover, suppose that F ′ is
locally Lipschitz-continuous and that F is twice differentiable at z̄. Then, the optimal value
function z 7→ γ(z) associated to the LP-Newton subproblem (2.1) is Lipschitz-continuous near
z̄ and directionally differentiable at z̄ in all directions d ∈ TΩ(z̄), and

γ′(z̄; d) = max
w∈W (z̄)

min
ζ∈Z(z̄)

(w1+ − w1−)⊤F ′′(z̄)[d, ζ]− 2

f2(z̄)
f ′(z̄; d).

Proof. Let us note first that the mapping z 7→ B(z) is Lipschitz-continuous near z̄ and

directionally differentiable at z̄ in every direction d ∈ Rn, while the mapping z 7→ β(z) is
continuously differentiable near z̄, and

B′(z̄; d) =


F ′′(z̄)[d] −2f(z̄)f ′(z̄; d)em

−F ′′(z̄)[d] −2f(z̄)f ′(z̄; d)em

0 −f ′(z̄; d)en

0 −f ′(z̄; d)en

0 0

 , β′(z̄) =


−F ′(z̄)
F ′(z̄)
0
0

−C

 .

Combining this with the Lipschitz-continuity of the optimal value function v of (3.13) near
(B̄, β̄) and the directional differentiability of v (both according to Lemma 3.2), and observing
that by the polyhedrality of Ω for any d ∈ TΩ(z̄) it holds that z̄+ td ∈ Ω for t > 0 sufficiently
small, we derive that γ is Lipschitz-continuous near z̄ and that

γ′(z̄; d) = lim
t→0+

γ(z̄ + td)− γ(z̄)

t

= lim
t→0+

v(B(z̄ + td), β(z̄ + td))− v(B(z̄), β(z̄))
t

= lim
t→0+

v(B(z̄) + tB′(z̄; d) + o(t), β(z̄) + tβ′(z̄)d+ o(t))− v(B(z̄), β(z̄))
t

= lim
t→0+

v(B(z̄) + tB′(z̄; d), β(z̄) + tβ′(z̄)d)− v(B(z̄), β(z̄))
t

= v′(B(z̄), β(z̄); (B′(z̄; d), β′(z̄)d)).
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Thus, γ′(z̄; d) exists for all d ∈ TΩ(z̄). Using the formula for the directional derivative in
Lemma 3.2 and γ(z̄) = 1/f(z̄), we further obtain that

γ′(z̄; d) = max
w∈W (z̄)

min
u∈U(z̄)

w⊤ (B′(z̄; d)u− β′(z̄)d )

= max
w∈W (z̄)

min
ζ∈Z(z̄)

{
(w1+)⊤ (F ′′(z̄)[d, ζ]− 2f ′(z̄; d)em + F ′(z̄)d)

+(w1−)⊤ (−(F ′′(z̄)[d, ζ]− 2f ′(z̄; d)em − F ′(z̄)d)

−f ′(z̄; d)
f(z̄)

(w2+)⊤en − f ′(z̄; d)
f(z̄)

(w2−)⊤en + (w3)⊤Cd

}
= max

w∈W (z̄)
min

ζ∈Z(z̄)

{
(w1+ − w1−)⊤F ′′(z̄)[d, ζ]

+d⊤((F ′(z̄))⊤(w1+ − w1−) + C⊤w3)

−2f ′(z̄; d)(w1+ + w1−)⊤em − f ′(z̄; d)
f(z̄)

(w2+ + w2−)⊤en
}
.

Finally, exploiting that (3.12) is valid for any w ∈ W (z̄), we get the desired expression for
γ′(z̄; d).

We are now ready to establish our main error bound result, which will be the key to iden-
tifying all active selections at undesirable accumulation points, thus opening the possibility
to switch to another path.

Theorem 3.1 Let z̄ satisfy (3.7) and assume that intΩ ̸= ∅. Moreover, suppose that F ′ is
locally Lipschitz-continuous and that F is twice differentiable at z̄. Assume further that

for all d ∈ Z0(z̄) \ {0} and all w ∈ W (z̄)
there exists ζ ∈ Z0(z̄) such that (w1+ − w1−)⊤F ′′(z̄)[d, ζ] < 0,

(3.15)

where
Z0(z̄) :=

{
ζ ∈ TΩ(z̄)

∣∣∣F ′
I+(z̄)(z̄)ζ ≤ 0, F ′

I−(z̄)(z̄)ζ ≥ 0
}
.

Then
z − z̄ = O(|∆(z)|)

as z ∈ Ω tends to z̄.

Proof. To apply Proposition 3.1, let therein S stand for the polyhedral set Ω, and Φ be

given by ∆. Then, ∆(z̄) = 0 follows by (3.7). Thus, it remains to show that (3.2) holds
in our setting. To this end, we first note that ∆(z) = f2(z)(γ(z) − 1/f(z)) holds for all
z ∈ Ω close enough to z̄. Therefore, by Lemma 3.3, ∆ is Lipschitz-continuous near z̄ and
directionally differentiable at z̄ in every direction d ∈ TΩ(z̄). Taking into account the equality
γ(z̄) = 1/f(z̄) and Lemma 3.3, we obtain that

∆′(z̄; d) = f2(z̄)

(
γ′(z̄; d) +

f ′(z̄; d)

f2(z̄)

)
= f2(z̄) max

w∈W (z̄)
min

ζ∈Z(z̄)
(w1+ − w1−)⊤F ′′(z̄)[d, ζ]− f ′(z̄; d), (3.16)
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where the first term in parentheses on the right-hand side cannot be positive since 0 ∈ Z(z̄)
(see (3.9)). Therefore, ∆′(z̄; d) = 0 implies f ′(z̄; d) ≤ 0. By (3.7), Remark 3.1 shows that
(1.8) is valid. Since F = F p is smooth, (1.8) implies that z̄ is B-stationary, so that f ′(z̄; d)
cannot be negative. Hence, only the case of f ′(z̄; d) = 0 needs to be considered. In this case,
we have that d ∈ Z0(z̄). Furthermore, for every ζ ∈ Z0(z̄), from (3.9) we see that tζ ∈ Z(z̄)
for all t > 0 small enough. Therefore, from (3.15) and (3.16) we obtain that ∆′(z̄; d) < 0 for
every d ∈ TΩ(z̄) \ {0}. Thus, the equality ∆′(z̄; d) = 0 for some d ∈ TΩ(z̄) implies d = 0.
Hence, Proposition 3.1 yields the desired result.

Going back to Example 1.2, it holds there that f ′
1(z̄; d) > 0 for all d ∈ R \ {0}, implying

that Z0(z̄) = {0}, and hence, (3.15) trivially holds (for p = 1).
As another example, consider the case when z̄ ∈ intΩ and the equality |Fi(z̄)| = f(z̄) is

attained for a single index i ∈ {1, . . . , m}. To be specific, let I+(z̄) = {i}, I−(z̄) = ∅. Then
(3.12) implies that

w1+
i =

1

(f(z̄))2
, F ′

i (z̄) = 0,

while all other components of w are equal to zero. Therefore, Z0(z̄) = Rn, and condition
(3.15) takes the form

for all d ∈ Rn \ {0} there exists ζ ∈ Rn such that ⟨F ′′
i (z̄)d, ζ⟩ < 0.

This always holds if F ′′
i (z̄) is a nonsingular matrix (for example, if it is positive-definite, i.e., z̄

satisfies the second-order sufficient optimality condition for minimizers of f , which coincides
with Fi near z̄).

4 Globally convergent LP-Newton method with an escape
procedure from non-stationary points

We shall use the error bound established in Theorem 3.1 for identifying smooth selection
mappings active at a potential “bad” accumulation point of a sequence generated by Algo-
rithm 2.1. This idea is related to the technique for identifying active constraints proposed in
[8], later used also in [3, 14], for example. Once such selection mappings different from the
one currently used are identified, Algorithm 4.1 below implements the possibility of switching
to another selection.

Proposition 4.1 Let the assumptions of Theorem 3.1 hold with F replaced by F π for some
π ∈ A(z̄). Let ρ : R+ → R+ be any function satisfying t = o(ρ(t)) as t → 0+. For every
z ∈ Ω, define the index set

Aρ(z) := {p ∈ {1, . . . , q} | ∥F p(z)− F (z)∥ ≤ ρ(|∆(z)|)} ,

where ∆(z) is computed using G(z) = (F π)′(z). Then, for all z ∈ Ω close enough to z̄, it
holds that

Aρ(z) = A(z̄).
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Proof. Suppose first that p ∈ A(z̄). Then, by Theorem 3.1, for all z ∈ Ω close enough to z̄

it holds that

∥F p(z)− F (z)∥ = ∥(F p(z)− F (z))− (F p(z̄)− F (z̄))∥
= O(∥z − z̄∥)
= O(|∆(z)|)
≤ ρ(|∆(z)|).

Hence, p ∈ Aρ(z) follows.
Suppose now that p ̸∈ A(z̄), which means that ∥F p(z̄) − F (z̄)∥ > 0. According to

Remark 3.1, ∆(z) → 0 as z → z̄, and hence, p ̸∈ Aρ(z) for all z ∈ Ω close enough to z̄.

Now we are in the position to describe our modification of Algorithm 2.1. In order to
estimate whether some iterate zk might be close to a point z̄ which is not a solution of
problem (1.1) but which satisfies (1.10) for some p ∈ A(z̄), we choose some δ0 > 0 and verify,
after computing ∆(zk), whether the ratio ∆(zk)/f(zk) is greater than or equal to −δ0. If it
so, the algorithm tries to switch to another selection mapping.

Algorithm 4.1 Choose δ0 > 0, δ1 > 0, σ ∈ (0, 1), and θ ∈ (0, 1). Fix a function ρ : R+ →
R+ satisfying t = o(ρ(t)) as t → 0+. Choose z0 ∈ Ω and set k := 0.

1. If F (zk) = 0, stop.

2. Let π ∈ A(zk) be such that G(zk) = (F π)′(zk).
Compute (ζk, π, γk, π) as a solution of the LP-Newton subproblem (1.5).
If ∆(zk)/f(zk) ≥ −δ0 and Aρ(z

k) \ {π} ̸= ∅, go to step 3.
Otherwise, if ∆(zk) < 0, set (ζk, γk) := (ζk, π, γk, π) and go to step 5.
Otherwise, stop.

3. (a) Choose any p ∈ Aρ(z
k) \ {π}.

If F p(zk) = 0, set (ζk, p, γk, p) := (0, 0) and ∆p(z
k) := 0.

Otherwise, compute (ζk, p, γk, p) as a solution of the LP-Newton subproblem

minimize γ
subject to ∥F p(zk) + (F p)′(zk)ζ∥ ≤ γ∥F p(zk)∥2,

∥ζ∥ ≤ γ∥F p(zk)∥,
zk + ζ ∈ Ω,

(4.1)

and set ∆p(z
k) := −fp(z

k)(1− γk, pfp(z
k)).

If ∆p(z
k) > −δ1, repeat the procedure for the next p ∈ Aρ(z

k) \ {π}, etc., until
some p will be found for which ∆p(z

k) ≤ −δ1 holds, or until the set Aρ(z
k) \ {π}

is exhausted. In the latter case, take p ∈ Aρ(z
k)\{π} with the smallest associated

∆p(z
k).

(b) If ∆p(z
k) < ∆(zk), go to step 4.

Otherwise, if ∆(zk) < 0, set (ζk, γk) := (ζk, π, γk, π) and go to step 5.
Otherwise, stop.
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4. (a) Set α := 1.
If the inequality

fp(z
k + αζk, p) ≤ fp(z

k) + σα∆p(z
k) (4.2)

is satisfied, set αk, p := α.
Otherwise, replace α by θα, check inequality (4.2) again, etc., until (4.2) becomes
valid.

(b) If
f(zk + αk, pζ

k, p) < f(zk), (4.3)

set (ζk, γk) := (ζk, p, γk, p), αk := αk, p, and go to step 6.
Otherwise, set (ζk, γk) := (ζk, π, γk, π) and go to step 5.

5. Set α := 1.
If inequality (2.3) is satisfied, set αk := α.
Otherwise, replace α by θα, check inequality (2.3) again, etc., until (2.3) becomes valid.

6. Set zk+1 := zk + αkζ
k, increase k by 1 and go to step 1.

Some comments concerning various possibilities in Algorithm 4.1 are in order.

Remark 4.1 (i) If Algorithm 4.1 terminates with some iterate zk after a finite number of
iterations, then zk is either a solution of (1.1), or ∆p(z

k) = 0 holds for all p ∈ A(zk).
The latter is equivalent to saying that zk satisfies (2.4) for all p ∈ A(zk).

(ii) In step 3(a) of Algorithm 4.1, we explicitly check if the current iterate zk is a zero of
the selection mapping F p which is next to be considered. If it is a zero, then zk is a
minimizer of fp, and so using this particular selection mapping would not lead to any
progress. This is the reason why ∆p(z

k) is set equal to zero in that case.

Note, however, that F p(zk) = 0 but F (zk) ̸= 0 is not possible if the condition (1.9) is
satisfied. In particular, this situation cannot occur if (1.1) arises from a complemen-
tarity system (1.2) employing (1.3), (1.4).

(iii) When the number q of selection mappings is large, the set Aρ(z
k) can also be quite

large at some iterates zk. Then some rule for choosing p ∈ Aρ(z
k) in step 3 should

be adopted. An obvious idea would be to first consider a selection mapping for which
∥F p(zk) − F (zk)∥ is the smallest. If there is more than one selection mapping for
which ∥F p(zk)−F (zk)∥ is (nearly) the smallest, it makes sense to chose the one which
differs from the currently used selection mapping by a component where the infinity
norm of F (zk) is attained. This is motivated by the observations in Example 4.2 and
Proposition 4.2 below.

(iv) The parameters δ0 and δ1 are assumed to be positive and fixed. The value of δ0 should
be within the interval (0, 1) in order to guarantee that high convergence rate is retained;
see Theorem 4.3 below. Apart from that, one could also think of some dynamic rules
for δ0 and δ1. The global convergence properties stated in Theorem 4.1 below and the
quadratic convergence rate established in Theorem 4.3, remain valid as long as these
quantities are not allowed to go below some fixed positive thresholds.
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Global convergence properties of Algorithm 4.1 are characterized by the following theo-
rem.

Theorem 4.1 Assume that (1.9) holds, and that intΩ ̸= ∅. Then, Algorithm 4.1 is well-
defined and, for any starting point z0 ∈ Ω, it either terminates with some iterate zk ∈ Ω
satisfying (2.4) for all p ∈ A(zk), or generates an infinite sequence {zk}. In the latter case,
if z̄ is an accumulation point of this sequence, and the selection mappings F p, p ∈ A(z̄),
have Lipschitz-continuous derivatives near z̄ and are twice differentiable at z̄, then either z̄
violates (3.15) with F replaced by F p for some p ∈ A(z̄), or satisfies

0 ∈ ∂fp(z̄) +NΩ(z̄) for all p ∈ A(z̄). (4.4)

Proof. Similarly to the proof of [11, Theorem 2.1], we come to the following conclusions.

As explained in Remark 4.1(i), Algorithm 4.1 terminates for some iteration index k if either
zk is a solution of (1.1), or ∆p(z

k) = 0 for all p ∈ A(zk) ⊂ Aρ(z
k). Further, by Remark 3.1,

in both cases (2.4) must hold for all p ∈ A(zk).
If the algorithm does not terminate, it generates an infinite sequence {zk}. Let z̄ be an

accumulation point of {zk}, and suppose that there exists p ∈ A(z̄) such that (1.10) does not
hold. The latter implies that f(z̄) ̸= 0.

If {zkj} denotes a subsequence of {zk} convergent to z̄ such that for all j

∆(zkj )

f(zkj )
< −δ0, (4.5)

then the iterate zkj+1 is generated by Algorithm 2.1 (without any modifications), and hence,
by Theorem 2.1, ∆(zkj ) → 0 as j → ∞, giving a contradiction with (4.5). Therefore, for any
subsequence {zkj} convergent to z̄, the modification of the algorithm is initiated at iteration
kj (i.e., ∆(zkj )/f(zkj ) ≥ −δ0) for all j large enough.

Suppose now that the stated smoothness requirements are satisfied for z̄, and that (3.15)
holds with F replaced by F p, for all p ∈ A(z̄). Since, by continuity, A(zkj ) ⊂ A(z̄) for all
j large enough, from Proposition 4.1 we have that Aρ(z

kj ) = A(z̄) for all j large enough.
From [11, Lemma 3.2] and from the existence of p ∈ A(z̄) violating (1.10), it then follows
by construction of the algorithm that, perhaps after passing to a further subsequence, there
exist δ̂ ∈ (0, δ1] and p̂ ∈ A(z̄) such that, for all j, Algorithm 4.1 computes (ζkj , γkj ) and the

corresponding αkj using G(zkj ) = (F p̂)′(zkj ), with ∆p̂(z
kj ) ≤ −δ̂. If zkj+1 = zkj + αkjζ

kj is
accepted by the algorithm for infinitely many indices j, then passing to a further subsequence,
and employing (1.9), and (2.3) or (4.2), we obtain that

f(zkj+1) ≤ fp̂(z
kj )− σαkj δ̂ (4.6)

holds for all j. Since by the construction of the algorithm the sequence {f(zk)} is nonin-
creasing and bounded below, it converges. Then, for any accumulation point z̄ of {zk}, the
sequence {f(zk)} (and hence, its subsequence {f(zkj+1)}) converges to f(z̄), by continuity of
f . But since {zkj} is convergent to z̄, it follows by continuity of fp̂ that {fp̂(zkj )} converges
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to fp̂(z̄) = f(z̄) (the last equality holds because p̂ ∈ A(z̄)). Therefore, (4.6) implies that
αkj → 0 as j → ∞, and the rest of the proof repeats the corresponding part of the proof of
[11, Theorem 3.1], but for f replaced by fp̂, eventually giving a contradiction.

It remains to consider the case when the modified step is not accepted by test (4.3) for
k = kj and all j large enough. Employing again (1.9) and (4.2), we then obtain

fp̂(z
kj )− σαkj δ̂ ≥ fp̂(z

kj + αkjζ
kj ) ≥ f(zkj + αkjζ

kj ) ≥ f(zkj ).

By convergence of {zkj} to z̄, and by continuity of f and fp̂, this again implies that αkj → 0
as j → ∞, leading to a contradiction as above.

Our next result completes the job, proving that (4.4) implies B-stationarity of z̄ for the
optimization problem (1.6), i.e., that of minimizing the residual. Thus, unlike Algorithm 2.1,
its modification Algorithm 4.1 either terminates at some point being B-stationary for (1.6)
after a finite number of steps, or generates an infinite sequence with its accumulation points
being B-stationary for (1.6).

Theorem 4.2 If (4.4) holds at some z̄ ∈ Ω, then z̄ is a B-stationary point of problem (1.6),
i.e., (1.7) is satisfied.

Conversely, if (1.9) holds, but (1.10) is violated for some p ∈ A(z̄), then z̄ is not a
B-stationary point of problem (1.6).

Proof. To prove the first assertion, assume that there exists some ζ ∈ TΩ(z̄) such that

f ′(z̄; ζ) < 0. Evidently, there exist p ∈ A(z̄) and a sequence of reals {tk} → 0+, such that
f(z̄ + tkζ) = fp(z̄ + tkζ) for all k. Then

0 > f ′(z̄; ζ) = lim
k→∞

f(z̄ + tkζ)− f(z̄)

tk
= lim

k→∞

fp(z̄ + tkζ)− fp(z̄)

tk
= f ′

p(z̄; ζ).

By [11, Proposition 3.1] applied to fp, this contradicts (4.4).
The second assertion readily follows from [11, Lemma 3.2] applied to fp, and from (1.9).

Note that B-stationarity cannot be replaced by C-stationarity in the second assertion of
Theorem 4.2; this is demonstrated by Example 1.1.

Finally, we prove that the convergence rate properties of Algorithm 2.1 stated in Theo-
rem 2.2 remain valid for Algorithm 4.1 if δ0 ∈ (0, 1).

Theorem 4.3 The assertion of Theorem 2.2 remains valid with Algorithm 2.1 replaced by
Algorithm 4.1, assuming that in the latter δ0 ∈ (0, 1).

Proof. Assumption 3 in [7] consists of saying that γ(·) is bounded from above on Ω near
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z̄ ∈ Z. Therefore, by the definition of the function ∆ in (2.2) it holds that

∆(zk) = −∥F (zk)∥+O(∥F (zk)∥2)

as zk → z̄. Since δ0 < 1, this implies that

∆(zk)

∥F (zk)∥
< −δ0,

if F (zk) ̸= 0 and zk is close enough to z̄. Therefore, zk+1 is computed by an iteration of
Algorithm 2.1 (without any modifications).

The assertion is then that of Theorem 2.2.

We complete this section by illustrating Algorithm 4.1 on some examples. We shall also
give some further insight into step 3(a) of the algorithm.

Example 1.2 demonstrates the advantages of Algorithm 4.1 as compared to Algorithm 2.1,
in the nonsmooth setting.

Example 4.1 Consider again problem (1.1) with F and Ω defined in Example 1.2, i.e.,

F (z) :=

(
1− z

min{1 + z, 1− z}

)
and Ω := [−1, 1].

The smooth selection mappings F 1 and F 2 are as defined in Example 1.2, while the index
set A(z) of selection mappings active at z and G(z) are given in Example 2.1.

Let Algorithm 4.1 be applied to (1.1), where we take ρ(t) :=
√
t. Obviously, this function

satisfies t = o(ρ(t)) as t → 0+. Before analyzing in detail how Algorithm 4.1 works and how
its behavior differs from that of Algorithm 2.1, we start with determining the index set Aρ(z)
for z ∈ Ω. By some elementary calculations, it can be shown that

Aρ(z) =


{1} = A(z) for z ∈ [−1, −1/4),
{2} = A(z) for z ∈ (z̃, 1],
{1, 2} for z ∈ [−1/4, z̃],

where z̃ denotes the smallest positive zero of the polynomial 4z3−8z2−z+1, i.e., z̃ ≈ 0.3183.
Now suppose that zk ∈ Ω is some iterate with F (zk) ̸= 0. Let π ∈ A(zk) be the index

such that G(zk) = (F π)′(zk). Then, Algorithm 4.1 computes a solution (ζk, π, γk, π) of the LP
subproblem (1.5), the value ∆(zk), and the ratio ∆(zk)/f(zk). As observed above, Aρ(z

k) is
a singleton if zk is less than −1/4 or greater than z̃. Therefore, for such zk, other selection
mappings are not considered, and the next iterate generated by Algorithm 4.1 coincides with
the iterate obtained by Algorithm 2.1. More precisely, using our analysis in Example 2.1, we
have

zk+1 ∈ ((1−
√
5)/2, 0) for zk ∈ [−1, (1−

√
5)/2),

zk+1 = 0 for zk ∈ [(1−
√
5)/2, −1/4),

zk+1 = 1− (1− zk)2/(2− zk) for zk ∈ (z̃, 1).
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For zk ∈ [−1/4, z̃], Algorithms 2.1 and 4.1 might generate different next iterates. To
analyze this, suppose first that zk ∈ [−1/4, 0]. Then we have π = 1, i.e., the selection mapping
F 1 and its Jacobian are used to compute (ζk, π, γk, π). From the analysis in Example 2.1 it
follows that ∆(zk)/f(zk) = zk/(1 − zk). Therefore, depending on the value of δ0 and the
precise value of zk, the inequality ∆(zk)/f(zk) ≥ −δ0 might be valid (for zk = 0 it is valid
for any δ0 > 0). Suppose that this inequality holds. Then, since 2 ∈ Aρ(z

k), a solution
(ζk, 2, γk, 2) of the LP problem (4.1) with p = 2 is computed. It is not difficult to see that

(ζk, 2, γk, 2) :=

(
1− zk

2− zk
,

1

2− zk

)
is the unique solution of that problem, so that

∆2(z
k) = −1− zk

2− zk
< ∆(zk) = zk ≤ 0.

Therefore, regardless whether the condition ∆2(z
k) > −δ1 is satisfied or not, a step size αk, 2

is computed according to the rule in step 4 of Algorithm 4.1 for p = 2. Taking into account
that f2(z) = 1 − z for all z ∈ Ω, and that ∆2(z

k) < 0, it can be easily shown that αk, 2 = 1
holds; see the corresponding discussion in Example 2.1. Moreover, the inequality (4.3) is
satisfied for p = 2. Thus, ζk := ζk, 2 is taken as the new direction, and the new iterate is
zk+1 := zk + ζk. By elementary calculations it can be seen that zk+1 > 0 holds.

Suppose now that zk ∈ (0, z̃]. Then we have π = 2, i.e., the selection mapping F 2

and its Jacobian are used to compute (ζk, π, γk, π). From the analysis in Example 2.1 it
follows that ∆(zk)/f(zk) = −1/(2− zk) holds. Depending on the value of δ0, the inequality
∆(zk)/f(zk) ≥ −δ0 might be valid, and if this is the case, since 1 ∈ Aρ(z

k), a solution
(ζk, 1, γk, 1) of the LP subproblem (4.1) for p = 1 is computed. It is not difficult to see that

(ζk, 1, γk, 1) :=

(
−zk,

1

(1 + zk)2

)
is the unique solution of that problem, so that ∆1(z

k) = −zk holds. However, it can be
shown that

−zk = ∆1(z
k) > ∆(zk) = −1− zk

2− zk
for any zk ∈ (0, z̃].

Therefore, regardless whether the condition ∆1(z
k) > −δ1 is satisfied or not, the linesearch is

performed in the direction ζk := ζk, π according to step 5 of Algorithm 4.1. Therefore, the new
iterate coincides with the iterate generated by Algorithm 2.1, i.e., zk+1 = 1−(1−zk)2/(2−zk).

Let us summarize the main conclusions for this example. Similarly to Algorithm 2.1, the
modified Algorithm 4.1 generates a sequence which converges quadratically to the unique
solution z = 1 of (1.1) for any starting point z0 ∈ (0, 1). But, unlike Algorithm 2.1, the
modified algorithm also converges quadratically to z = 1 if the starting point is chosen
within [−1, 0]. In particular, if Algorithm 4.1 exactly hits z = 0 at some iteration, it escapes
this point.
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It might happen that Algorithm 4.1 hits some point z̄ where (1.10) is satisfied for at least
one p ∈ A(z̄), and more than two selection mappings are active at z̄. Then, there is the
question which active selection mapping should be considered first in step 3 of the algorithm.
A related question is whether it is a priori clear that using some p ∈ A(z̄) cannot lead to any
progress because (1.10) is satisfied for those indices as well. We discuss these issues next,
starting with the following example.

Example 4.2 Consider the problem (1.1) with

F (z) :=

 1− z
min{1 + z, 1 + z + z2, 1− z}

min{z, z(z − 1)}

 and Ω := [−1, 1].

There are q = 6 smooth selection mappings:

F 1(z) := (1− z, 1 + z, z), F 2(z) := (1− z, 1 + z, z(z − 1)),
F 3(z) := (1− z, 1 + z + z2, z), F 4(z) := (1− z, 1 + z + z2, z(z − 1)),
F 5(z) := (1− z, 1− z, z), F 6(z) := (1− z, 1− z, z(z − 1)),

all active at z̄ := 0. It is not difficult to see thatA(z) = {1} for z ∈ [−1, 0), andA(z) = {6} for
z ∈ (0, 1]. Consequently, we have that G(z) = (F 1)′(z) for z ∈ [−1, 0), and G(z) = (F 6)′(z)
for z ∈ (0, 1]. At the origin we set G(0) := (F 1)′(0) = (−1, 1, 1).

As in Example 1.2, z̄ satisfies (1.10) for p = 1 so that, due to our definition of G(0),
Algorithm 2.1 terminates if it hits z̄. It can be observed that this actually happens after (at
most) two iterations of Algorithm 2.1, if the starting point is chosen within [−1, 0); see the
related discussion for Example 1.2 in Section 2.

Consider now the case when z̄ is the exact iteration produced by Algorithm 4.1. Then,
since ∆(z̄) = ∆1(z̄) = 0, another selection mapping active at z̄ must be tried. So the
LP subproblem (4.1) for some other p is solved, and the related value ∆p(z̄) is computed.
It turns out that ∆2(z̄) = ∆3(z̄) = ∆4(z̄) = 0 holds, whereas ∆5(z̄) = ∆6(z̄) = −1/2.
This means that only switching to the selection mappings F 5 or F 6 may lead to progress.
Elementary calculations show that in both cases (ζ, γ) = (1/2, 1/2) is the unique solution of
the corresponding LP subproblem. Moreover, z = 1/2 is accepted by the test in step 4(b) of
the algorithm, and it can be seen that from this point on, two more iterations are needed to
exactly hit the only solution z̄ = 1 of problem (1.1).

It is not surprising that ∆3(z̄) is equal to zero because we already know that ∆1(z̄) = 0
holds and, moreover, not only the values but also the Jacobians of F 1 and F 3 coincide at
z̄ = 0. Obviously, switching to another active selection mapping with the same Jacobian
cannot give any progress, as the LP subproblem would be the same.

At the same time, it is not obvious that using F 2 or F 4 instead of F 1 cannot lead to
progress. Note, however, that F 2 differs from F 1 by the third component only. This is a
component whose absolute value at z̄ = 0 is less than the infinity norm of F 1(z̄) (and of
F 2(z̄)). The next proposition demonstrates that switching to an active selection mapping
with this property cannot lead to any progress.
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Proposition 4.2 Let z̄ ∈ Ω be such that F (z̄) ̸= 0, and assume that p1, p2 ∈ A(z̄) are such
that (F p1

i )′(z̄) = (F p2
i )′(z̄) for all i ∈ {1, . . . , m} satisfying |Fi(z̄)| = ∥F (z)∥. Then (1.10)

holds for p = p1 if and only if it holds for p = p2.

Proof. According to [11, Remark 3.1], for every p ∈ A(z̄), the Clarke generalized gradient of

fp at z̄ is defined only by the gradients (F p
i )

′(z̄) for i ∈ {1, . . . , m} such that |F p
i (z̄)| = ∥F (z)∥.

Therefore, under the assumptions of this proposition, ∂fp1(z̄) = ∂fp2(z̄) holds, implying the
needed assertion.

This proposition suggests that when trying to switch to another active selection, one
should only consider selections with a different gradient for at least one component on which
the infinity norm is attained.

To conclude, we comment on our numerical experience with Algorithms 2.1 and 4.1 on
the library of GNEPs from [5] and [4], and on why we do not report it here. Algorithm 2.1
had already been tested in [11], with detailed results reported there. During the preparation
of the current paper, we have also tested Algorithm 4.1, using the same testing environment
with the same settings. The results obtained turned out to be quite similar to those for
Algorithms 2.1, and that is why we do not report the details. The explanation for the observed
numerical behavior is that in all the cases of convergence of Algorithm 2.1 to points which
were not solutions of the constrained equation, these points were nevertheless local minimizers
of the merit function over the feasible set, and hence, B-stationary. Therefore, there was
simply no room for Algorithm 4.1 to improve on Algorithm 2.1 on this test collection. It
might be interesting to figure out whether this behavior is related to some special features
of GNEPs and/or their reformulations. At the same time, we emphasize that the use of
the escape procedure did not harm in any way, which is the best result one might expect
from Algorithm 4.1 in the situations when improvements are not possible. We stress that
the developed escape procedure provides a theoretical guarantee of better global convergence
properties, while not harming computational performance. That it might be necessary and
might improve convergence indeed is demonstrated by the examples presented above, while
the experiments with GNEPs show that it does not degrade the performance in other cases.
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