

Application of satellite OMI data and meteorological re-analysis information for the estimation of atmospheric transboundary fluxes of SO₂ in Siberia and Russian Far East within EANET region

Sergey A. Gromov^(1,2) Alisa Trifonova-Yakovleva^(2,1) Sergey S. Gromov^(3,1)

⁽¹⁾ Institute of Global Climate and Ecology, Roshydromet and RAS, Moscow, Russia
 ⁽²⁾ Institute of Geography RAS, Moscow, Russia
 ⁽³⁾ Max Planck Institute for Chemistry, Mainz, Germany

EANET as the monitoring network

13 countries

Air concentration monitoring

- Filter Pack (FP) -43 sites
- Automatic (Auto) -29 sites
- Passive sampler -5 sites •

Site number for monitoring species in 2016

- SO2 (Auto + FP + PS)48(50) sites :
- HNO3, NH3, HCI, PMC (FP) 38(41) sites •
- NO, NOx/NOx* (Auto) 19(20) sites •
- NO2 only (Auto + PS) 8 sites
- O3 (Auto) 23(25) sites
- PM10 (Auto) 23(24) sites
- PM2.5 (Auto) 20(21) sites ٠

Ground base measurement in near surface layer Continuous, unified protocols

Data and publications at <u>http://www.eanet.asia</u>

Remote (red) and rural (blue) EANET atmospheric monitoring stations (Total air concentration sites -52)

EANET for environmental evaluation

The 8th Asia/Oceania Meteorological Satellite Users' Conference (AOMSUC-8), 18-20 October 2017, Vladivostok, Russia

Transboundary flux evaluations

Using Climate wind data:

- Wind profile sounding for 10 years at meteo-points
- Probability of wind speed and directions (monthly)
- 0-3 km layer averages
- EANET air pollution (AP) data:
- Multiyear monthly averages

Air mass transport across boundary

Improvement with meteo ERA INTERIM re-analysis (EIR)

The 8th Asia/Oceania Meteorological Satellite Users' Conference (AOMSUC-8), 18-20 October 2017, Vladivostok, Russia

Satellite Data for EndUsers and Environmental Evaluations

Using the final product for EndUser:

- OMI instrument at Aura satellite at a sun-synchronous near polar orbit (ascending node is in daylight and crossing the equator at 1:45 PM approximately).
- Data on aerosol types (smoke, dust, and sulfates), on cloud, on tropospheric ozone
- Recalculation into OMI OMSO2G product with vertical CMA coordinates

Our data filtrations:

- Excluding some events (like volcano plumes)
- Found the maximum of SO2 content in semi-BPL (or lower layer: from 0 to 2-3 km)
- Calculations of SO₂ concentrations with CMA of BPL (using BPL meteo to recalculate from DU)

Comparison EANET and OMI data

- Based on averaged data (depends on ground base sampling periods)
- Relatively good agreement of single data pairs, but
 OMI results provide large noise / errors (but not shift)

Simplified "modeling" calculations

Quantifying the transboundary fluxes of SO_2 along Russian border in Asia with Mongolia and China For 2015

Arrows show air transport into Russia (negative).

Length ~5600 km on continent

Sums and *Net* transfer might differs by orders of magnitude

ECMWF reanalysis for 2015 (6 hr.): T, P, U+V, etc. (анализ);

BPL height (calc)

Air mass transport across the border

SO₂ transport across the border

Results and Uncertainties

- Estimated net transport of SO₂ was transported inwards Russia within the PBL not less than (180-190)• 10³ tons in 2015.
- The largest import SO₂ flux in PBLinto Russia of about 80• 10³ tons/month is diagnosed in April
- The general circulation pattern renders import of SO₂ into Russia prevailing throughout April-June and September-October, whilst smaller export fluxes (of up to 20• 10³ tons/month) are reckoned for February and November
- SO₂ transport in January and December is poorly quantifiable due to less available OMI data (corresponding to <5% of total net air transport)
- This result is robust (within ±5• 10³ tons per year, or ± 3%) when less certain data (e.g. at radiative cloud fraction > 0.2) from OMI PBL SO₂ product are included.
- The available satellite data covers well the periods of non-equilibrium air transport with elevated SO₂ burdens, which to a certain extent is intrinsic to the PBL diurnal dynamics.