
STABILITY OF POSSIBLY NONISOLATED SOLUTIONS OF
CONSTRAINED EQUATIONS, WITH APPLICATIONS TO
COMPLEMENTARITY AND EQUILIBRIUM PROBLEMS∗

A. V. Arutyunov† and A. F. Izmailov†

January 31, 2017 (Last revised October 19, 2017)

ABSTRACT

We present a new covering theorem for a nonlinear mapping on a convex cone, under
the assumptions weaker than the classical Robinson’s regularity condition. When the latter
is violated, one cannot expect to cover the entire neighborhood of zero in the image space.
Nevertheless, our covering theorem gives rise to natural conditions guaranteeing stability of
a solution of a cone-constrained equation subject to wide classes of perturbations, and al-
lowing for nonisolated solutions, and for systems with the same number of equations and
variables. These features make these results applicable to various classes of variational prob-
lems, like nonlinear complementarity problems. We also consider the related stability issues
for generalized Nash equilibrium problems.
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1 Introduction

This paper is concerned with stability properties of a given solution ū of constrained equation

Φ(u) = 0, u ∈ P, (1.1)

where Φ : Rp → Rq is a sufficiently smooth mapping (the exact smoothness requirements will
be specified as needed), and P ⊂ Rp is a closed convex set. In the main results presented
in Section 2 it will be assumed that the set P is conical at the solution ū in question, which
means that the set P − ū behaves near zero like a cone (the formal definition will be given
below). This setting includes the case when P is polyhedral, allowing us to cover important
applications in Sections 3 and 4. That said, of course, the conicity assumption reduces the
area of applicability of our results; extending them to possibly non-conical P is the subject
of our ongoing research.

We are mostly interested in those cases when the solution in question can be in some
sense singular, and in particular, is not necessarily isolated. Specifically, we wish to obtain
conditions ensuring stability of a given solution subject to wide classes of perturbations,
despite the fact that every neighborhood of this solution may contain other solutions. In this
paper we restrict ourselves to the case of right-hand side perturbations, i.e., we consider the
parametric family of problems

Φ(u) = w, u ∈ P, (1.2)

where w ∈ Rq is a perturbation parameter.
For unconstrained equation

Φ(u) = 0 (1.3)

(i.e., when P = Rp), these issues have been studied in [22]. In this case, the meaning of
singularity is clear: a solution ū of (1.3) is singular if it violates the regularity condition

rank Φ′(ū) = q,

the latter being equivalent to
im Φ′(ū) = Rq, (1.4)

where im stands for the range space of a linear operator. If ū is a nonisolated solution of
(1.3), then the contingent cone TΦ−1(0)(ū) to the solution set Φ−1(0) at ū is nontrivial, and
hence, ker Φ′(ū) containing TΦ−1(0)(ū) is also nontrivial, where ker stands for the null space
of a linear operator. In particular, if p = q, then Φ′(ū) is a singular square matrix, and hence,
ū is necessarily a singular solution.

In [22, Theorem 5], it was shown that a solution ū of (1.3) “survives” perturbations in
large classes if Φ is smooth enough, and there exists v̄ ∈ ker Φ′(ū) such that Φ is 2-regular at
ū in the direction v̄, the latter meaning that

im Φ′(ū) + Φ′′(ū)[v̄, ker Φ′(ū)] = Rq. (1.5)

This notion is a useful tool in nonlinear analysis and optimization theory; see, e.g., the book
[1], and [17, 18] for some recent applications. Evidently, (1.5) holds automatically with every
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v̄ ∈ Rp (including v̄ = 0) provided the regularity condition (1.4) is satisfied. At the same
time, (1.5) may hold with nonzero v̄ even if (1.4) is violated, and even if ū is a nonisolated
solution; see the examples in [22] and below.

Furthermore, as demonstrated in [22], condition (1.5) may never hold with v̄ ∈ ker Φ′(ū)
if p = q (which will be the case of special interest in this work), ū is a singular solution,
and TΦ−1(0)(ū) = ker Φ′(ū), the latter being one of the two ingredients of the concept of
noncriticality of solution ū, as introduced in [22]. The second ingredient is Clarke regularity
of Φ−1(0) at ū, and as demonstrated in [22, Theorem 1], under the appropriate smoothness
assumptions, this combination of properties is equivalent to the local Lipschitzian error bound

dist(u, Φ−1(0)) = O(‖Φ(u)‖) as u ∈ Rp tends to ū, (1.6)

which is known to be equivalent to the following upper Lipschitzian property, the concept
dating back to [31]:

dist(u(w), Φ−1(0)) = O(‖w‖) as w ∈ Rq tends to 0,

where u(w) is any solution of the perturbed equation

Φ(u) = w, (1.7)

close enough to ū. In addition, [22, Proposition 1] implies that singular noncritical solutions
of (1.3) can only be stable subject to very special perturbations. At the same time, critical
solutions (i.e., those which are not noncritical), or, more precisely, those solutions for which
TΦ−1(0)(ū) is a proper subset of ker Φ′(ū), can naturally satisfy (1.5) with some v̄ ∈ ker Φ′(ū),
even if p = q, and hence, be stable subject to wide classes of perturbations.

Our goal here is to investigate the possibilities of (at least partial) extension of these
considerations to constrained equations of the form (1.1), which is a very rich problem setting
encompassing a much wider area of applications than (1.3).

Let S stand for the solution set of (1.1). The results for unconstrained equations, outlined
above, might give rise to a conjecture that the constrained local Lipschitzian error bound
property at ū ∈ S, which consists of saying that

dist(u, S) = O(‖Φ(u)‖) as u ∈ P tends to ū, (1.8)

is equivalent to the combination of the equality TS(ū) = ker Φ′(ū) ∩ TP (ū) and Clarke regu-
larity of S at ū, perhaps under some additional requirements regarding P . However, this is
not true, in general, even when P is a half-space (i.e., is defined by a single linear constraint),
as demonstrated by the following example.

Example 1.1 Take the union U of two closed Euclidian balls in Rp (p ≥ 2) with the only
common point ū = 0, and an infinitely differentiable function Φ : Rp → R such that U =
Φ−1(0) (such function exists, due to Whitney’s theorem [6, Theorem 2.3.1]). Let a ∈ Rp \{0}
be such that the hyperplane {u ∈ Rp | 〈a, u〉 = 0} separates the specified two balls. If we set
P = {u ∈ Rp | 〈a, u〉 ≤ 0}, then S coincides with one of the balls and hence, is Clarke-regular
at every its point; see Figure 1. Moreover, Φ′(ū) = 0, and hence, ker Φ′(ū)∩TP (ū) = TS(ū) =
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Figure 1: Solution set from Example 1.1.

P . However, from [22, Example 2] it follows that the unconstrained error bound cannot hold
at ū for any appropriate Φ, evidently implying that the constrained error bound also cannot
hold.

Nevertheless, even in the absence of a “verifiable” equivalent characterization of the con-
strained error bound (1.8), the latter can itself be regarded as the property defining noncritical
solutions. The idea of doing so had been emphasized in the discussion associated to [26] (see
[14, 27]). It can be easily checked that similarly to the unconstrained case, the constrained
error bound (1.8) is equivalent to the upper Lipschitzian property which consists of saying
that

dist(u(w), S) = O(‖w‖) as w ∈ Rq tends to 0,

where u(w) is any solution of the perturbed constrained equation (1.2), close enough to ū.
However, further pursuing the line of development for the unconstrained case is not at

all straightforward. To begin with, it is in general not evident what should be regarded as
singularity of a solution ū of (1.1). A seemingly natural understanding of singularity might
be violation of Robinson’s regularity condition

0 ∈ int Φ′(ū)(P − ū). (1.9)

However, if p = q, then (1.9) can only hold when ū ∈ intP , in which case any local analysis
would be essentially concerned with the unconstrained equation (1.3). In other words, any

3



solution ū 6∈ intP would automatically be regarded as singular, and such understanding of
singularity would be unreasonably weak.

Furthermore, if ū is a nonisolated solution of (1.1), then ker Φ′(ū) (and even ker Φ′(ū) ∩
TP (ū)) is necessarily nontrivial. This suggests to keep considering violation of (1.4) (which is
of course stronger than violation of (1.9)) as a possible understanding of singularity, at least
when p = q, in which case such singularity of ū is equivalent to saying that Φ′(ū) is a singular
square matrix.

Repeating with evident modifications the argument in [22, Proposition 1], we come to the
following conclusion. Assuming that Φ is smooth enough, and the constrained error bound
(1.8) holds at ū ∈ S, consider any sequences {wk} ⊂ Rq \{0}, {uk} ⊂ Rp, and {ûk}, such that
{wk} → 0, {uk} → ū, and for each k it holds that uk is a solution of (1.2) with w = wk, while
ûk is some projection of uk onto S. Then the sequence {(wk, uk − ûk)/‖wk‖} is bounded
(because of the upper Lipschitzian property equivalent to the constrained error bound), and
any accumulation point (d, v) of this sequence satisfies the equality Φ′(ū)v = d. The latter
implies the inclusion d ∈ im Φ′(ū), where the right-hand side is a proper linear subspace
in Rq provided (1.4) is violated. Therefore, a singular solution satisfying the constrained
local Lipschitzian error bound can only be stable subject to very special right-hand side
perturbations, i.e., those tangential to im Φ′(ū).

In Section 2, we will establish a new covering result for a mapping on a cone, under the
assumptions weaker than Robinson’s regularity, and even allowing for singularity of a solution
in question in the sense of violation of (1.4). In these cases, one cannot expect to cover the
entire neighborhood of 0 in Rq, but the set being covered can be guaranteed to be “large”
under some additional conditions. In the case when p = q and the solution in question is
singular, the corresponding additional condition can never be satisfied if the constrained local
Lipschitzian error bound holds at this solution, the observation agreeing with the discussion
above. At the same time, if the error bound is violated, this condition may naturally hold.

Furthermore, in Sections 3 and 4, we will consider applications of the results obtained in
the context of complementarity problems and generalized Nash equilibrium problems.

Some words about our notation, which is fairly standard. Let B(u, t) (S(u, t)) stand for
the closed ball (sphere) in a metric space U , centered at u ∈ U , and with radius t > 0. By
spanU , coneU , and riU ,we denote the linear space spanned by U ⊂ Rp, the conic hull of U ,
and the relative interior of U , respectively. The identity operator will be denoted by I. For
a vector u, let uJ stand for the subvector with components uj , j ∈ J . Similarly, for a matrix
M , let MJ1J2 stand for the submatrix with rows numbered by j1 ∈ J1 and columns numbered
by j2 ∈ J2. We write |J | for the cardinality of a finite set J .

2 Covering results

In this section we will consider problem (1.1) under the additional assumption that P is
conical at the solution ū in question, by which we mean that near 0, the radial cone RP (ū) =
cone(P − ū) to P at ū coincides with P − ū. In this case, in local considerations one can
replace P in (1.1) by ū+RP (ū). For this reason, we restrict ourselves to the following problem
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setting:
Φ(u) = 0, u ∈ ū+K,

where Φ : Rp → Rq is a twice differentiable mapping, K ⊂ Rp is a closed convex cone, and
ū ∈ Φ−1(0).

We start with the important special case when Φ is affine.

Theorem 2.1 Let Φ(u) = Au + b with some linear operator A : Rp → Rq and b ∈ Rq, and
let ū ∈ Φ−1(0).

Then for any closed convex cone C ⊂ Rq satisfying C\{0} ⊂ riAK, there exists θ > 0 such
that for every w ∈ C, there exists u(w) ∈ ū + K such that Φ(u(w)) = w, and ‖u(w)− ū‖ ≤
‖w‖/θ.

Moreover, if K is polyhedral, the assertion above holds for C = AK.

This result can be regarded as a generalization of the (finite-dimensional) Banach open
mapping theorem to linear operators on cones. The main assertion follows immediately from
[2, Corollary 3], while the proof of the last assertion can be found in [2, p. 448] (this result
is also mentioned in [29, Theorem 2]). If K is not polyhedral, one cannot take C = AK,
in general, even assuming that AK is closed; the following counterexample was proposed in
[35].

Example 2.1 Define the closed convex cone C = {w ∈ R3 | (w1−w3)2 +w2
2 ≤ w2

3, w3 ≥ 0}.
Let B̃ be the intersection of C with the cylinder {w ∈ R3 | (w1 − 1)2 + w2

3 ≤ 1}, and let
B = conv(B̃ ∪ {(0, 0, 1)}).

Now we embed the instance of R3, containing the defined objects, into R4, and fix e0 ∈
R4 \ {0} such that it is orthogonal to the specified instance of R3. Set K = cone(B + e0),
with B considered as a subset of R4, and let A be the orthogonal projector in R4 onto R3.
Evidently, for every w ∈ C there exists t > 0 such that tw ∈ B. Therefore, AK = C, while
A(∪t∈[0, 1](B + e0)) = B. It remains to observe that one can approach 0 staying in C but
beyond B.

The proof of Theorem 2.2 below requires some formal concepts of covering and the related
stability result which we present next.

A mapping Ψ : U →W between metric spaces U and W is said to be covering at a linear
rate with a constant θ > 0 with respect to a set V ⊂ U if

B(Ψ(u), θt) ⊂ Ψ(B(u, t)) ∀u ∈ U, ∀ t ≥ 0 such that B(u, t) ⊂ V.

If Ψ is covering at a linear rate with a constant θ with respect to V = U , we will be simply
saying that Ψ is covering at a linear rate with this constant, which amounts to the property

B(Ψ(u), θt) ⊂ Ψ(B(u, t)) ∀u ∈ U, ∀ t ≥ 0,

and which evidently implies covering at a linear rate with the same constant with respect to
every V ⊂ U . When there will be no need to specify the constant of covering, we will be
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saying that Ψ is covering at a linear rate (assuming that this holds with some constant). The
study of covering properties in metric spaces dates back to [9] at least.

One useful observation is that if Ψ is a restriction of linear operator A : Rp → Rq to a
convex cone U = K ⊂ Rp (with W = Rq), then covering at a linear rate with a constant θ is
in fact equivalent to the following covering property: for every w ∈ Rq, there exists u(w) ∈ K
such that Au(w) = w, and ‖u(w)‖ ≤ ‖w‖/θ. Furthermore, according to Theorem 2.1 applied
with b = 0 and C = Rq, the latter is equivalent to the equality AK = Rq (this can also be
easily verified directly).

The following is a corollary of a more general result derived in [4, 5].

Proposition 2.1 Let U and W be metric spaces, let U be complete, and let Ψ : U → W be
a continuous mapping. Let Ψ be covering at a linear rate with a constant θ > 0 with respect
to B(u0, ρ) for some u0 ∈ U and ρ > 0. Let a mapping Ω : U → W by Lipschitz-continuous
on B(u0, ρ) with a constant ` ∈ (0, θ), and assume that

‖Ψ(u0)− Ω(u0)‖ < (θ − `)ρ.

Then there exists u ∈ B(u0, ρ) such that Ψ(u) = Ω(u).

We are now in a position to prove the main result of this paper.

Theorem 2.2 Let Φ be twice differentiable near ū ∈ Φ−1(0), with its second derivative being
continuous at ū, and let Φ be 2-regular at ū with respect to K in a direction v̄ ∈ K, i.e.,

span Φ′(ū)RK(v̄) + Φ′′(ū)[v̄, ker Φ′(ū) ∩RK(v̄)] = Rq. (2.1)

Let ‖v̄‖ < 1.
Then for any closed convex cone C ⊂ Rq satisfying C \ {0} ⊂ ri Φ′(ū)K, any w̄ ∈

ri Φ′(ū)K, and any ε > 0, there exist θ > 0 and t0 > 0 such that for all t ∈ [0, t0] it
holds that

ϕv̄, w̄(t) + ΓC, θ(t) ⊂ Φ((ū+K ∩ coneB(v̄, ε)) ∩B(ū, t)), (2.2)

where

ϕv̄, w̄(t) = tΦ′(ū)v̄ + t2
(

1

2
Φ′′(ū)[v̄, v̄] + w̄

)
,

ΓC, θ(t) = B(0, θt) ∩ C +B(0, θt2).

Moreover, if K is polyhedral, the assertion above holds for C = Φ′(ū)K.

Proof. In the argument below, we cannot use condition (2.1) as it is, because the radial

cone RK(v̄) is not necessarily closed. To that end, we next show that (2.1) still holds if we
replace RK(v̄) in it by some polyhedral (hence, closed and convex) cones contained in RK(v̄).

Indeed, let v1
1, . . . , v

1
r be any nonzero vectors in RK(v̄) such that span{Φ′(ū)v1

1, . . . ,
Φ′(ū)v1

r} = span Φ′(ū)RK(v̄) and w̄ ∈ ri cone{Φ′(ū)v1
1, . . . , Φ′(ū)v1

r}. Furthermore, let w2
1,

. . . , w2
s ∈ Rq be any nonzero vectors such that

span Φ′(ū)RK(v̄) + cone{w2
1, . . . , w

2
s} = Rq. (2.3)
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Condition (2.1) implies that for every j ∈ {1, . . . , s}, there exists (necessarily nonzero)
v2
j ∈ ker Φ′(ū) ∩RK(v̄) such that

Φ′′(ū)[v̄, v2
j ]− w2

j ∈ span Φ′(ū)RK(v̄). (2.4)

Set K1 = cone{v1
1, . . . , v

1
r} ⊂ RK(v̄), K2 = cone{v2

1, . . . , v
2
s} ⊂ ker Φ′(ū)∩RK(v̄). Evidently,

span Φ′(ū)RK(v̄) = span Φ′(ū)K1. (2.5)

According to (2.3), any vector w ∈ Rq can be written as w = w1 +
∑s

j=1 βjw
2
j with some

w1 ∈ span Φ′(ū)RK(v̄) and βj ≥ 0, j ∈ {1, . . . , s}, and hence, for v2 =
∑s

j=1 βjv
2
j ∈ K2 it

holds that

Φ′′(ū)[v̄, v2]− w = Φ′′(ū)

v̄, s∑
j=1

βjv
2
j

− w1 −
s∑
j=1

βjw
2
j

=
s∑
j=1

βi
(
Φ′′(ū)[v̄, v2

j ]− w2
j

)
− w1

∈ span Φ′(ū)RK(v̄)

= span Φ′(ū)K1,

where the inclusion is by (2.4), and the last equality is by (2.4). This proves that

span Φ′(ū)K1 + Φ′′(ū)[v̄, K2] = Rq. (2.6)

Let for convenience ‖v1
i ‖ = 1 for all i ∈ {1, . . . , r}, and ‖v2

j ‖ = 1 for all j ∈ {1, . . . , s}.
Since v1

i ∈ RK(v̄), there exists τ1 > 0 such that v̄ + τ1v
1
i ∈ K for all i ∈ {1, . . . , r}. Any

v1 ∈ K1 can be written as v1 =
∑r

i=1 αiv
1
i with some αi ≥ 0, i ∈ {1, . . . , r}, which can

be chosen in such a way that the vectors v1
i with αi > 0 are linearly independent (see, e.g.,

[33, Corollary 17.1.2]). Since the number of linearly independent subsystems of v1
1, . . . , v

1
r

is finite, it can be easily seen that there exists c1 > 0 such that for every v1 ∈ K1, one can
chose αi, i ∈ {1, . . . , r}, in such a way that α ≤ c1‖v1‖, where α =

∑r
i=1 αi.

Similarly, there exists τ2 > 0 such that v̄ + τ2v
2
j ∈ K for all j ∈ {1, . . . , s}, and there

exists c2 > 0 such that every v2 ∈ K2 can be written as v1 =
∑r

j=1 βjv
2
j with some βj ≥ 0,

j ∈ {1, . . . , s}, such that β ≤ c2‖v2‖, where β =
∑s

j=1 βj .

Therefore, assuming that v1 6= 0 or v2 6= 0 (and hence, α + β > 0), and employing
convexity of K, we derive

v̄ + v1 + v2 = v̄ + (α+ β)
r∑
i=1

αi
α+ β

v1
i + (α+ β)

s∑
j=1

βj
α+ β

v2
j

=

r∑
i=1

αi
α+ β

(
v̄ + (α+ β)v1

i

)
+

s∑
j=1

βj
α+ β

(
v̄ + (α+ β)v2

j

)
∈ K
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provided α+ β ≤ min{τ1, τ2}. Taking into account that

α+ β ≤ c1‖v1‖+ c2‖v2‖ ≤ (c1 + c2) max{‖v1‖, ‖v2‖},

the needed property necessarily holds if max{‖v1‖, ‖v2‖} ≤ τ , where τ = min{τ1, τ2}/(c1 +
c2).

We thus proved that v̄ + v1 + v2 ∈ K for all v1 ∈ K1 ∩B(0, τ) and v2 ∈ K2 ∩B(0, τ).
Furthermore, according to Theorem 2.1, there exists θ1 > 0 such that for every w1 ∈ C,

there exists v(w1) ∈ K satisfying Φ′(ū)v(w1) = w1 and ‖v(w1)‖ ≤ ‖w1‖/θ1.
For given t > 0, w1 ∈ C, and w2 ∈ Rq, we need to find a solution of the equation

Φ(u) = t(Φ′(ū)v̄ + w1) + t2
(

1

2
Φ′′(ū)[v̄, v̄] + w̄ + w2

)
. (2.7)

We will construct such solution in the form u = ū+tu(t, w1, v1, v2), where u(t, w1, v1, v2) =
v̄ + v(w1) + tv1 + v2, v1 ∈ K1, v2 ∈ K2. Observe that according to the conclusions obtained
above, if t‖v1‖ ≤ τ and ‖v2‖ ≤ τ , then u(t, w1, v1, v2) ∈ K.

Fix any v0 ∈ K such that Φ′(ū)v0 = w̄. Since ‖v̄‖ < 1, there exist t0 > 0, θ > 0, and
ρ > 0, such that

t0(‖v0‖+ ρ) ≤ τ, ρ ≤ τ, θ/θ1 + t0(‖v0‖+ ρ) + ρ ≤ min{ε, 1− ‖v̄‖}.

Observe that with these choices, if t ∈ [0, t0], w1 ∈ B(0, θ), and if (v1, v2) ∈ V(ρ), where

V(ρ) = (K1 ∩B(v0, ρ))× (K2 ∩B(0, ρ))},

then
u(t, w1, v1, v2) ∈ K ∩ coneB(v̄, ε), ‖u(t, w1, v1, v2)‖ ≤ 1. (2.8)

Define the mapping A : K1 → span Φ′(ū)K = span Φ′(ū)K1 (see (2.5)) by setting A(v1) =
Φ′(ū)v1 for v1 ∈ K1 . Since w̄ ∈ ri Φ′(ū)K1, employing [2, Corollary 2] we easily deduce that
A covers at a linear rate with respect to K1 ∩B(v0, ρ), provided ρ > 0 is small enough.

Furthermore, let Π be an orthogonal projector onto (span Φ′(ū)K)⊥. Define the mapping
B : K2 → (span Φ′(ū)K)⊥ by setting B(v2) = ΠΦ′′(ū)[v̄, v2] for v2 ∈ K2. Condition (2.6)
implies that B is surjective, and according to Theorem 2.1, B covers at a linear rate.

Combining these two covering properties, it can be readily seen that the mapping C :
K1×K2 → Rq, C(v1, v2) = Φ′(ū)v1 + Φ′′(ū)[v̄, v2] covers at a linear rate with some constant
θ2 > 0 with respect to V(ρ).

After some estimations employing the mean-value theorem, we further obtain that

Φ(ū+ tu(t, w1, v1, v2)) = tΦ′(ū)(v̄ + v(w1) + tv1) +
1

2
t2Φ′(ū)[v̄, v̄] + t2Φ′′(ū)[v̄, v2]

+ω(t, w1, (v1, v2)), (2.9)

where the mapping ω : R × Rq × (Rp × Rp) → Rq satisfies the following properties, perhaps
after further reducing t0 > 0, θ > 0, and ρ > 0: for all t ∈ [0, t0] and all w1 ∈ B(0, θ)

‖ω(t, w1, (v0, 0))‖ ≤ 1

4
θ2t

2ρ, (2.10)
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and ω(t, w1, ·) is Lipschitz-continuous on V(ρ) with a constant θ2t
2/2.

By (2.9), equation (2.7) with u of the specified form can be written as

t2(Φ′(ū)v1 + Φ′′(ū)[v̄, v2]) + ω(t, w1, (v1, v2)) = t2(w̄ + w2),

or equivalently, for t > 0,

Ψ(v1, v2) = Ω(t, w1, w2, (v1, v2)), (2.11)

where we define Ψ : K1 ×K2 → Rq,

Ψ(v1, v2) = C(v1, v2)− w̄,

and Ω(t, w1, w2, ·) : K1 ×K2 → Rq,

Ω(t, w1, w2, (v1, v2)) = w2 − 1

t2
ω(t, w1, (v1, v2)).

Observe that C(v0, 0) = w̄, and further reducing ρ > 0 if necessary, and then also reducing
θ > 0 so that θ < θ2ρ/4, we obtain from (2.10) that for all t ∈ (0, t0], and all w1 ∈ B(0, θ)∩C
and w2 ∈ B(0, θ), it holds that

‖Ω(t, w1, w2, (v0, 0))‖ ≤ ‖w2‖ − 1

t2
‖ω(t, w1, (v0, 0))‖ < 1

2
θ2ρ.

Since Ψ is covering with a constant θ2 with respect to V(ρ), while Ω(t, w1, w2, ·) is Lipschitz-
continuous on V(ρ) with a constant θ2/2, we obtain from Proposition 2.1 that equation
(2.11) has a solution (v1, v2) ∈ V(ρ). Then u = ū + tu(t, w1, v1, v2) solves equation (2.7),
and (2.8) holds, where the second relation then implies that u ∈ B(ū, t). This gives the
needed conclusion.

The last assertion of the theorem evidently follows from the proof above, taking into
account the last assertion of Theorem 2.1.

Theorem 2.2 is an improvement over [2, Theorem 2′], where a more restrictive condition
was used instead of (2.1), namely

span Φ′(ū)K + Φ′′(ū)[v̄, ker Φ′(ū) ∩K] = Rq. (2.12)

As will be discussed below, condition (2.1) is significantly weaker, and Theorem 2.2 covers a
much wider area than [2, Theorem 2′].

In the case when K = Rp (unconstrained equation), Theorem 2.2 is closely related to [22,
Theorem 4], which, in its turn, follows from the results in [20].

Consider first the case when Robinson’s condition holds, i.e., Φ′(ū)K = Rq. Then the
2-regularity condition (2.1) (as well as (2.12)) holds automatically for all v̄ ∈ Rq, including
v̄ = 0, and one can take C = Rq and w̄ = 0. With these choices, Theorem 2.2 gives the
classical covering result (which is a consequence of Robinson’s stability theorem [30]): for
every w ∈ B(0, θt0), there exists u(w) ∈ ū + K such that Φ(u(w)) = w, and ‖u(w) − ū‖ ≤
‖w‖/θ.
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Observe, however, that if p = q, then Robinson’s condition can only hold when K = Rp,
i.e., in the case of an unconstrained equation.

When Robinson’s condition does not hold, one cannot expect to cover the entire neigh-
borhood of 0. The union of the sets in the left-hand sides of (2.2) over all t ∈ [0, t0] is, in
general, a “horn” with a “spike” at 0, and Theorem 2.2 says that under its assumptions, this
“horn” is covered by Φ on ū+K: for every w in this “horn”, there exists u(w) ∈ ū+K such
that Φ(u(w)) = w, and ‖u(w)− ū‖ = O(t0) as t0 → 0. The next question is when this “horn”
can be guaranteed to be “large”, i.e., not “asymptotically thin”, or in other words, when the
cone of feasible directions to this set at 0 has a nonempty interior. We next demonstrate two
such cases.

Lemma 2.1 Let C ⊂ Rq be any closed cone, and C̃ ⊂ Rq be any cone, such that C \ {0} ⊂
int C̃.

Then for any w̄ ∈ Rq, any θ̃ > 0, and any θ ∈ (0, θ̃), there exists t0 > 0 such that for
every t ∈ [0, t0], it holds that

S(0, θt) ∩ C ⊂ B(0, θ̃t) ∩ C̃ + t2w̄.

Proof. If w̄ = 0, this statement holds trivially. Let w̄ 6= 0.

By compactness of the set S(0, θ) ∩C, and by the assumptions on C and C̃, there exists
δ ∈ (0, θ̃ − θ] such that S(0, θ) ∩ C + B(0, δ) ⊂ C̃. For any w ∈ S(0, θ) ∩ C and any t ≥ 0,
set w̃ = w − tw̄. Then, assuming that t‖w̄‖ ≤ δ, we obtain w̃ ∈ B(w, t‖w̄‖) ⊂ B(w, δ) ⊂
B(0, θ+δ)∩ C̃ ⊂ B(0, θ̃)∩ C̃. It remains to observe that tw = tw̃+ t2w̄ ∈ B(0, θ̃t)∩ C̃+ t2w̄,
and hence, the needed assertion holds with t0 = δ/‖w̄‖.

Corollary 2.1 Let Φ be twice differentiable near ū ∈ Φ−1(0), with its second derivative being
continuous at ū, and let

int Φ′(ū)K 6= ∅. (2.13)

Then for any closed convex cone C ⊂ Rq satisfying C \ {0} ⊂ int Φ′(ū)K, there exists
θ > 0 such that for every w ∈ C close enough to 0, there exists u(w) ∈ ū + K such that
Φ(u(w)) = w, and ‖u(w)− ū‖ ≤ ‖w‖/θ.

Proof. By compactness of the set S(0, θ) ∩ C, and by the assumptions on C, there exists

δ > 0 such that S(0, θ)∩C+B(0, δ) ⊂ int Φ′(ū)K, and hence, C̃ = cone(S(0, θ)∩C+B(0, δ))
is a closed convex cone satisfying C̃ \ {0} ⊂ int Φ′(ū)K and C \ {0} ⊂ int C̃.

Furthermore, condition (2.13) is equivalent to the equality span Φ′(ū)K = Rq, and there-
fore, the 2-regularity condition (2.12) again holds automatically for all v̄ ∈ Rq, including
v̄ = 0 (as well as in the case when Robinson’s condition holds).

Fix any w̄ ∈ int Φ′(ū)K. Since

ϕ0, w̄(t) + ΓC̃, θ(t) = B(0, θt) ∩ C̃ + t2w̄ +B(0, θt2),
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applying Theorem 2.2 with C replaced by C̃, we obtain the existence of θ̃ > 0 and t̃0 > 0
such that

B(0, θ̃t) ∩ C̃ + t2w̄ +B(0, θ̃t2) ⊂ Φ((ū+K) ∩B(ū, t))

for all t ∈ [0, t̃0]. Then by Lemma 2.1, for any θ ∈ (0, θ̃), there exists t0 ∈ (0, t̃0] such that

S(0, θt) ∩ C ⊂ Φ((ū+K) ∩B(ū, t))

for all t ∈ [0, t0].
Now, for any w ∈ C, we have that w ∈ S(0, θt) ∩ C with t = ‖w‖/θ, and hence,

w ∈ Φ((ū + K) ∩ B(ū, t)) provided ‖w‖ ≤ θt0. This mean that for any such w, there exists
u(w) ∈ ū+K such that Φ(u(w)) = w, and ‖u(w)− ū‖ ≤ t = ‖w‖/θ, completing the proof.

Remark 2.1 Essentially the same result was obtained directly (i.e., not as a corollary of
Theorem 2.2) in [29, Theorem 3]. In particular, twice differentiability of Φ is in fact not
needed in this result: it is enough to assume that Φ is strictly differentiable at ū.

Observe that in Corollary 2.1, C can always be chosen in such a way that intC 6= ∅,
and hence, in this case, the corresponding set of “good” right-hand side perturbations (those
“survived” by ū) is “large”, as, according to this corollary, the cone of feasible directions to
this set at 0 contains C.

Condition (2.13) can only hold when rank Φ′(ū) = q, or, in other words, im Φ′(ū) = Rq
(and is automatic if, in addition, intK 6= ∅). In particular, unlike Corollary 2.2 below,
Corollary 2.1 is never applicable in the case of unconstrained equations when the solution in
question is singular.

Remark 2.2 Consider the case when p = q, which will be the case of interest in Section 3.
In this setting Corollary 2.1 becomes trivial in a sense that it is an easy consequence of
classical results. Indeed, (2.13) may only hold when Φ′(ū) is nonsingular. Therefore, by the
classical inverse function theorem, for all w ∈ Rp close to 0, equation Φ(u) = w has near ū the
unique solution u(w), which depends smoothly on w, and u′(0) = (Φ′(ū))−1. This implies, in
particular, the existence of θ > 0 such that ‖u(w)− ū‖ ≤ ‖w‖/θ. Furthermore, substituting
u = u(w) into the constraint u ∈ ū + K gives the characterization of “good” perturbations
w as those satisfying:

u(w) ∈ ū+K.

Taking into account the appearance of the Jacobian u′(0), it follows that every ω ∈ int Φ′(ū)K
is a feasible direction to the set of “good” perturbations at 0, and the needed conclusion is
now evident.

This reasoning also applies in the context of Theorem 2.1: if p = q and A is nonsingular,
the assertion of this theorem holds trivially for C = AK.

Corollary 2.2 Let Φ be twice differentiable near ū ∈ Φ−1(0), with its second derivative being
continuous at ū, and let there exist v̄ ∈ ker Φ′(ū)∩K such that Φ is 2-regular at ū with respect
to K in the direction v̄, i.e., (2.1) holds.
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Then for every w̄ ∈ ri Φ′(ū)K there exists θ > 0 such that for every

w ∈ coneB

(
1

2
Φ′′(ū)[v̄, v̄] + w̄, θ

)
(2.14)

close enough to 0, there exists u(w) ∈ ū + K such that Φ(u(w)) = w, and ‖u(w) − ū‖ ≤
‖w‖1/2/θ.

Proof. Applying Theorem 2.2 with C = {0}, we obtain the existence of θ > 0 and t0 > 0

such that for all t ∈ [0, t0] it holds that

t2
(

1

2
Φ′′(ū)[v̄, v̄] + w̄

)
+B(0, θt2) ⊂ Φ((ū+K) ∩B(ū, t)).

The union of the sets in the left-hand side over all t ≥ 0 coincides with the cone in the
right-hand side of (2.14), and the needed property evidently follows.

In the case of an unconstrained equation, Corollary 2.2 is closely related to [22, Theo-
rem 5]. Observe also that if intK 6= ∅, then span Φ′(ū)K = im Φ′(ū). Therefore, in the
important special case when v̄ ∈ intK (which is automatic for an unconstrained equation),
due to the equality RK(v̄) = Rp, condition (2.1) takes the form (1.5), which is the 2-regularity
condition as defined for the unconstrained case (or in other words, with respect to the entire
Rp). In particular, unlike it would have been for (2.12), K does not appear in this condition
anymore. Observe further that if v̄ ∈ intK, the result of Theorem 2.2 can be derived from
[16, Remark 5].

The next example demonstrates that if v̄ 6∈ intK, then (2.1) cannot be replaced by the
weaker (1.5).

Example 2.2 Consider Φ : R3 → R2, Φ(u) = (u1u2 + u4
1 + u4

2, u2u3), K = R+ × R+ × R,
ū = 0.

We have: Φ′(ū) = 0, and for v̄ = (0, 1, ν) with ν ∈ R it holds that RK(v̄) = R+ × R× R
and

Φ′′(ū)[v̄] =

(
1 0 0
0 ν 1

)
,

implying that Φ′′(ū)[v̄, RK(v̄)] = R+ × R, and hence, (2.1) does not hold, unlike (1.5).
Observe further that ϕv̄, 0(t) = t2Φ′′(ū)[v̄, v̄]/2 = (0, t2ν), and if ν 6= 0, it can be easily

seen that the equation
Φ(u) = ϕv̄, 0(t)

does not have solutions in K for any t 6= 0. The reason is that v̄ 6∈ intK.

We now again turn our attention to the case when p = q.
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Remark 2.3 If p = q, (2.1) may hold for some v̄ only when

span Φ′(ū)RK(v̄) = im Φ′(ū), ker Φ′(ū) ⊂ RK(v̄), (2.15)

for the similar reason why Robinson’s condition can only hold when K = Rp. Therefore,
in this case, the constrained 2-regularity condition (2.1) is equivalent to the combination of
(2.15) and the the unconstrained 2-regularity condition (1.5).

As discussed above, the equality in (2.15) is automatic if intK 6= ∅. The inclusion in
(2.15) implies that ker Φ′(ū) ∩ RK(v̄) = ker Φ′(ū). The need of (2.15) limits applicability of
Corollary 2.2 when p = q, but much less than it would have been if using condition (2.12)
instead of (2.1).

Furthermore, if
ker Φ′(ū) ∩K ⊂ TΦ−1(0)(ū), (2.16)

which is automatic provided the constrained local Lipschitzian error bound (1.8) holds at ū,
then for every v̄ ∈ ker Φ′(ū)∩K it holds that Φ′′(ū)[v̄, v̄] ∈ im Φ′(ū), implying that Φ cannot
be 2-regular (and even less so 2-regular with respect to K) at ū in such direction v̄ 6= 0 if
p = q. Therefore, similarly to the unconstrained case [22], Corollary 2.2 is not applicable at
a singular solution when p = q and (2.16) holds. Observe that (2.16) is automatic if ū is a
noncritical solution of the unconstrained equation (1.3).

3 Complementarity problems

We now turn our attention to a nonlinear complementarity problem (NCP)

z ≥ 0, F (z) ≥ 0, 〈z, F (z)〉 = 0, (3.1)

with a sufficiently smooth mapping F : Rs → Rs. If F is affine, i.e., F (z) = Mz + c with
some M ∈ Rs×s and c ∈ Rs, (3.1) is a linear complementarity problem (LCP). Along with
(3.1), we will consider its perturbed version

z ≥ 0, F (z)− y ≥ 0, 〈z, F (z)− y〉 = 0, (3.2)

where y ∈ Rs characterizes perturbations of F .
For a given solution z̄ of (3.1), define the index sets

I0 = I0(z̄) = {i = 1, . . . , s | z̄i = Fi(z̄) = 0},
I1 = I1(z̄) = {i = 1, . . . , s | z̄i > 0, Fi(z̄) = 0},
I2 = I2(z̄) = {i = 1, . . . , s | z̄i = 0, Fi(z̄) > 0}.

Then, near z̄, and for y close enough to 0, the solutions set of (3.2) is the union of solution
sets of the branch systems

zJ1 ≥ 0, FJ1(z) = yJ1 , zJ2 = 0, FJ2(z) ≥ yJ2 , zI2 = 0, FI1(z) = yI1 , (3.3)

defined by all partitions (J1, J2) of I0, i.e., pairs of index sets satisfying J1 ∪ J2 = I0,
J1 ∩ J2 = ∅.
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Our analysis below strongly relies on this piecewise decomposition of the solution set.
That said, we emphasize that there exist different approaches to stability analysis for com-
plementarity and more general variational problems, e.g., those treating the solution set as a
whole by means of contemporary variational analysis. Among the most prominent tools of the
latter is the Mordukhovich criterion for metric regularity of multifunctions [28, Theorem 4.18,
Remark 4.78], allowing for exact verifiable characterizations of this important stability prop-
erty. Recall, however, in this paper we focus on those cases when metric regularity (which for
NCP is the same as strong metric regularity; see [10]) does not hold, and when one cannot
expect stability with respect to all small perturbations. Specifically, we are mostly interested
in the cases of nonisolated solutions, which can never be (strongly) metrically regular, and
our goal is to single out those special solutions which can still be guaranteed to be stable
with respect to “large” sets of perturbation, while the other solutions are normally “killed” by
generic perturbations. In particular, we obtain weaker than metric regularity stability results
(not for all small perturbations, and with square-root estimates, in general) but under much
weaker assumptions. We believe that the examples presented below in this section cannot be
tackled by any simpler tools known so far.

If the solution z̄ satisfies the strict complementarity condition I0(z̄) = ∅, (3.3) reduces to
the system of equations

zI2 = 0, FI1(z) = yI1 .

Therefore, assuming that the components of z are ordered in such a way that z = (zI1 , zI2),
the unknown component zI1 must satisfy

FI1(zI1 , 0) = yI1 , (3.4)

and the behavior of such solution ū is characterized by the results from [22], discussed in
Section 1, applied to this unconstrained equation.

The case when strict complementarity is violated is a whole different story. Let S stand
for the solution set of (3.1). According to [13, Lemma 1, Theorem 2], and similarly to the
case of an unconstrained equation (1.3), the local Lipschitzian error bound of the form

dist(z, S) = O(‖min{z, F (z)}‖) (3.5)

as z ∈ Rs tends to z̄, with min applied componentwise, is equivalent to the upper Lipschitzian
property, which consists of saying that

dist(z(y), S) = O(‖y‖)

as y ∈ Rs tends to 0, where z(y) is any solution of the perturbed NCP (3.2) close enough to
z̄. However, the next simple example demonstrates that unlike in the case of unconstrained
equation (1.3), these equivalent properties do not necessarily imply the lack of stability of
the solution in question if it does not satisfy strict complementarity, even when this solution
is nonisolated.

Example 3.1 Consider the NCP (3.1) with F : R2 → R2, F (z) = (z2, z1). The solution
set has the form S = {z ∈ R2 | z1 ≥ 0, z2 ≥ 0, z1z2 = 0}. Since this NCP is actually an

14



LCP, it follows from [32] that the upper Lipschitzian property, and hence, the error bound
(3.5) is satisfied at every solution of this problem, including z̄ = 0, which is the only solution
violating strict complementarity.

The perturbed NCP (3.2) has the following four groups of solutions, corresponding to
four branch systems (3.3) at z̄:

1. For J1 = ∅, J2 = {1, 2}, we have the solution z = 0 when y1 ≤ 0, y2 ≤ 0.

2. For J1 = {1}, J2 = {2}, solutions exist when y1 = 0, and they are those z satisfying
z1 ≥ max{0, y2}, z2 = 0.

3. For J1 = {2}, J2 = {1}, solutions exist when y2 = 0, and they are those z satisfying
z1 = 0, z2 ≥ max{0, y1}.

4. For J1 = {1, 2}, J2 = ∅, we have the solution z1 = y2, z2 = y1 when y1 ≥ 0, y2 ≥ 0.

Solutions of groups 2 and 3 may approximate as y → 0 any point in S satisfying strict
complementary, but these solutions exist for very special perturbations only, which agrees
with the discussion above: those strictly complementary solutions are noncritical in the sense
of [22] applied to the corresponding unconstrained equation (3.4), or in other words, the error
bound (1.6) holds at them.

At the same time, solutions of groups 1 and 4 tend to z̄ as y → 0, and they exist for wide
ranges of y.

Therefore, solutions violating strict complementarity may have special stability properties
regardless of the presence or absence of the local Lipschitzian error bound at them, and in
this sense, they can be all regarded as critical. This point of view is further supported by
the following observations. Critical solutions of unconstrained equations are known to be
specially attractive for iterative sequences generated by Newton-type methods [23]. That
said, [24, Example 7.9] demonstrates the case when sequences of the sequential quadratic
programming algorithm are attracted by a prima-dual solution of the Karush–Kuhn–Tucker
(KKT) system for an optimization problem with inequality constraints, with nonunique dual
part violating strict complementary, but noncritical in the sense of [24, Definition 1.41],
which is the same as saying that the local Lipschitzian error bound and the equivalent upper
Lipschitzian property hold at it [24, Proposition 1.43].

However, of course, violation of strict complementary by itself does not imply stability,
even in case of LCP.

Example 3.2 Consider the LCP (3.1) with F : R2 → R2, F (z) = (0, −z1 + z2 + 1). The
solution set has the form S = {z ∈ R2 | 0 ≤ z1 ≤ 1, z2 = 0} ∪ {z ∈ R2 | z1 = z2 + 1, z2 ≥ 0}.

A solution z̄ = (1, 0) is nonisolated, and violates strict complementarity unlike all other
solutions close to it. Evidently, z̄ can be stable only subject to perturbations y ∈ R2 with
y1 = 0.

In the rest of this section, we obtain some insight into special stability properties of
a solution z̄ of (3.1), violating strict complementarity. For a given partition (J1, J2) of
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I0 = I0(z̄), let the components of z be ordered in such a way that z = (zI1 , zI2 , zJ1 , zJ2).
Introducing the slack variable σ ∈ R|J2|, pairs (zI1 , zJ1) satisfying (3.3) are equivalently
characterized by the system

FI1(zI1 , 0, zJ1 , 0) = yI1 , FJ1(zI1 , 0, zJ1 , 0) = yI1 , FJ2(zI1 , 0, zJ1 , 0)− σ = yJ2 ,
zJ1 ≥ 0, σ ≥ 0,

(3.6)

with respect to u = (zI1 , zJ1 , σ). System (3.6) is a constrained equation

Φ(u) = w, u ∈ K, (3.7)

where Φ : R|I1| × R|J1| × R|J2| → R|I1| × R|J1| × R|J2|,

Φ(u) = (FI1(zI1 , 0, zJ1 , 0), FJ1(zI1 , 0, zJ1 , 0), FJ2(zI1 , 0, zJ1 , 0)− σ), (3.8)

K = R|I1| × R|J1|+ × R|J2|+ , (3.9)

with the right-hand side perturbation w = (yI1 , yJ1 , yJ2). The basic solution of interest (of
(3.7) with w = 0) is ū = (z̄I1 , 0, 0), and (3.7) is equivalent to

Φ(u) = w, u ∈ ū+K. (3.10)

3.1 Linear complementarity problem

Let F (z) = Mz + c with some M ∈ Rs×s and c ∈ Rs, i.e., let (3.1) be an LCP. We first
consider how Theorem 2.1 can be applied in this context. This leads to a result different
from stability and sensitivity results existing in the LCP literature. The latter usually deals
with all perturbations which are only supposed to be small enough, but either for the case
of an isolated solution of the unperturbed problem, or they are concerned with the behavior
of the entire solution set [8, Chapter 7]. Here, we are interested in stability properties of a
particular solution which can be nonisolated, but nevertheless, can be guaranteed to “survive”
large classes of perturbations, even though those classes cannot be expected to contain a full
neighborhood of 0.

For LCP, the mapping Φ defined in (3.8) is also affine: Φ(u) = Au+ b, where

A =

 MI1I1 MI1J1 0
MJ1I1 MJ1J1 0
MJ2I1 MJ2J1 −I

 , b =

 cI1
cJ1
cJ2

 .

Set

M1 = M1(z̄; J1, J2) =

(
MI1I1 MI1J1

MJ1I1 MJ1J1

)
, (3.11)

M2 = M2(z̄; J1, J2) =
(
MJ2I1 MJ2J1

)
. (3.12)

Since K is polyhedral, Theorem 2.1 ensures stability of ū with respect to right-hand side
perturbations w ∈ AK, and with Lipschitzian estimate. The setAK is a cone, and it is “large”
in our sense if intAK 6= ∅. Since intK 6= ∅, the last condition is equivalent to nonsingularity
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of A, which, in its turn, is equivalent to nonsingularity of the matrix M1. Therefore, if this
matrix is nonsingular for at least one partition (J1, J2) of I0 (with a convention that an empty
matrix is nonsingular), solution z̄ is stable subject to a “large” set AK of perturbations: this
set is a polyhedral cone with a nonempty interior, which can be explicitly characterized by
the inequalities (

M−1
1

(
yI1
yJ1

))
J1

≥ 0, M2M
−1
1

(
yI1
yJ1

)
− yJ2 ≥ 0. (3.13)

Proposition 3.1 Let z̄ be a solution of the LCP (3.1) with F (z) = Mz + c, M ∈ Rs×s, and
c ∈ Rs. Let there exist a partition (J1, J2) of I0 = I0(z̄) such that the matrix M1 defined in
(3.11) is nonsingular.

Then the polyhedral cone of y ∈ Rs satisfying (3.13) with M2 defined in (3.12) has a
nonempty interior, and there exists θ > 0 such that for every y in this cone, there exists a
solution z(y) of (3.2) satisfying ‖z(y)− z̄‖ ≤ ‖y‖/θ.

Observe that taking J1 = ∅, J2 = I0, reduces M1 to MI1, I1 , and in particular, if I1 = ∅,
then Proposition 3.1 is automatically applicable with the specified J1 and J2, and with (3.13)
transforming into the inequality yI0 ≤ 0.

We have derived this proposition as an example of application of Theorem 2.1. However, in
fact, Proposition 3.1 can be easily derived directly from (3.3), and this agrees with Remark 2.2.

For the LCP in Example 3.1 we have:

M =

(
0 1
1 0

)
,

and I0(z̄) = {1, 2}, I1(z̄) = I2(z̄) = ∅. Consider again the partitions of I0:

1. For J1 = ∅, the matrix M1 is empty, and hence, Proposition 3.1 is applicable, with
(3.13) taking the form y ≤ 0.

2. For J1 = {1}, J2 = {2}, it holds that M1 = 0, and Proposition 3.1 is not applicable.

3. The case of J1 = {2}, J2 = {1} is considered similarly to item 2, with the same
conclusion.

4. For J1 = {1, 2}, J2 = ∅, it holds that M1 = M , which is nonsingular, and hence,
Proposition 3.1 is applicable, with (3.13) taking the form y ≥ 0.

Furthermore, for LCP in Example 3.2 we have:

M =

(
0 0
−1 1

)
,

and I0(z̄) = {2}, I1(z̄) = {1}, I2(z̄) = ∅. For J1 = ∅, it holds that M1 = 0, and hence,
Proposition 3.1 is not applicable. For J1 = {2}, this matrix equals M , which is a singular
matrix, and hence, Proposition 3.1 is again not applicable. This agrees with the observation
that z̄ can be stable subject to very special perturbations only.
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3.2 Nonlinear complementarity problem

Observe first that if z̄ is a solution of (3.1), violating strict complementarity, then for every
branch system (3.7), the corresponding K is a proper subset of R|I1| × R|J1| × R|J2|, and
hence, Robinson’s regularity condition can never hold, even if z̄ is an isolated solution. At
the same time, at nonisolated solutions satisfying strict complementarity, it also cannot hold,
for obvious reasons.

In the nonlinear case, in order to apply Corollary 2.1, we need to replace A in considera-
tions above by the Jacobian

Φ′(ū) =

(
M1 0
M2 −I

)
, (3.14)

where now

M1 = M1(z̄; J1, J2) =


∂FI1
∂zI1

(z̄)
∂FI1
∂zJ1

(z̄)

∂FJ1
∂zI1

(z̄)
∂FJ1
∂zJ1

(z̄)

 , (3.15)

M2 = M2(z̄; J1, J2) =

(
∂FJ2
∂zI1

(z̄)
∂FJ2
∂zJ1

(z̄)

)
. (3.16)

Again, since intK 6= ∅, condition (2.13) is equivalent to nonsingularity of this Jacobian,
which, in its turn, is equivalent to nonsingularity of M1. Therefore, if this matrix is nonsin-
gular for at least one partition (J1, J2) of I0, Corollary 2.1 guarantees that the solution z̄ of
the NCP (3.1) is stable subject to a “large” set of perturbations (see also Remark 2.1).

Proposition 3.2 Let F be strictly differentiable at a solution z̄ of the NCP (3.1). Let there
exist a partition (J1, J2) of I0 = I0(z̄) such that the matrix M1 defined in (3.15) is nonsin-
gular.

Then the set of y ∈ Rs satisfying(
M−1

1

(
yI1
yJ1

))
J1

> 0, M2M
−1
1

(
yI1
yJ1

)
− yJ2 > 0 (3.17)

with M2 defined in (3.16) is nonempty, and for any closed convex cone C ⊂ Rs such that
C \ {0} is contained in the set given by (3.17), there exists θ > 0 such that for every y ∈ C
close enough to 0, there exists a solution z(y) of (3.2) satisfying ‖z(y)− z̄‖ ≤ ‖y‖/θ.

Taking J1 = ∅, J2 = I0, reduces the matrix M1 to
∂ΦI1
∂uI1

(z̄), and in particular, if I1 = ∅,
then Proposition 3.2 is automatically applicable with the specified J1 and J2, and with (3.17)
transforming into the inequality yI0 < 0.

Now suppose that the matrix M1 (and hence, Φ′(ū)) is singular, and therefore, Corol-
lary 2.1 is not applicable. Then one needs to employ second derivatives and apply Corol-
lary 2.2, when applicable.

By Remark 2.3, in order to verify the assumptions of Corollary 2.2 in this context we
need to show that there exists v̄ ∈ ker Φ′(ū) ∩K satisfying (1.5) and (2.15). The equality in
(2.15) is automatic because intK 6= ∅ (see (3.9)). From (3.14) it evidently follows that

ker Φ′(ū) = {v = (ζ1, M2ζ
1) | ζ1 ∈ kerM1}, im Φ′(ū) = imM1 × R|J2|. (3.18)
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In particular, taking into account (3.9), the inclusion in (2.15) has the form

(ζ1, M2ζ
1) ∈ RK(v̄) ∀ ζ1 ∈ kerM1, (3.19)

and ker Φ′(ū) ∩K consists of v̄ = (ζ̄1, M2ζ̄
1) with ζ̄1 = (ζ̄I1 , ζ̄J1) ∈ R|I1| × R|J1| satisfying

ζ̄J1 ≥ 0, M1ζ̄
1 = 0, M2ζ̄

1 ≥ 0. (3.20)

Furthermore, let π be the orthogonal projector in R|I1|×R|J1| onto (imM1)⊥, and define the
linear operator Λ(ζ̄1) : kerM1 → (imM1)⊥,

Λ(ζ̄1) = π


∂2FI1
∂z2

I1

(z̄)[ζ̄I1 ] +
∂2FI1
∂zI1∂zJ1

(z̄)[ζ̄J1 ]
∂2FI1
∂zI1∂zJ1

(z̄)[ζ̄I1 ] +
∂2FI1
∂z2

J1

(z̄)[ζ̄J1 ]

∂2FJ1
∂z2

I1

(z̄)[ζ̄I1 ] +
∂2FJ1
∂zI1∂zJ1

(z̄)[ζ̄J1 ]
∂2FJ1
∂zI1∂zJ1

(z̄)[ζ̄I1 ] +
∂2FJ1
∂z2

J1

(z̄)[ζ̄J1 ]

 . (3.21)

It can be easily derived from (3.18) that (1.5) is equivalent to saying that Λ(ζ̄1) is nonsingular.
Therefore, Corollary 2.2 is applicable if there exists ζ1 satisfying (3.19) (with v̄ = (ζ̄1, M2ζ̄

1)),
(3.20), and such that the linear operator Λ(ζ̄1) is nonsingular. This yields the following

Proposition 3.3 Let F be twice differentiable near a solution z̄ of the NCP (3.1), with its
second derivative being continuous at z̄. Let there exist a partition (J1, J2) of I0 = I0(z̄) and
ζ̄1 = (ζ̄I1 , ζ̄J1) ∈ R|I1|×R|J1| satisfying (3.20) and such that (3.19) holds with v̄ = (ζ̄1, M2ζ̄

1),
and the linear operator Λ(ζ̄1) : kerM1 → (imM1)⊥ defined by (3.21) is nonsingular.

Then there exist a cone C ⊂ Rs with nonempty interior and θ > 0 such that for every
y ∈ C close enough to 0, there exists a solution z(y) of (3.2) satisfying ‖z(y)− z̄‖ ≤ ‖y‖1/2/θ.

Example 3.3 Consider the NCP (3.1) with F : R2 → R2, F (z) = ((z1 − 1)z2, (z1 − 1)2).
The solution set has the form S = {z ∈ R2 | z1 = 1, z2 ≥ 0} ∩ {z ∈ R2 | z1 ≥ 0, z2 = 0},
and the two solutions violating strict complementarity are (0, 0) and (1, 0). For the former,
I1 = ∅, and hence, Corollary 2.1 is applicable, giving stability subject to a “large” set of
perturbations.

Consider z̄ = (1, 0). Then I0(z̄) = {2}, I1(z̄) = {1}, I2(z̄) = ∅. Consider the branch
systems (3.10) (in both of them ū = (1, 0), K = R× R+, w = y):

1. For J1 = ∅, J2 = {2}, we have FI1(z) = 0 when zJ2 = z2 = 0, implying that the matrix
in (3.21) is always singular, and hence, 2-regularity cannot hold. The branch system
(3.3) may have solutions tending to z̄ only for perturbations y ∈ R2 with y1 = 0.

2. For J1 = {2}, J2 = ∅ we have M1 = 0, M2 is empty, and hence, (3.20) holds for any
ζ̄1 = ζ̄ ∈ R2 with ζ̄2 ≥ 0. Furthermore,

Λ(ζ̄1) = F ′′(z̄)[ζ̄] =

(
ζ̄2 ζ̄1

2ζ̄1 0

)
,

and this matrix is nonsingular for any ζ̄1 6= 0. Moreover, any direction v̄ = ζ̄ with with
ζ̄2 > 0 belongs to intK, implying (3.19), and hence, Proposition 3.3 is applicable.
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The branch system (3.3) has solutions for all perturbations y ∈ R2 with y2 ≥ 0, except
for those with y1 6= 0, y2 = 0; these solutions are

z(y) =

{
(1 +

√
y2, y1/

√
y2) if y1 ≥ 0,

(1−√y2, −y1/
√
y2) otherwise,

and they tend to z̄ as y → 0 provided y1 = o(
√
y2). Therefore, this branch indeed gives

rise to a “large” set of perturbations “survived” by z̄.

We next modify the example above in order to demonstrate the case when Proposition 3.3
is applicable with different partitions, with v̄ 6∈ intK and v̄ ∈ intK, respectively.

Example 3.4 Consider the NCP (3.1) with F : R2 → R2, F (z) = ((z1−1)2+(z1−1)z2, (z1−
1)2). The solution set has the form S = {z ∈ R2 | z1 = 1, z2 ≥ 0}, and the only solution
violating strict complementarity is z̄ = (1, 0).

We have: I0(z̄) = {2}, I1(z̄) = {1}, I2(z̄) = ∅. Consider the branch systems (3.10) (in
both of them ū = (1, 0), K = R× R+, w = y):

1. For J1 = ∅, J2 = {2}, we have FI1(z) = (z1 − 1)2 when zJ2 = z2 = 0, M1 = 0, M2 = 0,
and hence, by (3.18), ker Φ′(ū) = R × {0}. Observe that ker Φ′(ū) ∩ intK = ∅, and
hence, there is no appropriate v̄ ∈ intK.

Nevertheless, for any ζ̄1 = ζ̄1 ∈ R and for v̄ = (ζ̄1, 0) it holds that RK(v̄) = R × R+,
and hence, (3.19) is satisfied. Moreover, (3.20) holds trivially, while

Λ(ζ̄1) =
∂2F1

∂z2
1

(z̄)ζ̄1 = 2ζ̄1

is nonsingular (distinct from zero) provided ζ̄1 6= 0. Therefore, the solution ū of this
branch system (and hence, the solution z̄ of the NCP) is stable subject to a “large” set
of perturbations.

And this is indeed the case, as the branch system (3.3) has solutions for all perturbations
y ∈ R2 with y1 ≥ max{0, y2}, and these solutions are z(y) = (1 ±√y1, 0), tending to
z̄ as y → 0. Observe that the specified set of “good” y agrees with what appears in
the right-hand side of (2.14) in Corollary 2.2. Moreover, this example demonstrates, in
particular, that one cannot take in that corollary w̄ = 0.

2. For J1 = {2}, J2 = ∅ we have u = z, Φ(u) = F (z), Φ′(ū) = 0, ker Φ′(ū)∩K = R×R+ 6=
ker Φ′(ū), implying that Φ cannot be 2-regular at ū with respect to K in the sense of
(2.12) in any direction at all. Nevertheless, Proposition 3.3 is applicable, similarly to
the corresponding part of Example 3.4.

And indeed, this branch system (3.3) has solutions for all perturbations y ∈ R2 with
y2 ≥ 0, except for those with y1 6= 0, y2 = 0; these solutions are

z(y) =

{
(1 +

√
y2, (y1 − y2)/

√
y2) if y1 ≥ y2,

(1−√y2, −(y1 − y2)/
√
y2) otherwise,

and they tend to z̄ as y → 0 provided y1 = o(
√
y2). Therefore, this branch also gives

rise to a large set of “good” perturbations.
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We complete this section by observing that the discussion in it can be extended to mixed
complementarity problems (at the price of making the exposition more cumbersome), and in
particular, to KKT systems.

4 Generalized Nash equilibrium problem

In order to avoid too heavy notation, in this section we restrict ourselves to a generalized
Nash equilibrium problem (GNEP) with two players and shared constraints only:

minimizex1 f1(x1, x2)
subject to g(x1, x2) ≤ 0,

minimizex2 f2(x1, x2)
subject to g(x1, x2) ≤ 0,

(4.1)

where the players’ objective functions f1 : Rn1 × Rn2 → R and f2 : Rn1 × Rn2 → R and
the constraint mapping g : Rn1 × Rn2 → Rm are smooth. This simplified problem setting
captures the most significant features of GNEP. One of those features making these problems
difficult for analysis and numerical solution is their tendency to have nonisolated solutions,
and this feature is specially interesting in the context of this work. GNEP setting goes back
to [34]; for recent surveys, see [12, 15].

Writing down the KKT optimality systems for the two optimization problems in (4.1), and
removing duplicated constraints, we obtain the following system in the primal-dual variables:

∂L1

∂x1
(x1, x2, µ1) = 0,

∂L2

∂x2
(x1, x2, µ2) = 0,

µ1 ≥ 0, 〈µ1, g(x1, x2)〉 = 0, µ2 ≥ 0, 〈µ2, g(x1, x2)〉 = 0, g(x1, x2) ≤ 0,

(4.2)

where Lj : Rn1×Rn2×Rm → R is the Lagrangian of the corresponding optimization problem
in (4.1), i.e.,

Lj(x
1, x2, µj) = fj(x

1, x2) + 〈µj , g(x1, x2)〉, j = 1, 2.

Along with (4.1), consider its perturbed version with the canonically perturbed players’
problems:

minimizex1 f1(x1, x2)− 〈a1, x1〉
subject to g(x1, x2) ≤ b,

minimizex2 f2(x1, x2)− 〈a2, x2〉
subject to g(x1, x2) ≤ b,

where a1 ∈ Rn1 , a2 ∈ Rn2 and b ∈ Rm characterize perturbations. Note that b is the same for
both players, i.e., joint constraints remain remain joint after perturbation. The corresponding
perturbed version of the system (4.2) has the form

∂L1

∂x1
(x1, x2, µ1) = a1,

∂L2

∂x2
(x1, x2, µ2) = a2,

µ1 ≥ 0, 〈µ1, g(x1, x2)− b〉 = 0, µ2 ≥ 0, 〈µ2, g(x1, x2)− b〉 = 0, g(x1, x2) ≤ b.
(4.3)

For a given solution (x̄1, x̄2, µ̄1, µ̄2) of (4.2), define the index sets

A = A(x̄1, x̄2) = {i = 1, . . . , m | gi(x̄1, x̄2) = 0},
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N = N(x̄1, x̄2) = {1, . . . , m} \A,
Aj+ = Aj+(x̄1, x̄2, µ̄j) = {i ∈ A | µ̄j > 0}, j = 1, 2,

Aj0 = Aj0(x̄1, x̄2, µ̄j) = A \Aj+, j = 1, 2,

A+ = A+(x̄1, x̄2, µ̄1, µ̄2) = A1
+ ∪A2

+, A0 = A0(x̄1, x̄2, µ̄1, µ̄2) = A1
0 ∩A2

0.

Then near the solution in question, and for (a1, a2, b) close enough to (0, 0, 0), the solution
set of (4.3) is the union of solution sets of the branch systems

∂L1

∂x1
(x1, x2, µ1) = a1,

∂L2

∂x2
(x1, x2, µ2) = a2, µ1

N = 0, µ2
N = 0,

µ1
J1
≥ 0, µ2

J1
≥ 0, gJ1(x1, x2) = bJ1 ,

µ1
J2

= 0, µ2
J2

= 0, gJ2(x1, x2) ≤ bJ2 ,
µ1
A1

0\A2
0
≥ 0, µ2

A2
0\A1

0
≥ 0, gA+(x1, x2) = bA+ ,

(4.4)

defined by all partitions (J1, J2) of A0.
The strict complementarity condition for GNEP KKT-type systems (4.2) consists of say-

ing that A1
0 = ∅ and A2

0 = ∅. If this condition holds, then (4.4) reduces to the system of
equations

∂L1

∂x1
(x1, x2, µ1) = a1,

∂L2

∂x2
(x1, x2, µ2) = a2, µ1

N = 0, µ2
N = 0, gA(x1, x2) = bA.

(4.5)
Assuming that the components of µ1 and µ2 are ordered in such a way that µ1 = (µ1

A, µ
1
N )

and µ2 = (µ2
A, µ

2
N ), we finally obtain the following system of equations characterizing x1, x2

and the unknown components of µ1 and µ2:

∂L1

∂x1
(x1, x2, µ1

A, 0) = a1,
∂L2

∂x2
(x1, x2, µ2

A, 0) = a2, gA(x1, x2) = bA (4.6)

with respect to u = (x1, x2, µ1
A, µ

2
A). Therefore, the behavior of such solution (x̄1, x̄2, µ̄1, µ̄2)

is characterized by the existing results for unconstrained equations, applied to (1.7) with
Φ : Rn1 × Rn2 × R|A| × R|A| → Rn1 × Rn2 × R|A|,

Φ(u) =

(
∂L1

∂x1
(x1, x2, µ1

A, 0),
∂L2

∂x2
(x1, x2, µ2

A, 0), gA(x1, x2)

)
,

with the right-hand side perturbation w = (a1, a2, bA). The basic solution of interest (of
(1.7) with w = 0) is ū = (x̄1, x̄2, µ̄1

A, µ̄
2
A).

Observe, however, that unlike what we had for complementarity problems in Section 3,
(4.6) is a system of n1 + n2 + |A| equations in n1 + n2 + 2|A| variables, and nonisolated
solutions of this system do not need to be singular: the Jacobian

Φ′(ū)=


∂2L1

∂x1∂x1
(x̄1, x̄2, µ̄1)

∂2L1

∂x1∂x2
(x̄1, x̄2, µ̄1)

(
∂gA
∂x1

(x̄1, x̄2)

)T

0

∂2L2

∂x1∂x2
(x̄1, x̄2, µ̄2)

∂2L2

∂x2∂x2
(x̄1, x̄2, µ̄2) 0

(
∂gA
∂x2

(x̄1, x̄2)

)T

∂gA
∂x1

(x̄1, x̄2)
∂gA
∂x2

(x̄1, x̄2) 0 0


(4.7)
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can have full row rank. If this is the case, and if A 6= ∅, this solution is necessarily nonisolated,
but at the same time, it is metrically regular. In particular the local Lipschitzian error
bound holds at this solution (this result appears as the Lyusternik theorem in [19]), and it is
stable subject to small enough but otherwise arbitrary right-hand side perturbations with a
Lipschitzian estimate (this follows from the classical covering result for nonlinear mappings,
sometimes called the Graves theorem [11, Theorem 5D.2]). These properties are readily
translated to the solution (x̄1, x̄2, µ̄1, µ̄2) of (4.2), and to the perturbed version (4.3) of the
latter.

If the row rank of the Jacobian in (4.7) is not full, the system (4.5) can be studied by
means of the results in [22]. Moreover, since the number of equations in this system is greater
than the number of variables (unless A = ∅), the covering result from [21, Theorem 5] can
be applicable, which in its turn is a corollary of the implicit function theorem obtained in [7]
(see also [3]). Unlike more general theorems in [20] and [22], the result in [21, Theorem 5]
establishes covering of an entire neighborhood of 0 in the space of right-hand side perturba-
tions, and with a square-root estimate as in Corollary 2.2, provided Φ is 2-regular at ū (in
the sense of (1.5)) in some direction v̄ ∈ ker Φ′(ū) such that Φ′′(ū)[v̄, v̄] ∈ im Φ′(ū).

We proceed with the case when the strict complementarity condition does not hold. For
a given partition (J1, J2) of A0, let the components of µ1 and µ2 be ordered in such a way
that µ1 = (µ1

A+
, µ1

N , µ
1
J1
, µ1

J2
), µ2 = (µ2

A+
, µ2

N , µ
2
J1
, µ2

J2
). Introducing the slack variable

σ ∈ R|J2|, the tuples satisfying (4.4) are equivalently characterized by the system

∂L1

∂x1
(x1, x2, µ1

A+
, 0, µ1

J1 , 0) = a1,
∂L2

∂x2
(x1, x2, µ2

A+
, 0, µ2

J1 , 0) = a2,

µ1
J1
≥ 0, µ2

J1
≥ 0, gJ1(x1, x2) = bJ1 , gJ2(x1, x2)− σ = bJ2 , σ ≥ 0,

µ1
A1

0\A2
0
≥ 0, µ2

A2
0\A1

0
≥ 0, gA+(x1, x2) = bA+ ,

(4.8)

with respect to u = (x1, x2, µ1
A+
, µ1

J1
, µ2

A+
, µ2

J1
, σ). System (4.8) is a constrained equation

(3.7), where Φ : Rn1×Rn2×R|A+|×R|J1|×R|A+|×R|J1|×R|J2| → Rn1×Rn2×R|A+|×R|J1|×R|J2|,

Φ(u) =



∂L1

∂x1
(x1, x2, µ1

A+
, 0, µ1

J1 , 0),

∂L2

∂x2
(x1, x2, µ2

A+
, 0, µ2

J1 , 0),

gA+(x1, x2),

gJ1(x1, x2),

gJ2(x1, x2)− σ


,

K = Rn1 × Rn2 × (R|A
1
+| × R|A

1
0\A2

0|
+ )× R|J1|+ × (R|A

2
+| × R|A

2
0\A1

0|
+ )× R|J1|+ × R|J2|+ ,

with the right-hand side perturbation w = (a1, a2, bJ1 , bA+ , bJ2) (in the definition of K, we
further assume that the components of µ1 and µ2 are ordered in such a way that µ1

A+
=

(µ1
A1

+
, µ1

A1
0\A2

0
), µ2

A+
= (µ2

A2
+
, µ2

A2
0\A1

0
)). The basic solution of interest (of (3.7) with w = 0) is

ū = (x̄1, x̄2, (µ̄1
A1

+
, 0), 0, (µ̄2

A2
+
, 0), 0, 0), and (3.7) is equivalent to (3.10).
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In order to apply Corollary 2.1, consider the Jacobian

Φ′(ū) =



∂2L1

∂x1∂x1

∂2L1

∂x1∂x2

(
∂gA+∪J1
∂x1

)T

0 0

∂2L2

∂x1∂x2

∂2L2

∂x2∂x2
0

(
∂gA+∪J1
∂x2

)T

0

∂gA+

∂x1

∂gA+

∂x2
0 0 0

∂gJ1
∂x1

∂gJ1
∂x2

0 0 0

∂gJ2
∂x1

∂gJ2
∂x2

0 0 −I


,

where the derivatives are computed at the same points as in (4.7) (skipped for brevity). Since
intK 6= ∅, condition (2.13) holds if and only if this Jacobian has full row rank, which, in its
turn, is equivalent to saying that the matrix

∂2L1

∂x1∂x1

∂2L1

∂x1∂x2

(
∂gA+∪J1
∂x1

)T

0

∂2L2

∂x1∂x2

∂2L2

∂x2∂x2
0

(
∂gA+∪J1
∂x2

)T

∂gA+

∂x1

∂gA+

∂x2
0 0

∂gJ1
∂x1

∂gJ1
∂x2

0 0


(4.9)

has full row rank. By Corollary 2.1, taking into account Remark 2.1, we obtain the following

Proposition 4.1 Let f1, f2 and g be twice differentiable near (x̄1, x̄2), and let their second
derivatives be continuous at (x̄1, x̄2). Let (µ̄1, µ̄2) be such that z̄ = (x̄1, x̄2, µ̄1, µ̄2) is a
solution of (4.2). Let there exist a partition (J1, J2) of A0 such that the matrix in (4.9) has
full row rank.

Then there exist a cone C ⊂ Rn1 × Rn2 × Rm and θ > 0 such that intC 6= ∅, and
for every y = (a1, a2, b) ∈ C close enough to (0, 0, 0), there exists a solution z(y) =
(x1(y), x2(y), µ1(y), µ2(y)) of (3.2) satisfying ‖z(y)− z̄‖ ≤ ‖y‖/θ.

Taking J1 = ∅, J2 = A0, reduces the matrix in (4.9) to

∂2L1

∂x1∂x1

∂2L1

∂x1∂x2

(
∂gA+

∂x1

)T

0

∂2L2

∂x1∂x2

∂2L2

∂x2∂x2
0

(
∂gA+

∂x2

)T

∂gA+

∂x1

∂gA+

∂x2
0 0


.
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If this matrix has full row rank, Proposition 4.1 is automatically applicable with the specified
partitions. Observe that if A0 = ∅, which is still weaker than the strict complementarity
condition, this matrix takes the form

∂2L1

∂x1∂x1

∂2L1

∂x1∂x2

(
∂gA
∂x1

)T

0

∂2L2

∂x1∂x2

∂2L2

∂x2∂x2
0

(
∂gA
∂x2

)T

∂gA
∂x1

∂gA
∂x2

0 0


,

the matrix appearing in [25, Proposition 2] as a part of the condition ensuring the local
Lipschitzian error bound for (4.2).

Observe that here, not only the assumptions of Corollary 2.1 but even the stronger
Robinson’s condition can be satisfied for some branches, being equivalent to saying that
the Mangasarian–Fromovitz constraint qualification (MFCQ) holds for the system (4.8) at ū,
and with (a1, a2, b) = (0, 0, 0). The following is the model example widely used in GNEP
literature.

Example 4.1 ([12, Example 1.1]) Consider the GNEP (4.1) with f1 : R × R → R,
f1(x1, x2) = (x1 − 1)2, f2 : R × R → R, f2(x1, x2) = (x1 − 1/2)2, g : R × R → R,
g(x1, x2) = x1 + x2 − 1. The solution set of the related KKT-type system (4.2) has the
form{

(x1, x2, µ1, µ2) ∈ R× R× R× R
∣∣∣∣ x1 = t, x2 = 1− t, µ1 = 2(1− t), µ2 = 2(t− 1/2),

t ∈ [1/2, 1]

}
.

For y = (a1, a2, b) ∈ R× R× R close enough to (0, 0), the perturbed KKT-type system
(4.3) has the form

2(x1 − 1)− a1 + µ1 = 0, 2(x2 − 1/2)− a2 + µ2 = 0,
µ1 ≥ 0, µ1(x1 + x2 − 1− b) = 0, µ2 ≥ 0, µ2(x1 + x2 − 1− b) = 0, x1 + x2 ≤ 1 + b.

The solution set of this system is(x1, x2, µ1, µ2) ∈ R× R× R× R

∣∣∣∣∣∣∣∣∣∣
x1 = t, x2 = 1 + b− t,

µ1 = 2(1− t) + a1, µ2 = 2

(
t− 1

2
− b
)

+ a2,

t ∈
[

1

2
− 1

2
a2 + b, 1 +

1

2
a1

]
 .

Hence, all solutions of the unperturbed KKT-type system are stable subject to arbitrary
perturbations of the specified kind if they are small enough.

At any solution ((t, 1 − t), (2(1 − t), 2(t − 1/2))) with t ∈ (1/2, 1), satisfying the strict
complementarity condition, the Jacobian in (4.7) appears to be

Φ′(ū) =

 2 0 1 0
0 2 0 1
1 1 0 0

 .
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It has full row rank, and hence, stability of this solution subject to arbitrary perturbations
of the type under consideration follows from the Banach open mapping theorem, since Φ is
affine. If we add some higher-order terms in (4.1), vanishing at (t, 1− t), this conclusion will
remain valid for small perturbations, but with the reference to the Graves theorem.

Consider now the solution ((1/2, 1/2), (1, 0)) violating strict complementarity. Then
N = ∅, A2

+ = ∅, A0
1 = ∅, implying that A0 = ∅, and hence, the system (3.6) reduces to

2(x1 − 1) + µ1 = a1, 2(x2 − 1/2) + µ2 = a2, x1 + x2 = 1 + b, µ2 ≥ 0,

giving a single branch of the solution set. Being considered as a constraint system, and
with (a1, a2, b) = (0, 0, 0), this system satisfies MFCQ at the solution in question, which
is equivalent to saying that Robinson’s condition holds for the corresponding constrained
equation. Therefore, even after adding higher-order terms in (4.1), vanishing at (1/2, 1/2),
the solution in question will be stable subject to arbitrary small perturbations of the specified
kind, according to Robinson’s stability theorem.

Solution ((1, 0), (0, 1)) can be considered similarly, and with similar conclusions.
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