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Abstract  
Saturation of hadron structure functions at small x may proceed fa~ter 

if 'hot spots' have a fractal structure implied by evolution equations. 

I N T R O D U C T I O N  

Perturbative calculation of the evolution of quark and gluon distri- 
butions within a hadron show rapid increase of these functions at low 
values of the Bjorken x-variable, for a fixed Q2. However, the unitarity 
condition should prevent their growth at high parton densities t. The 
partons start to interact and their recombination might balance their 
number so that structure function~(almost) saturate at small x. It is 
very importnnt how the partons are spread over volume of a hadron 
when these processes begin to play a role. It is unnecessary to get 
high densities over the whole volume. There could appear highly 
packed 'hot spots' by which one could imply the constituent quarks, 
for example (for a brief reviews see 2). Even more, there could exist 
inhomogeneous regions within such 'hot spots'. All these effects favour 
faster saturation of the structure functions. 

As one of such possibilities we would like to propose the space- 
time picture of 'hot spots' with a fractal distribution of partons within 
them. The evolution equations favour the fractal structure of parton 
cascades 3-5 in momentum space with QCD anomalous dimension being 
closely related to Renyi dimensions. Therefore, one could await for 
the fractal structure of the cascading 'tree' in space-time, as well. It 
means that the parton ladder evolution gives rise to a stable (in the 
infinite momentum frame) fractal configuration of partons inside of 
a 'hot spot',so that the same number of partons can provide higher 
density in some subregions compared to the homogeneous distribution 
(e.g. the density of branches of an usual tree is much higher than the 
average density over its whole volume). Herefrom it follows that there 
could be faster saturation of structure functions for smaller fractal 
dimensions. 
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Let us note that the various power laws have been experimentally 
observed for the structure factors of numerous macroscopic fractal 
aggregates by diffractive scattering of neutrons, electrons and 
photons s-s. The similar regularities may show up for structure func- 
tions if the distribution of scatterers within hadrons is a fractal one. 

T H E  M O D E L  

To get some quantitative estimates , one should use a definite 
model. We assume that, in soft collisions, a hadron (or a constituent 
quark) is viewed as a collection of smaller colorless sources 1, filling in 
its interior according to a fractal law. It reminds of the model proposed 
in 11 where each hadron (nucleus) is treated as a dilute system of heavy 
quark-antiquark pairs. That is why one can boldly use the results of 
n just replacing the assumption about the homogeneous distribution 
of these pairs by taking into account the fractal distribution of sources. 
Summing up all successive interactions with sources, one gets 11 the 
integral relation 2. between the structure function xG(x, Q2) and the 
overall source S in a form 

1 D(x,O 2) = - In( ) [_O'dytl- 

where D(x, Q~) = xG(x, Q2),N~ is the number of colors, C.4 = 3, 
a ,  is QCD coupling constant, the integration over b 2 and z takes into 
account the space (transverse and longitudinal) structure of the source 
S which is normalised to the number of patrons so that 

~ r ) 2  --~-S(k, b, z) = D(x, (2) Q2). 

The overall source may be represented as a product of a single (almost 
pointlike) source s(k) and of the space density of such sources p(r) i.e. 

S(k, b, z) = p(r)s(k) (3) 

with a normalization to the total number of the sources A 

f d a r  p(r) = A. (4) 

1, Such a picture could arise in the effective lagrangian approach advocated in 10 where 
constituent quarks are treated as current quarks surrounded by a pion cloud formed due to 
cascade-type branching. 

2, We are considering the gluon densities here. The similar equations are valid for quark- 
antiquark densities. Due to shortage of space, we refer the reader for details to the paper 11 
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Herefrom, it is easy to see that the structure function satisfies the 
equation 

c~D gr 2 -  1 1 = 

(s) 
0 2 A 

It is the sources density #(r) what should account for the fractal 
structure of the whole source. The particular form of it is very compli- 
cated for different aggregates since p(r) should be very irregular func- 
tion. However, before going into details let us note that the solutions of 
(5) do not depend on fractal dimension if the exponent in the integral 
is either small or large. In the first case,using Taylor expansion one 
gets rid of p due to the normalization condition (4) while, in the second 
one, the integral term may be neglected at all. Thus any dependence 
on the fractal dimension may appear only for intermediate values of 
Q2. This is understandable because at small sizes (large Q2 ) one deals 
with a single source while at large sizes one does not reveal at all the 
internal structure of the overall source. Thus in both cases the fractal 
structure is hidden somehow and it can be only resolved by using an 
appropriate scale as is common for any fractal in nature. 

To proceed further, one should use a definite model of p(r). The 
more irregular it is, the larger effects may be observed. Our aim is to 
demonstrate qualitative effects not to dive into particular details. That 
is why, instead of using genuine fractal laws, we apply the strongly 
smoothened inhomogeneous isotropic distribution of p(r) depending 
only on the absolute value of the radius which looks like 

d ,  rdl-3 
dr) =  7-e(n- r), (6) 

which for d I -- 3 reduced to the homogeneous 3-dimensional one 
treated in u. It corresponds to a fractal with a central symmetry 
spread over the whole volume filling in empty places. Thus the system 
becomes less irregular and should show smaller effects compared to 
a genuine fractal. For an arbitrary dl, the equation becomes very 
complicated. Therefore, we demonstrate in the analytical form here 
the difference between the cases d I = 3 and d! = 2 only even though 
d I = 1 can be easily treated as well. 

For d I = 3 and as = coast, it becomes 

= 1 - V ( 1 - e - x - X e - x  ) (7) 
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with 

while for d I = 2 it is 

3XCAa~ D 
x = 2 ( N 2  - 1 ) Q 2 R ~ '  

N~ - 1R21n, )[1- ~ : - ~ - - ~  

3 ~F(3, X X x + 3 + 1; ~ + 2;-1) + 

3 r X .X -1)]  + ~ - ~  (3, ~ +2,-~ + 3; , (8) 

where F is a hypergeometric function. 
For at  = cons t ,  the general solution of eqs. (7), (8) may be written 

a s  

' ~  , 

where ~ ( X )  ate the functions appearing in the square brackets in 
(7) and (8), correspondingly. These equations remind of 'qain-loss' 
equations with higher order correlations taken into account. 

Comparing equations (7) and (8) one easily sees that the limits for 
both equations at large and small X coincide while the higher order 
corrections differ. Namely, for d I = 2 the derivative OD]OQ ~ is slightly 
lower at small X than for d f = 3 indicating stronger saturation of the 
structure function at low dimensions. The corresponding correction 
factors to the leading linear in X term are equal to (1 -3X/8)  for d I =3 
and (1 - (2 ]3 ) ln2x )  for d! = 2. However,the net effect appears to be 
too small in such a model to be noticed in present day experiments. 
Computer calculations have showsn that the structure functions change 
by at most ,~ 5% for such a smoothed matte[ distribution. One should 
develop more elaborate model to get stronger effects. 

Here we aimed at the qualitative results only. Our particular model 
(6) of the inhomogeneous distribution inspired by fractal laws provides 
rather small effects but one can hope for larger ones for non-smoothed 
fractal behaviour. As usually, such effects may be masked by the 
structure functions at lower Q2 used as an input 'initial' condition. 

In conclusion, we have shown that the fractal distribution of sources 
within 'hot spots' may give rise to faster saturation of hadronic struc- 
ture functions in small-x region. 

We are very grateful to R.M. Weiner for the warm hospitality 
during our stay at Marburg University where this work was started. 
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