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Abstract—In this paper we consider the NP -hard 1|rj |
∑

Tj scheduling problem, suggesting
a polynomial algorithm to find its approximate solution with the guaranteed absolute error.
The algorithm employs a metric introduced in the parameter space. In addition, we study the
possible application of such an approach to other scheduling problems.
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1. INTRODUCTION

Consider a set N = {1, 2, . . . , n} of n requests that have to be served by a single machine. The
machine is ready to start servicing at the time t0 = 0 and may simultaneously serve at most one
request. Any interruptions during servicing are forbidden. For each request j ∈ N , the given
parameters are the arrival time rj , the service time pj and the directive deadline dj . A schedule
π = {j1, j2, . . . , jn} defines an order to serve the requests. A natural approach is to study early
schedules that satisfy

Cj1(π) = rj1 + pj1 ,

Cjk(π) = max
{
rjk , Cjk−1

(π)
}
+ pjk , k = 2, 3, . . . , n,

where Cj(π) denotes the service termination time of request j in a schedule π. It is required to
construct an optimal schedule π∗ that minimizes the objective function in the form of the total
tardiness

∑
j∈N Tj(π), where Tj(π) = max {0, Cj(π)− dj} means the tardiness of request j in a

schedule π. Subsequently, we will omit the dependence on π whenever no confusion occurs. This
problem is NP -hard [5] and denoted by 1|rj |

∑
Tj [6].

In fact, the problem 1|rj |∑Tj is completely described by 3n parameters, namely, the directive
deadlines, the service times and the arrival times of n requests. Throughout the paper, we will

consider example A of this problem with the given 3n parameters
{
rAj , p

A
j , d

A
j , j = 1, 2, . . . , n

}
,

which completely characterize the problem.

In the special case rj = 0, j ∈ N , the total tardiness problem was earlier solved in [8] using the

polynomial approximate algorithm with a complexity of O(n
7

ε ) operations. For this case another
well-known solution method is the pseudopolynomial algorithm that has complexity O

(
n4∑ pj

)
,

see [7]. If

p1 � p2 � · · · � pn,

d1 � d2 � · · · � dn,

732
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then the complexity of the pseudopolynomial algorithm can be reduced to O
(
n2∑ pj

)
opera-

tions [9]. For the case 1|rj , pj = p|∑Tj, we also mention the polynomial algorithm with O(n7)
operations that was suggested by P. Baptiste in [4].

The present paper introduces an approximate solution approach to the problem 1|rj |∑Tj with
the guaranteed error that employs a metric in the parameter space. We also analyze the possible
application of this approach to other scheduling problems. Finally, we test the suggested approach
using a series of numerical experiments.

2. METRIC FOR PARAMETER SPACE

The problem 1|rj |
∑

Tj is completely described by the 3n parameters above. And so, we may
consider the examples of this problem as the points in the 3n-dimensional parameter space Ω =
{r1, . . . , rn, p1, . . . , pn, d1, . . . , dn}.

Lemma 1. Let examples A and B be characterized by the same service times and the same
directive deadlines, i.e.,

pAj = pBj , dAj = dBj , j ∈ N.

Then for any schedule π we have
∣
∣
∣
∣
∣
∣

∑

j∈N
TA
j (π)−

∑

j∈N
TB
j (π)

∣
∣
∣
∣
∣
∣
� nmax

j∈N

∣
∣
∣rAj − rBj

∣
∣
∣ . (1)

Proof of Lemma 1. The definition of tardiness and the well-known inequality

|max{a, b} −max{c, d}| � max{|a− c|, |b− d|}, ∀a, b, c, d ∈ R, (2)

yield
∣
∣
∣
∣
∣
∣

∑

j∈N
TA
j −

∑

j∈N
TB
j

∣
∣
∣
∣
∣
∣
�
∑

j∈N

∣
∣
∣CA

j − CB
j + dBj − dAj

∣
∣
∣

�
∑

j∈N

∣
∣
∣CA

j −CB
j

∣
∣
∣+

∑

j∈N

∣
∣
∣dAj − dBj

∣
∣
∣ .

(3)

Owing to the same directive deadlines,
∣
∣
∣
∣
∣
∣

∑

j∈N
TA
j −

∑

j∈N
TB
j

∣
∣
∣
∣
∣
∣
�
∑

j∈N

∣
∣
∣CA

j − CB
j

∣
∣
∣ . (4)

Taking into account the properties of the early schedules, note that
∣
∣
∣CA

j1 − CB
j1

∣
∣
∣ =

∣
∣
∣rAj1 − rBj1

∣
∣
∣ � max

j∈N

∣
∣
∣rAj − rBj

∣
∣
∣ ,

∣
∣
∣CA

jk
− CB

jk

∣
∣
∣ � max

{∣
∣
∣rAjk − rBjk

∣
∣
∣ ,
∣
∣
∣CA

jk−1
− CB

jk−1

∣
∣
∣
}
� max

j∈N

∣
∣
∣rAj − rBj

∣
∣
∣ , k = 2, . . . , n.

These conditions jointly with inequality (4) give the desired result.

Lemma 2. Let examples A and B be characterized by the same arrival times and the same
directive deadlines, i.e.,

rAj = rBj , dAj = dBj , j ∈ N.
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Then for any schedule π we have
∣
∣
∣
∣
∣
∣

∑

j∈N
TA
j (π)−

∑

j∈N
TB
j (π)

∣
∣
∣
∣
∣
∣
� n

∑

j∈N

∣
∣
∣pAj − pBj

∣
∣
∣ . (5)

Proof of Lemma 2. Inequality (4) also holds under the hypotheses of the lemma, that is,

∣
∣
∣
∣
∣
∣

∑

j∈N
TA
j −

∑

j∈N
TB
j

∣
∣
∣
∣
∣
∣
�
∑

j∈N

∣
∣
∣CA

j − CB
j

∣
∣
∣ .

Using the properties of the early schedules and the same arrival times, we obtain
∣
∣
∣CA

j1 − CB
j1

∣
∣
∣ =

∣
∣
∣pAj1 − pBj1

∣
∣
∣ �

∑

j∈N

∣
∣
∣pAj − pBj

∣
∣
∣ ,

∣
∣
∣CA

jk
− CB

jk

∣
∣
∣ �

∣
∣
∣pAjk − pBjk

∣
∣
∣+

∣
∣
∣CA

jk−1
− CB

jk−1

∣
∣
∣ �

∑

j∈N

∣
∣
∣pAj − pBj

∣
∣
∣ , k = 2, . . . , n.

These conditions jointly with inequality (4) give the desired result.

Lemma 3. Let examples A and B be characterized by the same arrival times and the same service
times, i.e.,

rAj = rBj , pAj = pBj , j ∈ N.

Then for any schedule π we have
∣
∣
∣
∣
∣
∣

∑

j∈N
TA
j (π)−

∑

j∈N
TB
j (π)

∣
∣
∣
∣
∣
∣
�
∑

j∈N

∣
∣
∣dAj − dBj

∣
∣
∣ . (6)

Proof of Lemma 3. Under the hypotheses of this lemma, CA
jk

= CB
jk
, k ∈ N , and inequality (3)

acquires the form
∣
∣
∣
∣
∣
∣

∑

j∈N
TA
j −

∑

j∈N
TB
j

∣
∣
∣
∣
∣
∣
�
∑

j∈N

∣
∣
∣dAj − dBj

∣
∣
∣ .

In other words, the statement of Lemma 3 is true.

Theorem 1. The function

ρ(A,B) = nmax
j∈N

∣
∣
∣rAj − rBj

∣
∣
∣+ n

∑

j∈N

∣
∣
∣pAj − pBj

∣
∣
∣+

∑

j∈N

∣
∣
∣dAj − dBj

∣
∣
∣ (7)

that is defined on the example space Ω× Ω satisfies the axioms of a metric.

Proof of Theorem 1. Obviously, the function ρ(A,B) is symmetric and nonnegative; more-
over, ρ(A,B) = 0 if and only if A = B. And the triangle inequality follows immediately from the
properties of the absolute value of the sum of two numbers.

Lemma 4. For any examples A and B and any schedule π, we have the inequality
∣
∣
∣
∣
∣
∣

∑

j∈N
TA
j −

∑

j∈N
TB
j

∣
∣
∣
∣
∣
∣
� ρ(A,B). (8)
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Proof of Lemma 4. Let example C have the same arrival times and the same service times
as example A and the same directive deadlines as example B. Next, let example D have the
same arrival times as example A and the same directive deadlines and the same service times as
example B. It appears from Lemmas (1)–(3) that

∣
∣
∣
∣
∣
∣

∑

j∈N
TA
j −

∑

j∈N
TB
j

∣
∣
∣
∣
∣
∣
�

∣
∣
∣
∣
∣
∣

∑

j∈N
TB
j −

∑

j∈N
TD
j

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

∑

j∈N
TD
j −

∑

j∈N
TC
j

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∑

j∈N
TA
j −

∑

j∈N
TC
j

∣
∣
∣
∣
∣
∣
� nmax

j∈N

∣
∣
∣rAj − rBj

∣
∣
∣+ n

∑

j∈N

∣
∣
∣pAj − pBj

∣
∣
∣+

∑

j∈N

∣
∣
∣dAj − dBj

∣
∣
∣ = ρ(A,B).

3. PARAMETER TRANSFORMATION METHOD

Theorem 2. Let πA and πB be the optimal schedules for examples A and B. Then

∑

j∈N
TA
j (πB)−

∑

j∈N
TA
j (πA) � 2ρ(A,B). (9)

Proof of Theorem 2. Using Lemma 4 we obtain

∑

j∈N
TA
j (πB)−

∑

j∈N
TA
j (πA)

=

⎛

⎝
∑

j∈N
TA
j (πB)−

∑

j∈N
TB
j (πB)

⎞

⎠+

⎛

⎝
∑

j∈N
TB
j (πB)−

∑

j∈N
TB
j (πA)

⎞

⎠

+

⎛

⎝
∑

j∈N
TB
j (πA)−

∑

j∈N
TA
j (πA)

⎞

⎠ � 2ρ(A,B).

This theorem allows solving the problem 1|rj |
∑

Tj by a procedure called the parameter trans-
formation method. Its main idea is to employ the optimal schedule of some (pseudo)polynomial
example B as the schedule for example A. Owing to Theorem 2 the error of this solution can
be estimated using the function ρ(A,B). It seems natural to construct example B by minimizing
the function ρ(A,B). Therefore, the problem 1|rj |∑Tj is replaced with the metric minimization
problem.

Consider the case where example B must belong to a certain polynomially or pseudopolynomially
solvable class of examples that is defined by the system of inequalities

A×RB + B × PB + C ×DB � H.

Here RB = (rB1 , . . . , r
B
n )

�, PB = (pB1 , . . . , p
B
n )

�, DB = (dB1 , . . . , d
B
n )

�, with pBj � 0 and rBj � 0,

j ∈ N ; � denotes transposition; A,B, and C are matrices of dimensions m× n, while H is a column
vector of m elements.

In this case the metric minimization problem can be rewritten as the linear programming problem

min n× (yr − xr) + n×
∑

j∈N

(
ypj − xpj

)
+
∑

j∈N

(
ydj − xdj

)
, (10)
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subject to the constraints

xr � rAj − rBj � yr, j ∈ N,

xpj � pAj − pBj � ypj , j ∈ N,

xdj � dAj − dBj � ydj , j ∈ N,

0 � rBj , 0 � pBj , j ∈ N,

A×RB + B × PB + C ×DB � H.

This problem contains (7n + 2) unknown variables, namely, rBj , p
B
j , d

B
j , x

p
j , y

p
j , x

d
j , y

d
j , x

r, and
yr, where j ∈ N .

Nevertheless, in many situations the function ρ(A,B) is separable and there is no need for using
linear programming methods, which appreciably simplifies minimization.

3.1. Application of the Parameter Transformation Method to Other Scheduling Problems

The described method is not rigidly bound to the form of the objective function. In other words,
this method can be adopted to solve other scheduling problems. We extend Theorem 2 to the case
of a general-form objective function F (π) as follows.

Theorem 3. Let F (π) be an arbitrary objective function and let ρ(A,B) be a metric function
that satisfies the inequality

∣
∣
∣FA(π)− FB(π)

∣
∣
∣ � ρ(A,B) (11)

for any A,B, and π. In addition, let πA and πB be the optimal schedules for examples A and B,
respectively. Then

FA
(
πB
)
− FA

(
πA
)
� 2ρ(A,B). (12)

Proof of Theorem 3. Is the same as the proof of Theorem 2 with
∑

j∈N Tj replaced by F .

Consequently, to use the parameter transformation method it suffices to construct the func-
tion ρ(A,B) satisfying inequality (11). Such functions were constructed earlier for the problems
1||∑ Tj and 1|rj |Lmax in the papers [1, 3], respectively. Below we will suggest possible forms of
these functions for the general cases of additive and maximal objective functions.

Lemma 5. For the additive objective function

F (π) =
∑

j∈N
φj(π, r1, . . . , rn, p1, . . . , pn, dj), (13)

the function

ρ(A,B) =
∑

j∈N

∑

i∈N

(
Rji

∣
∣
∣rAj − rBj

∣
∣
∣+ Pji

∣
∣
∣pAj − pBj

∣
∣
∣
)
+
∑

j∈N
Dj

∣
∣
∣dAj − dBj

∣
∣
∣ (14)

satisfies inequality (11). Here Rji and Pji are the Lipschitz constants of the function φi in the
variables rj and pj, respectively, while Dj is the Lipschitz constant of the function φj in the variable
dj(i, j ∈ N).
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Lemma 6. For the maximal objective function

F (π) = max
j∈N

φj(π, r1, . . . , rn, p1, . . . , pn, dj), (15)

the function

ρ(A,B) =
∑

j∈N

(
Rj

∣
∣
∣rAj − rBj

∣
∣
∣+ Pj

∣
∣
∣pAj − pBj

∣
∣
∣
)
+Dmax

j∈N

∣
∣
∣dAj − dBj

∣
∣
∣ (16)

satisfies inequality (11). Here Rj and Pj are the largest Lipschitz constants of the functions φi in
the variables rj and pj, respectively, while D is the largest Lipschitz constant of the functions φj in
the variable dj(i, j ∈ N).

Note that functions (14) and (16) are separable, which appreciably simplifies their minimization.

4. NUMERICAL EXPERIMENTS

A series of numerical experiments was performed to estimate the efficiency of the suggested
scheme. The search classes of the polynomially solvable examples are presented by Table 1.

For the first three classes the solution is the schedule with the nondescending order of the free
parameter values. For the two last classes the solution algorithms were described in [2, 4]; their
complexities make up O(n7) and O(n4∑ pj) operations, respectively.

To find the polynomially solvable example B within the above classes that is closest to a given
example, we have to minimize the functions

f(r) = n×max
j∈N

∣
∣
∣rAj − r

∣
∣
∣ ; (17)

g(p) = n×
n∑

j=1

∣
∣
∣pAj − p

∣
∣
∣ ; (18)

h(d) =
∑

j∈N

∣
∣
∣dAj − d

∣
∣
∣ . (19)

Lemma 7. 1) The minimum of function (17) is achieved at the point r =
rAmax+rAmin

2 , where rAmax =
max
j∈N

rAj and rAmin = min
j∈N

rAj .

2) The minimum of function (18) is achieved at the point p ∈
{
pA1 , . . . , p

A
n

}
.

3) The minimum of function (19) is achieved at the point d ∈
{
dA1 , . . . , d

A
n

}
.

Table 1. The classes of examples used in numerical experiments

Class of examples Metric between example B from the class
and an arbitrary example A

{PR : pj = p, rj = r, j ∈ N} ρ(A,B) = n×
n∑

j=1

∣
∣pAj − p

∣
∣+ n×max

j∈N

∣
∣rAj − r

∣
∣

{PD : pj = p, dj = d, j ∈ N} ρ(A,B) = n× ∑

j∈N

∣
∣pAj − p

∣
∣+

∑

j∈N

∣
∣dAj − d

∣
∣

{RD : rj = r, dj = d, j ∈ N} ρ(A,B) = n×max
j∈N

∣
∣rAj − r

∣
∣ +

∑

j∈N

∣
∣dAj − d

∣
∣

{P : pj = p, j ∈ N} ρ(A,B) = n× ∑

j∈N

∣
∣pAj − p

∣
∣

{R0 : rj = 0, j ∈ N} ρ(A,B) = n×max
j∈N

∣
∣rAj − r

∣
∣
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Proof of Lemma 7. The function f(r) can be written as

n×max
j∈N

∣
∣
∣rAj − r

∣
∣
∣ = nmax

{
r − rAmin, r

A
max − r

}

= n

(
rAmax − rAmin

2
+

∣
∣
∣
∣
∣
r − rAmax + rAmin

2

∣
∣
∣
∣
∣

)

.

Obviously, it has the minimum at the point rmax+rmin
2 .

Let the function g(p) be minimized at the point p0. In this case, either g′(p0) = 0 or p0 ∈{
pA1 , . . . , p

A
n

}
. Recall that g(p) represents a piecewise linear function; hence, its vanishing derivative

implies that the function is constant on some interval
[
pAk , p

A
k+1

]
, k = 1, . . . , n−1. And the boundary

points pAk and pAk+1 are also the minimum points.

The last statement of Lemma 7 regarding the minimum of the function h(d) can be established
by analogy.

Note that several series of numerical experiments were performed. All series involved the exam-

ples with the uniformly distributed parameters on the intervals [1, 100] for pAj ,
[
pj,
∑

j∈N pj
]
for dAj ,

and [0, dj − pj ] for r
A
j .

The first series of the experiments was intended to estimate the difference between the right-
and left-hand sides of the inequality from Lemma 4. This difference characterizes the error of
the method. For each n = 10, 20, . . . , 100, actually 10 000 pairs of examples were generated. In

these experiments the schedules were generated randomly. The quantity

∣
∣
∣
∑

j∈N
TA
j −
∑

j∈N
TB
j

∣
∣
∣

ρ(A,B) was
calculated for each pair. In addition, the percentage contributions of the metric terms that depend
on the service times, directive deadlines and arrival times were calculated in order to identify the
parameters having the major effect on the metric function.

Table 2 shows the results. The mean value of

∣
∣
∣
∑

j∈N
TA
j −
∑

j∈N
TB
j

∣
∣
∣

ρ(A,B) varies by 5–10% under
increasing n, while the metric terms that depend on the service times, directive deadlines and
arrival times make approximate contributions of 35%, 20%, and 45%, respectively, to the metric
function.

The second series of experiments was intended to test the parameter transformation method.
The experiments were organized as follows. For each n = 4, 5, . . . , 10, actually 10 000 examples were
generated. The above-mentioned scheme was applied to each example to construct the approximate
solution with the objective function Fe, and then the exact solution with the objective function F ∗

was obtained using the branch-and-bound algorithm. Next, the absolute error δ = Fe − F ∗ of the
scheme was compared with its upper estimate (9) by calculating the ratio

Δ =
Fe − F ∗

2ρ(A,B)
. (20)

The numerical experiments yielded the following outcomes. For the polynomially solvable exam-
ples searched within the class RD, the mean error of solution grows from 20% to 30% with respect
to the upper estimate (9) under increasing n. Therefore, the schedule with the ascending order of
the service times mismatches the examples with the given parameter distribution. For the other
classes, the mean error is independent of n, making up few percent of the maximum theoretical
error. This really small error occurred owing to the exact solution of the problem by the parameter
transformation method almost in 20% cases. The relationship between the mean error Δ and n
can be observed in Table 3.
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Table 2. The mean difference between the objective functions
and the percentage contributions of the metric terms

n
|∑TA

j − TB
j |

ρ

ρr
ρ

ρp
ρ

ρd
ρ

10 11.7% 35.6% 42.3% 20.6%
20 10.4% 39.7% 39.4% 19.4%
40 8.9% 42.4% 37.4% 18.6%
60 7.8% 43.6% 36.6% 18.3%
80 7.3% 44.4% 34.4% 18.0%
100 6.7% 44.9% 35.7% 17.9%

Table 3. The mean experimental error stated as a percent
of the theoretical error

n PR PD RD P R0

4 2.5% 4.6% 20.8% 1.8% 2.9%
5 2.6% 4.8% 23.1% 1.9% 2.8%
6 2.6% 4.6% 24.6% 1.9% 2.7%
7 2.6% 4.7% 26.0% 1.9% 2.5%
8 2.5% 4.6% 27.0% 2.0% 2.3%
9 2.4% 4.7% 27.9% 2.0% 2.2%
10 2.4% 4.6% 28.6% 1.9% 2.1%

5. CONCLUSIONS

This paper has presented a new approximate solution method for the total tardiness problem.
The whole idea of the approach consists in introducing a metric in the parameter space and using
an auxiliary closest example for a given example in terms of this metric.

Among possible directions of further research, we mention the development of more efficient
metrics for scheduling problems and the search for new polynomially or pseudopolynomially solvable
classes of examples that are applicable with the parameter transformation method.
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