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Abstract In this paper we prove that local fractional derivatives of differentiable functions
are integer-order derivative or zero operator. We demonstrate that the local fractional deriv-
atives are limits of the left-sided Caputo fractional derivatives. The Caputo derivative of
fractional order α of function f (x) is defined as a fractional integration of order n − α of
the derivative f (n)(x) of integer order n. The requirement of the existence of integer-order
derivatives allows us to conclude that the local fractional derivative cannot be considered
as the best method to describe nowhere differentiable functions and fractal objects. We also
prove that unviolated Leibniz rule cannot hold for derivatives of orders α �= 1.
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Introduction

Fractional calculus as a theory of derivatives and integrals of non-integer orders [1–3] has
a long history [4–6]. As a mathematical tool it has a lot of applications in physics and
mechanics to to describe media and systems with nonlocal and hereditary properties of
power-law type. During more than three hundred years of history of fractional calculus
it has been proposed different definitions of fractional derivatives by Riemann, Liouville,
Riesz, Grünwald, Letnikov, Marchaud, Caputo [1,2]. Fractional-order derivatives can be
characterized by a set of interesting unusual properties such as a violation of the usual
Leibniz rule, a deformations of the usual chain rule, a violation of the semi-group property.
These unusual properties can be used to describe nontrivial and unusual properties of complex
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systems and media. Therefore these properties are valuable and important for applications
in physics and mechanics (see [9–11] and references therein).

Recently, so-called local fractional derivative has been proposed in [12–15] by a motiva-
tion of describing the properties of fractal objects and processes. The definition of the local
fractional derivative is obtained from the Riemann–Liouville fractional derivative by intro-
ducing two changes such as a subtraction of finite number of terms of the Taylor series and
the taking the limit. The motivation of this definition is a studying fractional differentiability
properties of nowhere differentiable functions and fractal objects.

In this paper, we demonstrate that the definition of local fractional derivative can be pre-
sented as a limit of the Caputo fractional derivatives. We note that the Caputo fractional
derivative of order α (n − 1 < α ≤ n) of a function is defined as an action of derivative of
integer order n and then the integration of non-integer order. Therefore the function should
be differentiable n times. In this paper we also prove that local fractional derivatives of dif-
ferentiable functions are integer-order derivative or zero operator. We argued that unviolated
Leibniz rule cannot hold for local fractional derivatives of orders α �= 1.

Local Fractional Derivative via Caputo Fractional Derivative

The local fractional derivativeDα of order α of a function f (x) at the point x = a is usually
defined (see Eq. 2.6 of [13]) by the equation

(Dα f )(a) := lim
x→a

RL
a Dα

x

(
f (x) −

n−1∑
k=0

f (k)(a)

k! (x − a)k

)
, (n − 1 < α ≤ n), (1)

where RL
a Dα

x is the left-sided Riemann–Liouville fractional derivative of order α (see Eqs.
(2.1.15) and (2.1.1) of [2]) that is defined by

RL
a Dα

x f (x) := 1

�(n − α)

dn

dxn

∫ x

a

f (z) dz

(x − z)α
. (n − 1 < α ≤ n). (2)

The Riemann–Liouville fractional derivative RL
a Dα

x is nonlocal operator. For 0 < α ≤ 1,
Eqs. (1) and (2) have the forms

(Dα f )(a) := lim
x→a

RL
a Dα

x

(
f (x) − f (a)

)
, (0 < α ≤ 1), (3)

RL
a Dα

x f (x) := 1

�(1 − α)

d

dx

∫ x

a

f (z) dz

(x − z)α
, (0 < α ≤ 1). (4)

In the fractional calculus is well-known the Caputo fractional derivatives [2,3] suggested
in [16–19]. The left-sided Caputo fractional derivative of order α can be defined via the above
Riemann–Liouville fractional derivative (see Eq. (2.4.1) of [2]) by

( Ca Dα
x f )(x) := RL

a Dα
x

(
f (x) −

n−1∑
k=0

f (k)(a)

k! (x − a)k

)
, (n − 1 < α ≤ n). (5)

As a result, the local fractional derivative (1) of order α at the point x = a can be defined
via the above Caputo fractional derivative by the equation

(Dα f )(a) := lim
x→a

(
C
a Dα

x f
)

(x), (n − 1 < α ≤ n). (6)
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As a result, we can see that local fractional derivative is a limit of the Caputo fractional
derivative.

Proposition The local fractional derivative (1) of order α, where n−1 < α ≤ n and n ∈ N,
at the point x = x0 can be represented by the equation

(Dα f )(a) := 1

�(n − α)
lim
x→a

∫ x

a

dz

(x − z)α
dn f (z)

dzn
, (n − 1 < α ≤ n). (7)

Proof This statement is direct corollary of Theorem 2.1 of [2] (see Eq. (2.4.15) of [2]), where
the left-sided Caputo fractional derivative is represented in the form

C
a Dα

x f (x) := 1

�(n − α)

∫ x

a

dz

(x − z)α
dn f (z)

dzn
, (n − 1 < α ≤ n). (8)

��

The Caputo fractional derivatives C
a D

α
x can be defined for functions belonging to the

space ACn[a, b] of absolutely continuous functions [2]. If f (x) ∈ ACn[a, b], then the
Caputo fractional derivatives exist almost everywhere on [a, b].

It can be directly derived that the left-sided Caputo fractional derivative of the power
function (x − a)β is

C
a Dα

x (x − a)β = �(β + 1)

�(α + β + 1)
(x − a)β−α,

where β > −1 and α > 0. In particular, if β = 0 and α > 0, then the Caputo fractional
derivative of a constant C is equal to zero:

C
a Dα

x C = 0.

For k = 0, 1, 2, . . . , n − 1, we have

C
a Dα

x (x − a)k = 0.

It is important to emphasize that the Caputo fractional derivative is represented by Eq. (8)
as a sequence of two operations, namely, first taking the ordinary derivative of integer order
n and then the integration of fractional order n − α, (see Eq. 2.4.17 of [2]):(

C
a Dα

x f
)

(x) = RL
a In−α

x f (n)(x).

The Riemann–Liouville fractional derivative is represented by the inverse sequence of the
same operations.

Local Fractional Derivative is Derivative of Integer-order

Let us prove the following statement for the local fractional derivatives of n-differentiable
functions.

Proposition Local fractional derivative of order α, where n − 1 < α ≤ n, n ∈ N, on a set
of n-differentiable functions is a derivative of order n ∈ N or zero operator.
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Proof If f (x) is a n-differentiable function in a neighborhood U (x0) of x0 (i.e., f (x) has a
derivative of order n ∈ N in a neighborhood of x0), then the function can be represented by
the Taylor series

f (x) =
n∑

k=0

f (k)(x0)

k! (x − x0)
k + o((x − x0)

n). (9)

If f (x) is a differentiable function (i.e., n = 1), then

f (x) = f (x0) + f (1)(x − x0) + o((x − x0)). (10)

For n-differentiable functions, we can rewrite the local fractional derivative of order n−1 <

α ≤ n in the form

(Dα f )(x0) = lim
x→x0

RL
x0 Dα

x

(
f (x) −

n−1∑
k=0

f (k)(x0)

k! (x − x0)
k

)
,

= lim
x→x0

RL
x0 Dα

x

(
f (n)(x0)

n! (x − x0)
n + o((x − x0)

n)

)
,

= f (n)(x0)

n! lim
x→x0

RL
x0 Dα

x

(
(x − x0)

n + o((x − x0)
n)

)
. (11)

Using �(n + 1) = n! and the equation (see Property 2.1 of [2])

RL
x0 Dα

x (x − x0)
β = �(β + 1)

�(β + 1 − α)
(x − x0)

β−α, (β > −1), (12)

we obtain

(Dα f )(x0) = f (n)(x0)

n! lim
x→x0

�(n + 1)

�(n + 1 − α)

(
(x − x0)

n−α + o
(
(x − x0)

n−α
))

,

= f (n)(x0)

�(n + 1 − α)
lim
x→x0

(
(x − x0)

n−α + o
(
(x − x0)

n−α
))

. (13)

As a result, we get

(Dα f )(x0) =
{

0 n − 1 < α < n,

f (n)(x0) α = n,
(14)

where n − 1 < α ≤ n and n ∈ N, and we use �(n + 1 − n) = �(1) = 1. ��
The proved statement means that the local fractional derivatives cannot be considered as

fractional derivatives on sets of finite (or infinite) numbers of times differentiable functions.
As a corollary of the proved statment we can say that generalizations of the Leibniz rule

for local fractional derivatives Dα of order α > 0 for n-differentiable functions f (x) and
g(x) should give the relation

Dα( f (x) g(x)) =
n∑

k=0

�(α + 1)

�(α − k + 1) �(k + 1)

(Dα−k f (x)
) (Dkg(x)

)
, (α = n ∈ N),

(15)

for integer orders α = n ∈ N or it should give the equality 0 = 0 for noninteger orders α,
n − 1 < α ≤ n.
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For 0 < α ≤ 1, Eq. (14) has the form

(Dα f )(x0) =
⎧⎨
⎩

0 0 < α < 1,

f ′(x0) α = 1.
(16)

Therefore we get the statement that has been proved in [7] as Theorem “No violation of
the Leibniz rule. No fractional derivative”: If the unviolated Leibniz rule

Dα( f (x) g(x)) = (Dα f (x)
)
g(x) + f (x)

(Dαg(x)
)
, (17)

holds for the linear operator Dα and the n-differentiable functions f (x) and g(x), then this
operator is the derivative of integer (first) order, that can be represented as Dα = a(x) D1,
where a(x) are functions on R.

In paper [7] it was proved that violation of relation (17) is a characteristic property of
all types of fractional-order derivatives with α > 0 (and it is obvious for derivatives of
integer-orders n ∈ N greater than one).

A correct form of the Leibniz rule for local fractional derivatives should be obtained from
the fractional generalization of the Leibniz rule for the Riemann–Liouville derivatives that
has the form of the infinite series. The symmetrized expression of this rule is

RL
a Dα

x ( f g)(x) =
∞∑
k=0

(
k

α

) (( RL
a Dα−k

x f
)
(x)

(
Dkg(x)

) + ( RL
a Dα−k

x g
)
(x)

(
Dk f (x)

))
,

(18)

where the f (x) and g(x) are analytic functions on the interval [a, b] (Theorem 15.1 of [1]),
Dk f (x) = f (k)(x), and (

k

α

)
= �(α + 1)

2�(α − k + 1) �(k + 1)
.

It should be noted that the sum of (18) is infinite and it contains integrals of fractional order
for the values k > [α] + 1. Equation (18) has been proposed by Liouville [21] in 1832. Note
that extensions of the Leibniz rule to fractional derivatives are suggested by Osler [22–25].

The left-sided Riemann–Liouville fractional derivative of order α (n − 1 < α ≤ n) of a
function f (x) (see Eqs. (2.4.6) of [2]) can be presented via the Caputo fractional derivative
by

( RL
a Dα

x f
)
(x) = ( C

a Dα
x f

)
(x) +

n−1∑
k=0

f (k)(a)

k! (x − a)k−α, (n − 1 < α ≤ n). (19)

Substitution of Eq. (19) for
(
RL
a Dα f g

)
(x),

(
RL
a Dα f

)
(x) and

(
RL
a Dαg

)
(x) into Eq. (18)

gives a generalized Leibniz rule for the Caputo fractional derivatives. The extension of the
Leibniz rule for the Caputo fractional derivatives also has been suggested by Theorem 3.17
of the Diethelm’s book [20].

Let us give some remarks about Leibniz rule (17) for local fractional derivatives on a set
of non-differentiable functions. It should be noted that statement [26,27] that the Leibniz
rule in the unviolated form (17) holds for non-differentiable functions is incorrect [8]. Let us
give some explanations below.

(1) It should be noted that the Leibniz rule (17) cannot be used for non-differentiable func-
tions that are not fractional-differentiable since the derivatives Dα f (x), Dαg(x) and
Dα

(
f (x) g(x)

)
should exist.
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(2) It is easy to see that nowhere in the proofs proposed in [26,27], the requirement that the
functions f (x) and g(x) are not classically differentiable is not used. Therefore, using
the same proofs, we can get the statement that the Leibniz rule (17) holds for fractional-
differentiable functions f (x), g(x) without the useless assumption that these functions
are not classically differentiable.

(3) The Caputo fractional derivatives C
a D

α
x can be defined for functions belonging to the

space ACn[a, b] of absolutely continuous functions [2]. If f (x) ∈ ACn[a, b], then the
Caputo fractional derivatives exist almost everywhere on [a, b]. If f (x) ∈ ACn[a, b],
then this functions is n-differentiable almost everywhere on [a, b]. The Leibniz rule (17)
holds on a set of differentiable functions only for α = 1.

As a result, we get that the Leibniz rule (17) with local fractional derivative for
f (x), g(x) ∈ ACn[a, b] holds only for α = 1 almost everywhere on [a, b]. In the countable
number of points the Leibniz rule is not performed since the derivatives Dα f (x), Dαg(x)
and Dα( f (x) g(x)) does not exist. Note that the Leibniz rule for fractional derivatives of
orders α = n > 1 (n ∈ N) cannot have the form (17). It should be get the rule in the form
(15).

Conclusion

We prove that local fractional derivatives of differentiable functions are integer-order deriv-
atives or zero operator. We show that definition of local fractional derivative of non-integer
order α (n − 1 < α ≤ n) can be represented by limit of the Caputo fractional derivative of
order α. The Caputo derivative of fractional order α of a function f (x) is defined as an action
of derivative of integer order n and then the integration of non-integer order n−α. Therefore
the function f (x) should be classically differentiable n times, and derivative f (n)(x) of inte-
ger order n should exist. As a result, the local fractional derivative cannot be considered as the
best tool for description of nowhere differentiable functions and fractal objects despite the
motivation to consider these derivatives. We also argued that unviolated Leibniz rule cannot
hold for local fractional derivatives of orders α �= 1.

A problem of strict formulation of “fractal” analogs of derivatives and integrals by exten-
sion of the classical and fractional calculus to nowhere differentiable functions and fractal
sets is very difficult.We can assume that themost promising approaches to fractional calculus
on fractals can be based on methods of “non-integer dimensional spaces” (see [28,29] and
references therein) or “analysis on fractals” [30–33].
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