И НАНОЭЛЕКТРОНИКА

Труды XVII Международного симпозиума

11–15 марта 2013 г., Нижний Новгород

Том 1: секции 1, 2, 4, 5

Влияние нестационарного тепловыделения в кристаллах на спектральные характеристики импульсов при дифракции излучения рентгеновского лазера на свободных электронах

В.А. Бушуев

Московский государственный университет им. М.В. Ломоносова, Москва

e-mail: vabushuev@yandex.ru

Высокая яркость излучения рентгеновских лазеров на свободных электронах (РЛСЭ), которая на 8-10 порядов превышает яркость источников синхротронного излучения 3-го поколения [1], приводит к существенному возрастанию тепловой нагрузки на различные элементы рентгеновской оптики, в том числе и на совершенные кристаллы в системах монохроматизации и в линиях задержки. Неоднородное в пространстве и нестационарное во времени тепловыделение в кристаллах негативным образом влияет на интенсивность дифракции мощных импульсов РЛСЭ [2].

В настоящем докладе более детально, чем в [2], проведен учет граничных условий при решении уравнения теплопроводности, а также проведен расчет неоднородного и нестационарного температурного поля и поля деформаций в кристалле. Основное внимание уделено анализу спектрально-временных характеристик и когерентных свойств отраженных и прошедших импульсов.

Излучение Европейского РЛСЭ представляет собой серии импульсов с длиной волны $\lambda \sim 0.05$ -0.16 нм, расходимостью $\Delta \vartheta_p \sim 1$ -3 мкрад, длительностью отдельных импульсов $\tau_p \sim 10$ -100 фс и энергией $Q_p = \hbar \omega N$, где $N \sim (0.1 \div 20) \cdot 10^{11}$ – число фотонов в импульсе [1]. Импульсы сгруппированы в пачки с длительностью $\tau_b \approx 0.6$ мс и частотой повторения 10 Гц, число импульсов в пачке $n_b \approx 2700$. Излучение РЛСЭ характеризуются практически полной пространственной когерентностью и крайне низкой временной когерентностью с временем $\tau_c \sim 0.1$ -0.3 фс $<<\tau_p$, что приводит к достаточно большой спектральной ширине $\Delta E/E \sim 10^{-3}$.

Пространственно-временно́е распределение температуры $T(\mathbf{r},t)$ определяется из параболического уравнения теплопроводности

$$c_{p}\rho(\partial T/\partial t) = \operatorname{div}(\kappa \cdot \operatorname{grad}T) - s(T - T_{s}) + F,$$
 (1)

где c_p — удельная теплоемкость, ρ - плотность, κ - теплопроводность, s — коэффициент теплообмена с окружающей средой с температурой T_s , $F(\mathbf{r},t)$ — плотность тепловых источников, $\mathbf{r}=(x,y)$ — координата на поверхности кристалла. Температура в (1) и ниже отсчитывается от начальной температуры $T_0(x,y,0)=\mathrm{const.}$ Рассмотрим кристалл в виде пластинки с размерами $L\times L\times l$, где l — толщина кристалла. Доля поглощенной в кристалле энергии $f_{\mathrm{abs}}=1-\exp(-\mu l/\gamma_0)$, где μ — коэффициент поглощения, $\gamma_0=\mathrm{cos}\theta$, θ — угол падения импульсов. Для импульсов с гауссовой формой плотность тепловых источников

$$F(\mathbf{r}, t) = f_{\text{abs}}(\gamma_0 Q_p / \pi l r_1^2) g_x g_y f(t), \text{ где}$$

$$g_x = \exp(-x^2 / r_x^2), \quad g_y = \exp(-y^2 / r_y^2), \tag{2}$$

$$f(t) = (1/\pi^{1/2}\tau_0) \sum_{j=1}^{p} \exp[-(t-t_j)^2/\tau_0^2].$$
 (3)

Здесь $r_x = r_1/\gamma_0$, $r_y = r_1$, t_j - моменты времени падения импульсов на кристалл. Число импульсов p определяется условием $t < t_p$. Поперечный радиус импульса r_1 и его длительность τ_0 связаны с полным размером r_p и длительностью τ_p на полувысоте (FWHM) соотношениями $r_1 \approx 0.6r_p$, $\tau_0 \approx 0.6\tau_p$. На расстоянии z от РЛСЭ $r_p = r_s M$, где r_s — полный размер импульса на выходе из РЛСЭ, $M = \left[(1 + \alpha_s D)^2 + D^2 \right]^{1/2}$, $D = \lambda z/(2.26r_s^2)$, α_s — параметр, характеризующий искривление волнового фронта импульса в плоскости z = 0 [3, 4].

Решение неоднородного уравнение (1) будем искать в приближении постоянных коэффициентов с начальным условием T(x, y, 0) = 0 и граничными условиями $T(\pm L/2, \pm L/2, 0) = 0$; s = 0. В итоге с учетом (2) и (3) получим следующее выражение для температуры кристалла:

$$T(x, y, t) = \Delta T_1 \sum_{j=1}^{p} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Q_{mn}(t - t_j) S_{mm}(x, y), \quad (4)$$

где

$$Q_{mn}(t-t_i) = \exp[-a^2(q_m^2 + q_n^2)(t-t_i)], \qquad (5)$$

$$S_{mn}(x, y) = g_{xm}g_{yn}\cos(q_m x)\cos(q_n y), \qquad (6)$$

$$g_{im} = (2/L) \int_{-L/2}^{L/2} g_i(\xi) \cos(q_m \xi) d\xi , \quad i = x, y.$$
 (7)

Здесь $\Delta T_1 = f_{\rm abs} \gamma_0 Q_p/(\pi c_p \rho l r_1^2)$ - температура нагрева в точке x, y=0 под действием одного импульса, $a^2 = \kappa/c_p \rho$ - коэффициент температуропроводности, $q_k = \pi(2k-1)/L$, k=m,n. При выводе (4) использовано условие $\tau_0 << \tau_T$, где $\tau_T = r_1^2 c_p \rho/4\kappa$ - характерное время расплывания температуры изза теплообмена (приближение δ -импульсов).

Интенсивности *R*- и *T*-импульсов [2]

$$I_C(\mathbf{r},t) = I_0(\mathbf{r},t) \int_{-\infty}^{\infty} G(\Omega) |C(\alpha)|^2 d\Omega, \qquad (10)$$

где $C(\alpha) = R$, T — амплитудные коэффициенты дифракционного отражения и прохождения, $\alpha = [k^2 - (\mathbf{k} + \mathbf{h})^2]/k^2$, $I_0(\mathbf{r}, t)$ — интенсивность падающего излучения, $G(\Omega)$ — спектральная плотность импульсов.

Область "сильного" дифракционного отражения определяется условием $|\alpha| \le 2|\chi_h|$, где χ_h — фурье-компонента поляризуемости кристалла. Так как из-за линейного расширения межплоскостные

расстояния зависят от температуры $T(\mathbf{r},t)$, то α является функцией координат и времени, а также зависит от угловой отстройки $\Delta\theta=\theta-\theta_B$, от частоты $\Omega=\omega-\omega_0$ в энергетическом спектре импульса и от его угловой расходимости q/k_0 :

$$\alpha(\mathbf{r}, t) = 2\sin 2\theta_B [\Delta\theta + (\Omega/\omega_0 + \alpha_T T) \operatorname{tg}\theta_B - q/k_0 \gamma_0].$$
 (8)

Так как $\Delta\theta_p << q/k_0$, то для центральной частоты ω_0 условие эффективной дифракции имеет вид $\Delta T \leq \Delta T_c$, где $\Delta T = T(0,0,t) - T(0.5r_p/\gamma_0,0.5r_p,t)$, $\Delta T_c = \Delta\theta_B {\rm ctg}\theta_B/2\alpha_T$ — критическая температура, $\Delta\theta_B$ — ширина брэгговского отражения, α_T — коэффициент линейного расширения.

Расчеты проводились для симметричного брэгговского отражение (400) от кристалла алмаза типа ІІа ($\lambda_0=0.15$ нм, $\theta_B=57.451^0$, $\Delta\theta_B=11.89$ мкрад, $\mu=18.57$ см⁻¹, l=100 мкм, L=5 мм). Резкая зависимость α_T , c_p и к от температуры, а также зависимость размера импульса r_p от расстояния z приводит к чрезвычайно большому разбросу величин ΔT_c , ΔT_1 и τ_T (см. таблицы 1 и 2).

Таблица 1

Температурный коэффициент линейного расширения $\alpha_T \cdot 10^6$, удельная теплоемкость c_p (Дж·кг⁻¹·К⁻¹), теплопроводность алмаза типа Па к (Вт·м⁻¹·К⁻¹) [5] и критическая температура ΔT_c в зависимости от температуры.

<i>T</i> , K	50	100	150	200	300
α_T , K ⁻¹	00.4	0.05	0.25	0.45	1.02
c_p	5.0	29	91	205	580
κ	9000	10000	6060	4000	2000
ΔT_c	948	75.9	15.2	8.4	3.8

Таблица 2

Температура нагрева ΔT_1 под влиянием одного импульса и характерное время остывания τ_T при $z_1=100$ м ($r_p=300$ мкм) и $z_2=500$ м ($r_p=1400$ мкм). Энергия импульса $Q_p=80$ мкДж ($N=0.6\cdot 10^{11}$).

<i>T</i> , K	50	100	150	200	300
$\Delta T_1(z_1)$	73.4*)	12.7	4.0	1.8	0.7
$\tau_T(z_1)$	0.016	0.083	0.43	1.47	7.62
$\Delta T_1(z_2)$	3.29	0.57	0.18	0.08	0.03
$\tau_T(z_2)$	0.36	1.86	9.6	32.8	169.6

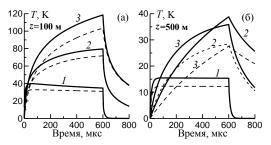


Рис. 1. Зависимость температуры кристалла в максимуме импульса (x = y = 0, сплошные кривые) и на его краю (x = 0, $y = 0.5r_p$, штриховые кривые) при z_1 (а), z_2 (б) и начальных температурах $T_0 = 100$ (I), 200 (2) и 300 К (I)

Из рис. 1 видно, что наименьший нагрев кристалла происходит при начальной температуре $T_0 = 100~\mathrm{K}$. Это вызвано малостью времен теплообмена τ_T (см. табл. 2), сравнимых с интервалом $\Delta t_p = 0.22$ мкс между импульсами в пачке. Более того, только в этом случае следует ожидать высокую

эффективность дифракции, так как здесь выполняется условие $\Delta T \leq \Delta T_c$ и, следовательно, в спектральном интервале $\Delta E/E \approx \Delta \theta_B {\rm ctg} \theta_B \approx 8 \times 10^{-6}$ в отражении участвует практически вся освещаемая падающими импульсами поверхность кристалла.

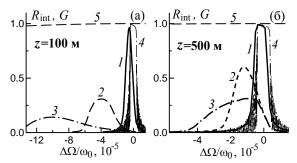


Рис. 2. Интегральный коэффициент отражения $R_{\rm int}$ при начальных температурах кристалла $T_0=100~(I)$, 200~(2) и $300~{\rm K}~(3)$ на расстояниях $z=100~{\rm M}~(a)$ и $z=500~{\rm M}~(б)$ от РЛСЭ, $4-{\rm коэффициент}$ отражения от идеального кристалла, $5-{\rm cnektp}$ падающих импульсов $G(\Omega)$ с шириной $\Delta\Omega_c=2/\tau_c$, где $\tau_c\approx 0.2~{\rm фc}-{\rm время}$ когерентности

Наличие неоднородного температурного поля T(x,y,t) приводит к уменьшению интегрального (по x,y и $t<\tau_b$) спектрального коэффициента отражения, к его уширению, асимметрии и к смещению максимума в отрицательную область спектра (рис. 2). С уменьшением температур T_0 и ΔT_1 (например, за счет уменьшения энергии импульсов Q_p) коэффициенты отражения и прохождения приближаются к таковым для идеального кристалла. В режиме одиночных импульсов с $\tau_p \sim 10$ фс и частотой 120 Γ ц это позволило реализовать процедуру self-seeding для повышения в 40-50 раз степени временной когерентности импульсов на Linac Coherent Light Source (LCLS) в Стенфорде [6].

Таким образом, в настоящей работе показано, что при использовании тонких кристаллов синтетического алмаза (50-150 мкм) с низкой начальной температурой (\approx 100-150 K) и с достаточно малой энергией в импульсе (\leq 100 мкДж), т.е. зарядом банчей \leq 0.02 нК, спектральная ширина дифрагированных импульсов может быть сравнима с шириной дифракционного отражения от совершенного однородного кристалла.

Работа выполнена при поддержке РФФИ (гранты № 12-02-00924, № 13-02-00760) и BMBF Project 05K10CHG.

- 1. Tschentscher Th., XFEL, EU TN-2011-001, Hamburg, Germany (2011).
- 2. Бушуев В.А., Изв. РАН. Сер. физ., **77**, 19 (2013).
- 3. Bushuev V.A., Samoylova L., Nucl. Instrum. Methods A., **635**, S19 (2011).
- 4. Бушуев В.А., Самойлова Л., Кристаллография, **56**, 876 (2011).
- 5. Новиков Н.В., Кочержинский Ю.А., Шульман Л.А. и др. Физические свойства алмаза. Справочник, Киев: Наукова думка, 1987.
- 6. Amann J., Berg W., Blank V. et al., Nature Photonics, 12 August 2012, DOI:10.1038/NPHOTON.2012.180.