A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systemsстатья

Статья опубликована в высокорейтинговом журнале

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 2 июня 2014 г.

Работа с статьей

Прикрепленные файлы

Имя Описание Имя файла Размер Добавлен
1. Полный текст PDEB-C11_MP.pdf 173,7 КБ 28 мая 2014 [goldan]

[1] Izmailov A. F., Kurennoy A. S., Solodov M. V. A note on upper lipschitz stability, error bounds, and critical multipliers for lipschitz-continuous kkt systems // Mathematical Programming. — 2013. — Vol. 142. — P. 591–604. We prove a new local upper Lipschitz stability result and the associated local error bound for solutions of parametric Karush–Kuhn–Tucker systems corresponding to variational problems with Lipschitzian base mappings and constraints possessing Lipschitzian derivatives, and without any constraint qualifications. This property is equivalent to the appropriately extended to this nonsmooth setting notion of noncriticality of the Lagrange multiplier associated to the primal solution, which is weaker than second-order sufficiency. All this extends several results previously known only for optimization problems with twice differentiable data, or assuming some constraint qualifications. In addition, our results are obtained in the more general variational setting. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть