Body mass, population density and offspring number in mammalsстатья

Статья опубликована в журнале из списка RSCI Web of Science

Информация о цитировании статьи получена из Web of Science
Статья опубликована в журнале из перечня ВАК
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 29 мая 2015 г.

Работа с статьей


[1] Polishchuk L. V., Tseitlin V. B. Body mass, population density and offspring number in mammals // ЖУРНАЛ ОБЩЕЙ БИОЛОГИИ. — 2001. — Vol. 62, no. 1. — P. 3–24. The negative raltionship between population density and body mass with the body mass exponent of -0.75 implies that the energy flow through populations of small- and large-bodied species is the same, for individual metabolism scales to body mass raised to the power of +0.75. This relationship called the energetic equvalence rule, has often been observed for mammal species assemblages studied at regional scales. Here we suggest a demography-based mechanism that may generate it. Having analyzed about 130 literature sources, mosty in Russian, we collected demography and body-mass data for 88 mammalian species from the territory and coastal waters of the former Soviet Union. The data were used to construct a number of interspecific relationships. It is shown that (1) the number of offspring per lifetime is approximately inversely proportional to the relative mass at birth (the exponent is not significantly different from -1), (2) the average lifespan is proportional to body mass to the 0.25 power, (3) body mass at birth is proportional to the adult body mass. We develop a simple theory to demonstrate that relations (1) to (3) entail the energetic equivalence rule. The theory also allows us to explain violation of this rule (in non-flying birds, for example), namely, to predict the exponent of relation (1) for any given exponent of the relation between population density and body mass. This is possible because relations (2) and (3) are likely to more universally hold than relation (1). Finally, since natural selection acts on individual traits rather than on population-level ones such as population density, the theory opens up the way to an evolutionary explanation for the energetic equivalence rule.

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть