Radiation-Chemical Reduction of Copper Ions in Nanoporous Matrices Based on High-Density Polyethyleneстатья
Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 20 мая 2019 г.
Аннотация:The effect of preliminary annealing of semicrsytalline high-density polyethylene films on the parameters of nanoporous structure formed during deformation of polymers in physically active liquid environments via the intercrystallite crazing has been studied. Optimal conditions providing the development of a stable open-cell polymeric materials with a high level of porosity (50%) and pore size below 10 nm have been elavorated. For the first time, the in situ reduction of copper ions into copper(0) in the pores of the high-density polyethylene nanoporous polymer matrix has been carried out using the radiation-chemical reduction method. The reaction has led to the formation of nanoscale copper particles within the polymer, which makes it possible to produce metal-polymer nanocomposites with valuable functional properties.