FACE RECOGNITION WITH LOW FALSE POSITIVE ERROR RATEстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Дата последнего поиска статьи во внешних источниках: 13 июня 2019 г.

Работа с статьей


[1] Bagrov N. U., Konushin A. S., Konushin V. S. Face recognition with low false positive error rate // ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. — 2019. — P. 11–15. Nowadays face recognition systems are widely used in the world. In China these systems are used in safe cities projects in production, in Russia they are used mostly in closed-loop systems like factories, business centers with biometric access control or stadiums. Closed loop means that we need to identify people from a fixed dataset: in factory it’s a list of employees, in stadium it’s a list of ticket owners. The most challenging task is to identify people from some large city with an open dataset: we don’t have a fixed set of people in the city, it’s rapidly changing due to migration. Another limit is the accuracy of the system: we can’t make a lot of false positive errors (when a person is incorrectly recognized as another person) because number of human operators is limited and they are expensive. We propose an approach to maximize face recognition accuracy for a fixed false positive error rate using limited amount of hardware. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть