Logistic equation with continuously distributed lag and application in economicsстатья

Статья опубликована в высокорейтинговом журнале

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 18 сентября 2019 г.

Работа с статьей


[1] Tarasov V. E., Tarasova V. V. Logistic equation with continuously distributed lag and application in economics // Nonlinear Dynamics. — 2019. — Vol. 97, no. 2. — P. 1313–1228. In this paper, we consider nonlinear dynamics with continuously distributed lags. A generalization of the logistic equation, its solution and economic models of logistic growth are proposed by taking into account continuously distributed lags. The logistic integro-differential equations are considered for exponential and gamma distributions of delay time. The integro-differential equations of the proposed model of logistic growth with distributed lag are represented by differential equations with derivatives of integer orders. The solution of the logistic integro-differential equations with exponentially distributed lag is obtained. Characteristic properties of nonlinear dynamics with continuously distributed lags are described. The main difference between dynamics with lag from standard dynamics without delay lies in the existence of a cutoff threshold of growth. We propose the principle of growth clipping by distributed lag, which states that the distributed lag can lead to the emergence of the cutoff threshold, below which growth is replaced by decline. For economy, this means that for production growth, the starting production should exceed a certain minimum (critical) value of production. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть