Face anti-spoofing with joint spoofing medium detection and eye blinking analysisстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Дата последнего поиска статьи во внешних источниках: 11 ноября 2019 г.

Работа с статьей


[1] Nikitin M., Konushin V., Konushin A. Face anti-spoofing with joint spoofing medium detection and eye blinking analysis // Computer Optics. — 2019. — Vol. 43, no. 4. — P. 618–626. Modern biometric systems based on face recognition demonstrate high recognition quality, but they are vulnerable to face presentation attacks, such as photo or replay attack. Existing face anti-spoofing methods are mostly based on texture analysis and due to lack of training data either use hand-crafted features or fine-tuned pretrained deep models. In this paper we present a novel CNN-based approach for face anti-spoofing, based on joint analysis of the presence of a spoofing medium and eye blinking. For training our classifiers we propose the procedure of synthetic data generation which allows us to train powerful deep models from scratch. Experimental analysis on the challenging datasets (CASIA-FASD, NUUA Imposter) shows that our method can obtain state-of-the-art results. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть