Scale aggregation — comparison of flux estimates from NOPEXстатья

Информация о цитировании статьи получена из Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 4 мая 2020 г.

Работа с статьей


[1] Scale aggregation — comparison of flux estimates from nopex / L. Gottschalk, E. Batchvarova, S.-E. Gryning et al. // Agricultural and Forest Meteorology. — 1999. — Vol. 98. — P. 103–119. The NOPEX two concentrated field efforts (CFEs) (June 1994 and April–July 1995) provide high quality data sets for the Boreal environment. The analysis of these data with traditional meteorological and hydrological approaches allow estimations of fluxes of latent and sensible heat, but these flux estimates are not directly comparable due to differences in temporal and spatial scales. The challenge here has been to overcome these difficulties so that the different estimates can be critically compared and evaluated in a systematical way. Five different approaches for the estimation of the regional flux of sensible and/or latent heat over the NOPEX area have been evaluated: (1) Direct aggregation — mixed layer evolution method, (2) Weighted averages of (a) aircraft measurements in the boundary layer and of (b) mast measurements, (3) Numerical models (a) ECOMAG — a distributed hydrological model and (b) MIUU — a mesoscale meteorological model. In general, good agreement was found between the regional estimates of the sensible heat flux, based on the mixed layer evolution method and land use weighted mast measurements. The aircraft measurements were found to be systematically smaller than the land use weighted mast estimates. For the latent heat flux good agreement was found between the regional latent heat flux derived from airplane measurements, land use weighted mast estimates, and the two mesoscale numerical models. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть