Unit stepsize for the Newton method close to critical solutionsстатья Исследовательская статья

Статья опубликована в высокорейтинговом журнале
Статья опубликована в журнале из списка Web of Science и/или Scopus

Работа с статьей

Прикрепленные файлы

Имя Описание Имя файла Размер Добавлен
1. Полный текст ACCSNE-loc_MPA.pdf 220,0 КБ 8 апреля 2020 [izmaf]

[1] Fischer A., Izmailov A. F., Solodov M. V. Unit stepsize for the newton method close to critical solutions // Mathematical Programming. — 2020. As is well known, when initialized close to a nonsingular solution of a smooth nonlinear equation, the Newton method converges to this solution superlinearly. Moreover, the common Armijo linesearchprocedure used to globalize the process for convergence from arbitrary starting points, accepts the unit stepsize asymptotically and ensures fast local convergence. In the case of a singular and possibly even nonisolated solution, the situation is much more complicated. Local linear convergence (with asymptotic ratio of 1/2) of the Newton method can still be guaranteed under reasonable assumptions, from a starlike, asymptotically dense set around the solution. Moreover, convergence can be accelerated by extrapolation and overrelaxation techniques. However, nothing was previously known on how the Newton method can be coupled in these circumstances with a linesearch technique for globalization that locally accepts unit stepsize and guarantees linear convergence. It turns out that this is a rather nontrivial issue, requiring a delicate combination of the analyses on acceptance of the unit stepsize and on the iterates staying within the relevant starlike domain of convergence. In addition to these analyses, numerical illustrations and comparisons are presented for the Newton method and the use of extrapolation to accelerate convergence speed. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть